Table of Contents

Home Page ... 6

About the University .. 7

Academic Calendar .. 7

Accreditation ... 9

Directory ... 9
 Board of Trustees ... 10
 Board of Overseers .. 11
 Advisory Boards .. 14
 Senior Administration .. 25
 Faculty ... 26
 Emeritus Faculty .. 62
 Professional/Instructional Staff .. 70

Graduate Catalog ... 84

Academic Policies and Procedures ... 84

Degree Programs ... 102
 Special Program Options ... 106
 Graduate Certificates ... 107
 Collaborative Doctorate ... 117
 Executive Program .. 117
 Online Learning .. 117
 Course Code Explanations ... 118
 Student Rights and Responsibilities .. 119
 Instructional Delivery ... 122

Admissions and Financial Support ... 124
 Admissions .. 124
 Financial Support .. 130
 Tuition and Fees ... 134

Campus Life and Student Services .. 136
 Office of Graduate Studies .. 137
 Career Services ... 137
 The Digital Campus ... 138
 Library Services .. 138
 Residence Life .. 139
 Student Life ... 140

Continuing Professional Education ... 141
 Online Learning .. 117
 Graduate Studies ... 141

Hilier College of Architecture and Design ... 142
 New Jersey School of Architecture .. 151
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining</td>
<td>260</td>
</tr>
<tr>
<td>Data Visualization</td>
<td>261</td>
</tr>
<tr>
<td>M.S. in Data Science · Computational Track</td>
<td>263</td>
</tr>
<tr>
<td>College of Science and Liberal Arts</td>
<td>265</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>295</td>
</tr>
<tr>
<td>M.S. in Biology</td>
<td>302</td>
</tr>
<tr>
<td>M.S. in Biology of Health</td>
<td>303</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>304</td>
</tr>
<tr>
<td>Ph.D. in Biology</td>
<td>305</td>
</tr>
<tr>
<td>Chemistry and Environmental Science</td>
<td>307</td>
</tr>
<tr>
<td>Cell & Gene Therapy Sciences</td>
<td>318</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>319</td>
</tr>
<tr>
<td>Environmental Science and Engineering</td>
<td>321</td>
</tr>
<tr>
<td>M.S. in Chemistry</td>
<td>323</td>
</tr>
<tr>
<td>M.S. in Environmental Science</td>
<td>324</td>
</tr>
<tr>
<td>M.S. in Pharmaceutical Chemistry</td>
<td>326</td>
</tr>
<tr>
<td>Ph.D. in Chemistry</td>
<td>328</td>
</tr>
<tr>
<td>Ph.D. in Environmental Science</td>
<td>331</td>
</tr>
<tr>
<td>History</td>
<td>333</td>
</tr>
<tr>
<td>M.A. in History</td>
<td>340</td>
</tr>
<tr>
<td>Humanities and Social Sciences</td>
<td>341</td>
</tr>
<tr>
<td>Applied Science</td>
<td>346</td>
</tr>
<tr>
<td>M.S. in Applied Science</td>
<td>349</td>
</tr>
<tr>
<td>Mathematical Sciences</td>
<td>351</td>
</tr>
<tr>
<td>Applied Statistical Methods</td>
<td>363</td>
</tr>
<tr>
<td>Biostatistics Essentials</td>
<td>364</td>
</tr>
<tr>
<td>CLINICAL TRIALS: DESIGN AND ANALYSIS</td>
<td>365</td>
</tr>
<tr>
<td>M.S. in Applied Mathematics</td>
<td>366</td>
</tr>
<tr>
<td>M.S. in Applied Statistics</td>
<td>368</td>
</tr>
<tr>
<td>M.S. in Biostatistics</td>
<td>370</td>
</tr>
<tr>
<td>M.S. in Data Science · Statistics Track</td>
<td>371</td>
</tr>
<tr>
<td>Ph.D. in Mathematical Sciences</td>
<td>373</td>
</tr>
<tr>
<td>Statistics for Data Science</td>
<td>376</td>
</tr>
<tr>
<td>Physics</td>
<td>377</td>
</tr>
<tr>
<td>M.S. in Applied Physics</td>
<td>386</td>
</tr>
<tr>
<td>M.S. in Materials Science and Engineering</td>
<td>387</td>
</tr>
<tr>
<td>Ph.D. in Applied Physics</td>
<td>390</td>
</tr>
<tr>
<td>Ph.D. in Materials Science and Engineering</td>
<td>391</td>
</tr>
<tr>
<td>Newark College of Engineering</td>
<td>394</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>440</td>
</tr>
<tr>
<td>Biomedical Device Development</td>
<td>449</td>
</tr>
<tr>
<td>M.S. in Biomedical Engineering</td>
<td>450</td>
</tr>
<tr>
<td>Degree Program</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>M.S. in Chemical Engineering</td>
<td>464</td>
</tr>
<tr>
<td>M.S. in Materials Science and Engineering</td>
<td>465</td>
</tr>
<tr>
<td>M.S. in Pharmaceutical Engineering</td>
<td>467</td>
</tr>
<tr>
<td>Ph.D. in Chemical Engineering</td>
<td>467</td>
</tr>
<tr>
<td>Ph.D. in Materials Science and Engineering</td>
<td>470</td>
</tr>
<tr>
<td>Pharmaceutical Management</td>
<td>471</td>
</tr>
<tr>
<td>Pharmaceutical Manufacturing</td>
<td>472</td>
</tr>
<tr>
<td>Pharmaceutical Technology</td>
<td>473</td>
</tr>
<tr>
<td>POLYMERS AND PLASTICS</td>
<td>474</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>476</td>
</tr>
<tr>
<td>Construction Management</td>
<td>488</td>
</tr>
<tr>
<td>ENVIRONMENTAL ENGINEERING</td>
<td>489</td>
</tr>
<tr>
<td>ENVIRONMENTAL SCIENCE AND ENGINEERING</td>
<td>491</td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td>493</td>
</tr>
<tr>
<td>Hydrology and Water Resources Engineering</td>
<td>496</td>
</tr>
<tr>
<td>Intelligent Transportation Systems</td>
<td>497</td>
</tr>
<tr>
<td>M.S. in Civil Engineering</td>
<td>498</td>
</tr>
<tr>
<td>M.S. in Critical Infrastructure Systems</td>
<td>504</td>
</tr>
<tr>
<td>M.S. in Environmental Engineering</td>
<td>505</td>
</tr>
<tr>
<td>M.S. in Transportation</td>
<td>506</td>
</tr>
<tr>
<td>M.S. Online in Civil Engineering</td>
<td>509</td>
</tr>
<tr>
<td>Ph.D. in Civil Engineering</td>
<td>510</td>
</tr>
<tr>
<td>Ph.D. in Environmental Engineering</td>
<td>511</td>
</tr>
<tr>
<td>Ph.D. in Transportation Engineering</td>
<td>513</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>514</td>
</tr>
<tr>
<td>Transportation Studies</td>
<td>516</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>517</td>
</tr>
<tr>
<td>M.S. in Computer Engineering</td>
<td>528</td>
</tr>
<tr>
<td>M.S. in Electrical Engineering</td>
<td>530</td>
</tr>
<tr>
<td>M.S. in Internet Engineering</td>
<td>532</td>
</tr>
<tr>
<td>M.S. in Power and Energy Systems</td>
<td>534</td>
</tr>
<tr>
<td>M.S. in Telecommunications</td>
<td>535</td>
</tr>
<tr>
<td>Ph.D. in Computer Engineering</td>
<td>539</td>
</tr>
<tr>
<td>Ph.D. in Electrical Engineering</td>
<td>542</td>
</tr>
<tr>
<td>Power Systems Engineering</td>
<td>545</td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering</td>
<td>546</td>
</tr>
<tr>
<td>M.S. in Engineering Management</td>
<td>561</td>
</tr>
<tr>
<td>M.S. in Healthcare Systems Management</td>
<td>564</td>
</tr>
<tr>
<td>M.S. in Industrial Engineering</td>
<td>565</td>
</tr>
</tbody>
</table>
M.S. in Manufacturing Systems Engineering ... 568
M.S. in Mechanical Engineering ... 570
M.S. in Occupational Safety and Health Engineering .. 573
M.S. in Pharmaceutical Systems Management ... 574
Ph.D. in Industrial Engineering ... 576
Ph.D. in Mechanical Engineering ... 576
Project Management ... 578
Supply Chain Engineering ... 579
Interdisciplinary Program - Engineering Science ... 580
M.S. in Engineering Science ... 581
Martin Tuchman School of Management .. 582
Management .. 590
Business Analytics ... 595
Finance for Managers ... 596
FINANCIAL TECHNOLOGY ... 597
Innovation and Entrepreneurship .. 598
IT Sales & Analytics .. 599
M.B.A. in Management of Technology .. 600
Management Essentials .. 602
Management Information Systems .. 603
Management of Technology .. 604
Marketing ... 605
Master of Science in Management (MSM) .. 606
Mini-MBA .. 608
Mini-MBA .. 609
Ph.D in Business Data Science ... 610
Index ... 613
Home Page
About the University

New Jersey Institute of Technology

Welcome to New Jersey Institute of Technology. As the state's public polytechnic university, we continue to invest in the renewal of our existing facilities in addition to adding new spaces, with the goal of providing an exceptional teaching, learning and living environment.

Continuing a fourfold mission of instruction, research, economic development and public service, NJIT is among the leading comprehensive polytechnic universities in the nation. With well over 11,000 students, NJIT is the largest technological university in the New York metropolitan region.

The university has state-of-the-art facilities with more than 2 million square feet located on a 48-acre campus in Newark, and a solar observatory in Big Bear Lake, California. With robust distance education programs, NJIT's degree and non-degree programs are available throughout the world.

Learning at NJIT

NJIT, a top-ranked public research university, offers undergraduate and graduate students over 125 degree programs ranging from the STEM disciplines to architecture and design, as well as management and humanities.

Our interdisciplinary approach to learning offers students the ability to study in fields beyond their major. We continue to invest in our faculty and facilities so that our students learn in state-of-the-art classrooms and have access to the latest technology in our labs.

NJIT's research is founded on collaboration with students, faculty, staff, external researchers, and partners. We are committed to providing interdisciplinary research and scholarship with the utmost professional integrity.

Our six colleges enroll more than 11,400 students, preparing them for the workplace as well as continuing on to advanced degrees.

Our extensive Continuing Professional Education programs and online courses offer important training for professionals already on the job, and our competitive industry internships help land you one of your own.

NJIT, Rutgers-Newark and Rutgers University Biomedical and Health Sciences (RBHS), New Jersey's university of the health sciences, offer 10 joint master's or doctoral degree programs, placing them as leaders in development of programs to prepare individuals for a world increasingly multidisciplinary and technological in nature.

Each year, thousands of students from NJIT, Rutgers-Newark and Rutgers University Biomedical and Health Sciences take courses at the institutions.

Our Campus Community

Our campus has doubled in size in the past decade to include new residence halls, a 190,000-square-foot Campus Center, a $102 million Wellness and Events Center and the $19 million state-of-the-art Life Sciences and Engineering Center.

NJIT is located in Newark, New Jersey's largest city. Newark is also New Jersey's cultural and economic capital, boasting performance spaces, professional sports, great food, and five other nearby colleges. We're also 20 minutes by train to New York City.

We also have remarkable students from all over the world, and are ranked #1 nationally for student upward economic mobility (The New York Times). NJIT gives you more than a world-class education. It gives you a community. The friends and contacts you'll make at NJIT, whether in one of over 130 student clubs and organizations (not including Greeks), or in dozens of community service projects, will enhance your life and impact your future.

Academic Calendar

Fall 2022 Academic Calendar

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Day of Week</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>5</td>
<td>Monday</td>
<td>Labor Day, University Closed</td>
</tr>
<tr>
<td>September</td>
<td>6</td>
<td>Tuesday</td>
<td>First Day of Classes</td>
</tr>
<tr>
<td>September</td>
<td>12</td>
<td>Monday</td>
<td>Last Day to Add/Drop a Class</td>
</tr>
<tr>
<td>September</td>
<td>12</td>
<td>Monday</td>
<td>Last Day for 100% Refund, Full or Partial Withdrawal</td>
</tr>
<tr>
<td>September</td>
<td>13</td>
<td>Tuesday</td>
<td>W Grades Posted for Course Withdrawals</td>
</tr>
<tr>
<td>September</td>
<td>19</td>
<td>Monday</td>
<td>Last Day for 90% Refund, Full or Partial Withdrawal - No Refund for Partial Withdrawal after this date</td>
</tr>
</tbody>
</table>
Spring 2023 Academic Calendar

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Day of Week</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>16</td>
<td>Monday</td>
<td>Martin Luther King, Jr. Day</td>
</tr>
<tr>
<td>January</td>
<td>17</td>
<td>Tuesday</td>
<td>First Day of Classes</td>
</tr>
<tr>
<td>January</td>
<td>21</td>
<td>Saturday</td>
<td>Saturday Classes Begin</td>
</tr>
<tr>
<td>January</td>
<td>23</td>
<td>Monday</td>
<td>Last Day to Add/Drop a Class</td>
</tr>
<tr>
<td>January</td>
<td>23</td>
<td>Monday</td>
<td>Last Day for 100% Refund, Full or Partial Withdrawal</td>
</tr>
<tr>
<td>January</td>
<td>24</td>
<td>Tuesday</td>
<td>W Grades Posted for Course Withdrawals</td>
</tr>
<tr>
<td>January</td>
<td>30</td>
<td>Monday</td>
<td>Last Day for 90% Refund, Full or Partial Withdrawal - No Refund for Partial Withdrawal after this date</td>
</tr>
<tr>
<td>February</td>
<td>13</td>
<td>Monday</td>
<td>Last Day for 50% Refund, Full Withdrawal</td>
</tr>
<tr>
<td>March</td>
<td>6</td>
<td>Monday</td>
<td>Last Day for 25% Refund, Full Withdrawal</td>
</tr>
<tr>
<td>March</td>
<td>13</td>
<td>Monday</td>
<td>Spring Recess Begins - No Classes Scheduled - University Open</td>
</tr>
<tr>
<td>March</td>
<td>18</td>
<td>Saturday</td>
<td>Spring Recess Ends</td>
</tr>
<tr>
<td>April</td>
<td>3</td>
<td>Monday</td>
<td>Last Day to Withdraw</td>
</tr>
<tr>
<td>April</td>
<td>7</td>
<td>Friday</td>
<td>Good Friday - No Classes Scheduled - University Closed</td>
</tr>
<tr>
<td>April</td>
<td>9</td>
<td>Sunday</td>
<td>Easter Sunday - No Classes Scheduled - University Closed</td>
</tr>
<tr>
<td>May</td>
<td>2</td>
<td>Tuesday</td>
<td>Friday Classes Meet</td>
</tr>
<tr>
<td>May</td>
<td>2</td>
<td>Tuesday</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>May</td>
<td>3</td>
<td>Wednesday</td>
<td>Reading Day 1</td>
</tr>
<tr>
<td>May</td>
<td>4</td>
<td>Thursday</td>
<td>Reading Day 2</td>
</tr>
<tr>
<td>May</td>
<td>5</td>
<td>Friday</td>
<td>Final Exams Begin</td>
</tr>
<tr>
<td>May</td>
<td>11</td>
<td>Thursday</td>
<td>Final Exams End</td>
</tr>
<tr>
<td>May</td>
<td>13</td>
<td>Saturday</td>
<td>Final Grades Due</td>
</tr>
<tr>
<td>May</td>
<td>16</td>
<td>Tuesday</td>
<td>MTSM & NCE Master's Commencement - WEC 10 A.M.</td>
</tr>
<tr>
<td>May</td>
<td>16</td>
<td>Tuesday</td>
<td>HCAD, CSLA, & YWCC Master's Commencement - WEC 1:30 P.M.</td>
</tr>
</tbody>
</table>
Accreditation

New Jersey Institute of Technology is accredited by the Middle States Commission on Higher Education, 3624 Market Street, Philadelphia, PA 19104. (267-284-5000) The Middle States Commission on Higher Education is an institutional accrediting agency recognized by the U.S. Secretary of Education and the Council for Higher Education Accreditation.

Most of NJIT's eligible professional programs, both graduate and undergraduate, are accredited by the respective accrediting agency for their field. Addresses and telephone numbers for all of these accrediting agencies are listed below.

Details about the accreditation of specific programs are included in the descriptions of those degrees.

NJIT is currently undergoing reaccreditation and should receive formal notification from the Middle States Commission on Higher Education by June of 2022. The university’s last accreditation was in 2012.

Accreditation timeline (https://www.njit.edu/strategicplan/planning-accreditation-timeline/)

ABET

- Computing Accreditation Commission of ABET (CAC of ABET)
- Engineering Accreditation Commission of ABET (EAC of ABET)
- Technology Accreditation Commission of ABET (TAC of ABET)

111 Market Place, Suite 1050
Baltimore, MD 21202
Tel. (410) 347-7700

AACSB International

777 South Harbour Island Boulevard
Suite 750
Tampa, FL 33602-5730
Tel. (813) 769-6500

Middle States Commission on Higher Education

3624 Market Street
Philadelphia, PA 19104
Tel. (215) 662-5606

National Architectural Accrediting Board, Inc. (NAAB)

1735 New York Avenue, NW
Washington, DC 20006
Tel. (202) 783-2007

Directory

Faculty at NJIT

Governing Boards

Board of Trustees

The NJIT Board of Trustees (p. 10) is the legal governing body of the university appointed by the governor and confirmed by the state senate.

Board of Overseers

The NJIT Board of Overseers (p. 11) serves as the governing body for the Foundation at NJIT and provides a key advisory link with a wide range of organizations in the business community.

Boards of Visitors
NJIT Advisory Boards (p. 14) serve in an advisory capacity to departments and programs, offering guidance on issues ranging from curricular matters to recruitment efforts to marketing activities.

Board of Trustees

OFFICERS

Robert C. Cohen ‘83, ’84, and ’87 (Chair)
President, Digital Robotics and Enabling Technologies
Stryker Corporation

Norma J. Clayton ’81 (Co-Vice Chair)
VP of Learning, Training & Development (Retired)
The Boeing Company

Nicholas M. DeNichilo (Nick) ’73, and ’78 (Co-Vice Chair)
President & Chief Executive Officer
Mott MacDonald

Diane Montalto ’82 (Co-Vice Chair)
President
DSA Engineering, LLC

Demetrios (Jim) Stamatis ’85 (Co-Vice-Chair)
CEO
Louis Berger (A WSP Company)

Joseph M. Taylor ’11 HON (Co-Vice-Chair)
Chairman & CEO (Ret.), Panasonic Corporation of North America / Managing Officer of the parent, Panasonic Corporation
Panasonic Corporation of North America

Dr. Jason R. Baynes
Founding Member/ Manager
Baynes Orthopaedics

Elisa Charters ’92, ’93
President
Latina Surge National

Gary C. Dahms, PE, PP, CME
President and CEO
T&M Associates

Kuo-Lin (Jordan) Hu ’89
Chief Executive Officer
RiskVal Financial Solutions, LLC

Richard M. “Rich” Maser ’73
Executive Chairman
Maser Consulting P.A.

Dhiraj Shah ’00H
Founder and Chief Executive Officer
AVAAP

Dennis M. Toft, Esq,
Chiesa Shahinian & Giantomasi PC

TRUSTEE EMERITUS

Stephen P. DePalma ’72 (chair emeritus)

Kathleen Wielkopolski (chair emerita)
Philip K. Beachem, Dennis M. Bone, Vincent L. DeCaprio ’72, ’20 HON, Elizabeth “Liz” Garcia ’73, Anthony J. Knapp, Jr., Lawrence A. Raia ’65, ’21 HON, Peter A. Cistaro ’68 (Ex Officio)

EX OFFICIO
Hon. Philip D. (Phil) Murphy ’19 HON
Hon. Ras J. Baraka ’18 HON

SECRETARY
Holly Stern

TREASURER
Catherine Brennan

Board of Overseers

Marjorie A. Perry ’05
Overseers Chair
President and Chief Executive Officer
MZM Construction & Management

Kenneth M. Colao ’77
Overseers Co-Executive Vice Chair
President
CNY Group

Arthur A. Kapoor
Overseers Co-Executive Vice Chair
Chief Executive Officer and Founder
HEALTHEC

Kenneth Alexo, Jr., Ph.D.
President, Foundation at NJIT
Vice President, Development & Alumni Relations
NJIT

Teik C. Lim, Ph.D.
President
NJIT

Catherine Z. Brennan
Secretary, Foundation at NJIT
Senior Vice President for Finance and Chief Financial Officer

Steven Annunziato ’82
Financial Advisor
Merrill Lynch, Pierce, Fenner & Smith, Inc.

Siddhartha Bala ’96H
Head of Product Management/Strategy, Public Cloud
BNY Mellon

Atham P. Dhawan, Ph.D. ’77, ’79, ’85
Interim Provost and Senior Executive Vice President
NJIT

Angelo Del Russo ’82
Founder and CEO
Del-Sano Contracting Corp.

Alfred A. De Seta ’84, ’86
Partner
Robin Hood Ventures

Albert A. Dorman ’45 ’99HON
Founding Chairman (Ret.)
AECOM

Kim Felix
SVP, Enterprise Technology
The Walt Disney Company

Donald Flood ’87, ’95
Senior Vice President, Marketing and Business Development
Mott MacDonald North America

Carlos Fonseca
Founder and CEO
Dental Tourism Colombia LLC

Charles M. Forman ’72
Founder
Forman Holt

Caren L. Freyer
Regional Public Affairs Manager
PSEG Services

John J. Fumosa ’74
Vice President and District Manager
Gilbane Building Company

David T. Gockel ’81
President and Chief Executive Officer
Langan Engineering & Environmental Services, Inc.

Daniel A. Henderson
Chief Executive Officer (Ret.)
Intellect Wireless

Emil C. Herkert (Emeritus)
Chairman and Chief Executive Officer (Ret.)
Hatch Mott MacDonald Infrastructure and Environment

J. Robert Hillier ’17HON
Principal
Studio Hillier

Sonya Kakkar, Ph.D.
Regional Quality head, Biotech Operating Unit
Pfizer Inc.

Ralph Maddalena ’75, ’77
President
NSB Global Solutions LLC
Retired Executive, ExxonMobil Corporation

John McCann
Chairman, JMC Enterprises
Retired CEO, Quanta Services
Retired VP, Bechtel Telecom, Power, Canada

Raymond J. McGowan ’64
Executive Vice President (Ret.)
ExxonMobil Chemical Company

Robert Medina ’75
Founder
Medina 43 Business Strategies, LLC

Pascal Montilus ’87
Vice President, Global Home Care Supply Chain
Colgate-Palmolive Company

Patrick J. Natale ’70, ’75
Executive Director
United Engineering Foundation

Kathleen Natriello
Partner
Fortium Partners, LP

George M. Newcombe, Esq. ’69
Partner (Ret.)
Simpson Thacher & Bartlett

Brett Newton
Vice President, Applications & Azure
Platform Offerings Executive – Northeast
Avanade

John H. Olson ’61, ’66
Managing Director, Northeast Region (Ret.)
Morgan Stanley

Paul V. Profeta
President
Profeta Urban Investment Foundation

Philip L. Rinaldi ’68, ’77 (Chair Emeritus)
Founder, Chairman and Chief Executive Officer (Ret.)
Philadelphia Energy Solutions

Mark Romanski
Vice President and General Manager
Turner Construction Company

Gregory Sauter
Founder
Smart City Works

Steve B. Saperstein ’84
Overseers Co-Executive Vice Chair (Emeritus)
Chief Operating Officer
PGIM Fixed Income

John W. Seazholtz ’59 (Chair Emeritus)
Chairman of the Board (Ret.)
Westell Technologies

W. Marcus Sheridan
Vice Chairman, Asset Management
J.P. Morgan Private Bank

Stephanie Tonic
Senior Vice President, Northeast Region
Wells Fargo Bank, N.A.

Martin Tuchman ’62
Chief Executive Officer
Kingstone Capital V

Kim Vierheilig ’99H, ’00
President - Buildings Facilities
STV Incorporated

Joseph T. Welch, III ’62 (Emeritus)
Advisory Boards

Newark College of Engineering

Emilio Sanchez ’94
Stryker Orthopaedics

Gowton Achaibar ’86
ADS-TEC Energy PLC

Leon Baptiste ’91
LB Electric Co.

Renard E. Barnes, Esq.
Paulus, Sokolowski & Sartor

Neil Brandmaier
Retired, CDPHP

Brion Callori ’79
FM Global

Theodore Cassera, ’72
Bowman Consulting

Robert C. Cohen ’83, ’84, ’87
Stryker Corp.

Jerry D’Alessio, Ph.D., ’93, ’95, ’16
Stryker Orthopaedics

Angelo Del Russo ’82
Del-Sano Contracting Corp.

Alfred A. De Seta ’84, ’86
Robin Hood Ventures

Jerome F. Gallagher, Esq. ’80
Norris, McLaughlin, PA

Moshe Kam, Ph.D., P.E.
Newark College of Engineering

Lisa M. Kardos, Ph.D., ’04H, ’06, ’15
Kardos Jusino Enterprises LLC

Albert J. Mellini, P.E., ’73
Retired, Mott MacDonald Group NA

Patrick J. Natale, P.E., ’70, ’75
Retired, Mott MacDonald Group NA,

Lawrence A. Raia, P.E., ’65, ’21 (HON)
Raia Capital Management

Joseph Stanley, P.E. ’78, ’85
Mott MacDonald Group NA,

Elizabeth Weissenrieder-Bennis
Weiss-Aug Group

Nicholas M. DeNichilo, P.E., ’73, ’78
Retired, Mott MacDonald Group NA
Department of Biomedical Engineering

Mr. Paul Booth
Memorial Sloan Kettering Cancer Center

Ms. Carla Cerqueira '06
Edwards Lifesciences LLC

Mr. John Crombie '91
Upstart Product Development

Mr. William Cymbaluk
Stryker Orthopaedics

Dr. Vincent DeCaprio '72

Mr. Michael Florentino
Stryker Orthopaedics

Dr. Stuart Geffner
Saint Barnabas Medical Center

Mr. Ketan Gujarathi '11
Bristol-Myers Squibb

Dr. Raj Gupta
US Army Medical Research and Materiel Command

Dr. Feng Luo
Bristol-Myers Squibb

Mr. Michael Naljayan '09, '10
Ethicon, Inc.

Mr. Michael Oleck '80
MTF Biologics

Dr. Thomas Richardson
Institute for Life Science Entrepreneurship

Mr. Emilio Sanchez
Stryker

Dr. Ash Sharma
Jeiven Pharmaceutical Consulting

Ms. Sherry Sourial '12
Stryker

Dr. Arda Ural
Ernst & Young, LLP

Mr. Pedro Cruz
Getinge Group
Otto H. York Department of Chemical and Materials Engineering

Jack Shea, Chair BS ChE ’99
Merck & Co., Inc.

Ilgaz Akseli
Bristol Myers Squibb

Fenando Cotero
BP

Greg Czerwienski, MS ChE ’86, BS ChE ’72
OSIsoft LLC

Lucas Dorazio
BASF Corporation, LLC

Karthik Eticala, MS, BS ChE
Honeywell

Christine Farner, MS, BS ChE
Spark Therapeutics

Ron Gabbard, PhD ’02, MS ’93, BS ChE ’85
International Flavors & Fragrances Inc.

Syed T. Husain, BS ChE ’03
Resilience

Vince Patram, BS ChE ’00
U.S. Silica

Andrei Potanin
Colgate-Palmolive

Patrick J. Robinson, PhD ’10, MS ’08, BS ChE ’06
Bayway Refinery

Robert Rossi, BS ChE ’67
Consultant

Joseph Shatynski, P.E., MS ChE ’91, BS ChE ’89
Daiichi Sankyo Inc.

Peter Sibilski, BS ChE ’81
Pharmetic Manufacturing Co.

Vikram Singh, ME ’05, BS ChE ’01
ExxonMobil

Monique Sprueill, BS ChE ’01
Johnson & Johnson

John A. Reif, Jr. Department of Civil and Environmental Engineering

Rocco Palmieri, P.E., P.P, P.L.S. ’72, ’77
Partner Engineering and Science

Ted Cassera, P.E., ’72
Omland Engineering Associates

Anthony Castillo, P.E., ’95, ’02
SESI Consulting Engineers

Anthony J. DeJohn
WSP Parsons Brinckerhoff

Muhammad Elgammal, P.E., P.M.P, ’12, ’15
Stantec

Jerome F. Gallagher Jr., Esq., ’80
Norris McLaughlin, P.A.

James Giurintano, P.E., P.P.,CME, ’94
Bowman Consulting

David R. Good, P.E., ’78, ’92
Mueser Rutledge Consulting Engineers

Andre Grebenstein, LEED AP ’95
The Martin Group

Gareth C. Middleton, P.E, ’93, ’04
Tishman Construction, an AECOM Company

Áine O’Dwyer, P.E., ’07, ’08
Enovate Engineering

Maurice Rached, P.E.
Maser Consulting

Chrissa D. Roessner, P.E., ’02
State of New Jersey, Transportation

Kenneth Sisk
The Rinaldi Group

Joseph Stanley, P.E., ’78, ’85
Hatch Mott MacDonald

Wei Wang, Ph.D., ’95
Urban Tech, Inc.

Helen and John C. Hartmann Department of Electrical and Computer Engineering

Leon K. Baptiste (’91)
LB Electric Company, LLC

Kevin G. Carswell (’79)
Solid State Cooling Systems

Celia Desmond
World Class Telecommunications

Arsalan Gilani (’89)
Smartiply, Inc.

David Haessig (’99)
Communications & Network Solutions

Esam Khadr (’75)
PSE&G

Brian Kiernan (’70)
InterDigital Communications (ret.)

Kevin W. Lu
Electrical & Computer Engineering

Fayez Mohamood
Bluecore.com
Harry L. Moore, Jr. ('84)
Graybeard Solutions LLC

Ahmed Mousa
Electric & Gas Asset Strategy, Asset Management & Centralized Service

Doru Popescu ('81, '85)
Keysight Technologies (Retired)

Shamoon Siddiqui ('04, 05)
Develop.IO

Durgamadhab Misra
Department of Electrical & Computer Engineering

Leonid Tsybeskov
Department of Electrical & Computer Engineering

School of Applied Engineering and Technology

Albert Mellini, P.E., P.P., '73
Mott MacDonald Group, NA (Retired)

David Eareckson, P.E., '96
Land Development Services Matrix New World Engineering

Ray Ferrara, '96, '07
MTF Biologics

Todd M. Hay, P.E.
Pennoni

Steven Santoro, '81
Micro Stamping Corp.

Robert Gariepy
RCC Builder and Developers, Inc.

Ed Gottko
NJIT

Daniel Grek
Middlesex Community College

John Gribbin
Essex County College

Dennis T. Hagerty, Esq., P.E.
Epic Management

James Maccariella
Mercer County College

Paul L. McCall, P.E.
Somerset County

William Morris
Epic Management

Thomas Sabol, P.E.
Middlesex Community College

Jill Schiff
ACCNJ

Frank Flatch
Silvi

William Layton
NJ Concrete and Aggregate Association

Laurence J. Silvi II
Silvi Group Companies

Francis Burke
Middlesex County College

Peter Greene
ACI Technologies

Allen Leurck
Deutsche Bank

William Madden
Bergen Community College

Marisol Peters
Saint Clare's Health

Patricia Rodihan
Union County College

Alan Stultz
Datatek

Bill Tomaskovic
CTG, Inc.

Anita Verno
Bergen County College

Kevin Wiechmann
Johnson & Johnson

Gerald Aska
County College of Morris

Richard Baseil
IEEE

Daniel Capozzi
Quixotic Technologies Corporation

Richard Daken
Rimkus Consulting Group

James Finne
Middlesex Community College

Venancio L. Fuentes
County College of Morris

Kim Norman Kershaw
Steven Institute of Technology

Joseph Meidling
Merck & Co.

Jinsoo Park
Essex County College

Russell C. Pepe
Advanced Technical Marketing
Advisory Boards

Michael Qaissaunee
Brookdale Community College

Anastasios Verdi
Tyco Telecommunications

Michael Vincent
Public Service Electric and Gas

Jack Waintraub Professor
Middlesex Community College

Hossein Asadipour
Essex County College

Ian Colquhoun
County College of Morris

Robert T. Cook Sr.
Siemens, HC Diagnostics

Robert J. Genito
Enterprise Automation

Edwin A. May, Jr.
Maplewood Consulting

Alan E. Paschedag
Covanta

James F. Vigani President
Vigani Technical Services, Inc.

Peter Borbas
Borbas Surveying & Mapping, LL

Stephen Farrell
US Army Corps of Engineers

Massimo Piazza
Piazza Engineering

Joseph E. Romano
Langan

Andrew Rowan
State of New Jersey

John T. White
Leica Geosystems, Inc.

Department of Mechanical & Industrial Engineering

Maria Branco, PE '74
National Grid Power Plant Operations

Peter C. Coppola, PE '89 '91
Foster Wheeler North America

Don Cronin, PE '75, CEO
Alternative Technologies, Inc.

Ben M. Hanafin, Principal
Carova Management, LLC

Dr. Teh Ho
ExxonMobil

Dr. Emile N Homsi ’03
Research and Technology

Ankush Karnik, ’01 ’05
Volanno Inc.

Nadia Ratycz, President
NIRA Strategic Solutions, LLC

Daniel Rodriguez
Festo Didactic

Kenneth Trimmer

College of Science and Liberal Arts

Benjamin Appleby, ’98
Prudential

Siddhartha Bala, ’96
BNY Mellon

Parthasarathi Chakraborty
Humana

Yadan Chen, ’90
Exemplify BioPharma

Cynthia Colucci
TD Bank

Alana Dudley
PGIM Fixed Income

Russell J. Furnari, ’79
PSEG

Ronald S. Greenberg
Growbilize

Yvonne Hu
Anchor International Investment

Paul D. Rogers, Ph.D., ’08, ’11
Sumach Enterprises, LLC

Department of Aerospace Studies

Department of Chemistry and Environmental Science

Nicholas A. Procopio, Ph.D., GISP
NJ Department of Environmental Protection

Dr. Dan G. Sykes
Penn State University

Prof. Philip Demokritou
Harvard School of Public Health

Subash Jonnalagadda
Rowan University

Peter T. Meinke, PhD
Department of Humanities and Social Sciences

Department of Mathematical Sciences
Dr. John S. Abbott
Corning Incorporated
Mr. Benjamin J. Appleby
Prudential (formerly)
Dr. Ned J. Corron
U.S Army AMCOM(formerly)
Mr. Erik Gordon
Trillium Trading, LLC
Dr. Bonnie Ray
Chartbeat
Dr. Richard Silberglitt
Rand Corporation

Department of Physics

Federated Department of Biological Sciences

Federated Department of History

Rutgers/NJIT Theatre Arts Program</h2>

J. Robert and Barbara A. Hillier College of Architecture and Design

Stephen P. Aluotto ’79
President & CEO, NK Architects

Jordan Hillier Adams
Associate, CBRE

Kenneth Colao ’77
Founder, President & CEO of CNY Group

Robert Fritz ’88
Senior Vice President & Built Environment Practice Leader, Mott Macdonald

Samer Hanini ’99
Managing Partner, Hanini Group

Matthew Jarmel ’90
Principal, Jarmel Kizel Architects & Engineers

Vivian Lee
New York Studio Executive Director, Woods Bagot

Karen V. Nichols
Principal, Michael Graves & Associates

Brenda Nyce-Taylor
Managing Director, Sciences Leader & Principal, Gensler
Marc R. Parette '83
Principal, Parette Somjen Architects

Jeanne Perantoni
Principal & CEO, SSP Architectural Group

Kim V. Vierheilig '99 '00
President, Buildings and Facilities, STV

David Williams
Partner, Davis Brody Bond

Ying Wu College of Computing

Department of Computer Science

Department of Data Science

Department of Informatics

Martin Tuchman School of Management

Ray Cassetta
Municipal Labor Negotiator

Tony Crincoli
Viatris

Fang Chu
KC Group Holdings

Bill Ehrhardt
Vistage International

Tom Epes
Salesforce.org

Kirk Edelman
Safari Energy, LLC

Sharon Eliran
Waterfall Asset Management, LLC

Erik Gaston
AppDynamics

Valentin Guerin
Avanade

Bob Hinkle
RS Knapp Company

Antoinette (Toni) Handler
Amazon Web Services

Lisa Hart
Bristlecone

Carolyn Jandoli
Merck

George Kelly (Retired)
Morgan Stanley

Romolo Marcucci
Coranet

Bill Quinn
Johnson & Johnson

Misha Riveros
PAC Worldwide

Joseph Roman
Salesforce

Steve Rubin

Esra Sahiner
IBM Corporate Social Responsibility

Harry Silver
Goldman Sachs

Michael Smith
Hearst Magazines Digital Media

Abir Thakurta
Havertys

Shaun Wiggins
Soteryx Corp.

John Wurch
JPW Consulting

Marc Zutty
Broadridge Financial Solutions, Inc.

Albert Dorman Honors College

Stewart H. Abrams, P.E.
Langan

Elaine M. Bochniewicz, Ph.D. '03H
The MITRE Corporation

Laura Dorman, JD
Berkeley Research Group

Erica Feldman, '10H, MS '10
Citigroup

Frank P. Femino, MD '85
Femino Ducey Orthopaedic Group

Jennifer Guevara '04H, MS '06
Lockheed Martin GES

Michael J. Hanrahan '96H
Clarke Caton Hintz

Daniel A. Henderson '11(HON)
Sculptor and Inventor

J. Robert Hillier, FAIA, '17(HON)
Studio Hillier

Aivars E. Krumins '75
McDermott

Aine M. O'Dwyer, PE, BS CE '08H
Enovate Engineering

Paulo Bandeira Pinho, MD, FAAP, FACP '96H
Diameter Health

Emily Piotrowski '99H
Medidata Solutions

Samir Saini '97H
Microsoft

Clifford M. Samuel '88H, '19(Hon)
PCMS1 Consulting

Richard Schatzberg, MS '93, (BOV Chair)
NeST Technologies, Inc.

Sarabjit Singh '02H '03
Five Rivers IT

Dhiraj Shah '00H
AVAAP Inc.

Michael E. Smith '95 (BOV Vice Chair)
Hearst Corporation

Joseph M. Sullivan '80
Sun West Mortgage Corporation

John A. Trezza, Ph.D.
Valcor Engineering Corporation

Senior Administration

Teik C. Lim, Ph.D.
President
973-596-3101

Atam P. Dhawan, Ph.D.
Interim Provost and Senior Executive Vice President
973-596-3220

Catherine Brennan
Senior Vice President for Finance and Chief Financial Officer
973-596-3124

Andrew P. Christ, P.E
Senior Vice President for Real Estate Development and Capital Operations
973-596-5774

Kenneth Alexo, Jr., Ph.D.
Vice President for Development & Alumni Relations
President of the Foundation
973-596-8293

Marybeth Boger, Ph.D.
Vice President for Student Affairs and Dean of Students
973-596-3470

Dale A. McLeod
Vice President for Human Resources
973-596-3140
Faculty

Abdel-Malek, Layek
Professor of Mechanical and Industrial Engineering (1986)
- Ph.D. Operations Research, New York University, 1980
- Diploma, National Planning Institute, Cairo, 1970
- B.S., Cairo University, 1969

Abdi, Ali
Professor of Electrical and Computer Engineering (2001)
- Ph.D., University of Minnesota, 2001
- M.S., University of Teheran, 1996
- B.S., University of Science and Technology, 1991

Abdou, George
Associate Professor of Mechanical and Industrial Engineering (1993)
- Ph.D. Industrial Engineering, Iowa State University, 1987
- M.S., Iowa State University, 1983
- B.S., Helwan University, Cairo, 1977

Abichandani, Pramod
Assistant Professor of Engineering Technology (2017)
- Ph.D. Electrical and Computer Engineering, Drexel University, 2011
- M.S. Electrical and Computer Engineering, Drexel University, 2007
- B.E. Instrumentation and Controls Engineering, Nirma Institute of Technology, 2005

Adamovich, Sergei
Professor of Biomedical Engineering (2003)
- Ph.D., Moscow Institute of Physics and Technology, 1988
- M.S., Moscow Institute of Physics and Technology, 1983
- B.Sc., Moscow Institute of Physics and Technology, 1983

Adams, Matthew P.
Assistant Professor of Civil and Environmental Engineering (2015)
- Ph.D. Civil Engineering, Oregon State University, 2015
- B.S. Civil Engineering, University of New Hampshire-Main Campus, 2015
- M.S., Oregon State University, 2014
- M.S. Civil Engineering, Oregon State University, 2012

Afkhami, Shahriar Zakerzadeh
Professor of Mathematical Sciences (2009)
- Ph.D. Mechanical Engineering, University of Toronto, 2007
- M.S., University of Science and Research, Iran, 2007
- B.S., Azad University of Tehran, Iran, 2007

Ahmadpoor, Fatemeh
Assistant Professor of Mechanical and Industrial Engineering (2019)
- Ph.D. Mechanical Engineering, University of Houston, 2016
- M.S. Structural Engineering, Sharif University of Technology, 2012
- B.S. Civil Engineering, Sharif University of Technology, 2009
Ahn, Keun Hyuk
Associate Professor of Physics (2007)
Ph.D., Johns Hopkins University, 2000
M.S., Seoul National University, South Korea, 1994
B.S., Seoul National University, South Korea, 1992

Ajim Uddin
Assistant Professor Finance
Ph.D., Business Data Science, NJIT, 2022
M.S., Economics and Finance, Southern Illinois University Edwardsville
M.B.A., Shahjalal University of Science & Technology, 2016
B.B.A., Shahjalal University of Science & Technology, 2013

Akansu, Ali N.
Professor of Electrical and Computer Engineering (1987)
Ph.D. Electrical Engineering, Polytechnic Institute of New York University, 1987
M.S. Electrical Engineering, Polytechnic Institute of New York University, 1983
B.S. Electronics and Communications, Technical University of Istanbul, 1980

Alisafaei, Farid
Assistant Professor of Mechanical and Industrial Engineering
B.S., University of Guilan, Mechanical Engineering, 2007
M.S., University of Guilan, Mechanical Engineering, 2010
Ph.D., University of Wyoming, Mechanical Engineering, 2015

Alvarez, Tara L.
Professor of Biomedical Engineering (2001)
Ph.D. Biomedical Engineering, Rutgers University-New Brunswick, 1998
M.S. Biomedical Engineering, Rutgers University-New Brunswick, 1997
B.S. Electrical Engineering, Rutgers University-New Brunswick, 1994

Anandarajan, Asokan
Professor of Management (1994)
Ph.D. Accounting, Drexel University, 1995
M. Phil. Activity Based Costing, Cranfield University, 1986
MBA Accounting, Cranfield University, 1984
B.B.A. Accounting, University of Colombo, 1982

Ancis, Julie R.
Professor of Humanities
B.A., SUNY at Albany, Psychology, 1986
M.A., SUNY at Albany, Counseling, 1988
Ph.D., SUNY at Albany, Counseling Psychology, 1995

Angizi, Shaahin
Assistant Professor of Electrical and Computer Engineering
B.S., Azad University, Computer Engineering, 2012
M.S., Azad University, Computer Engineering, 2014
Ph.D., Arizona State University, Electrical Engineering, 2021

Ansari, Nirwan
Distinguished Professor of Electrical and Computer Engineering (1988)
Ph.D. Electrical Engineering, Purdue University-Main Campus, 1988
M.S. Electrical Engineering, University of Michigan-Ann Arbor, 1983
B.S., New Jersey Institute of Technology, 1982

Arafah, Bassel
Senior University Lecturer, Department of Computer Science
B.S., Cairo University, Electrical Engineering (Electronics and Communication), 1974
M.E., Texas A & M University, Electrical Engineering, 1980
Ph.D., Texas A & M University, Computer Science, 1986
Arinzeh, Treena L.
Professor of Biomedical Engineering (2001)
Ph.D. Bioengineering, University of Pennsylvania, 1999
M.S. Biomedical Engineering, Johns Hopkins University, 1994
B.S. Mechanical Engineering, Rutgers University-New Brunswick, 1992

Armenante, Piero M.
Distinguished Professor of Chemical and Materials Engineering (1984)
Ph.D. Chemical Engineering, University of Virginia-Main Campus, 1983
M.S. Chemical Engineering, University of Rome, 1977

Askham, Travis L.
Assistant Professor of Mathematical Sciences (2019)
BS in Applied Mathematics (UCLA)
MA in Mathematics (UCLA)
PhD in Mathematics (Courant Institute of Mathematical Sciences at NYU)

Axe, Lisa B.
Professor of Civil and Environmental Engineering (1995)
Ph.D. Environmental Engineering, Illinois Institute of Technology, 1995
M.S. Chemical Engineering, Illinois Institute of Technology, 1995
M.S. Environmental Engineering, Illinois Institute of Technology, 1992
B.S. Geoscience, Purdue University-Main Campus, 1984

Azizi, Seyyedmohsen
Assistant Professor of Engineering Technology (2018)

Bader, David
Distinguished Professor Computer Science (2019)
Ph.D. Electrical Engineering, University of Maryland, 1996
M.S. Electrical Engineering, Lehigh University, 1991
B.S. Computer Engineering, Lehigh University, 1990

Bagheri, Sima
Professor of Civil and Environmental Engineering (1984)
Ph.D. Environmental Remote Sensing, University of Wisconsin Colleges, 1984
M.S., Illinois State University, 1968
B.S., Teheran University, 1965

Balogh, Peter E.
Assistant Professor of Mechanical & Industrial Engineering
B.S., University of Notre Dame, Mechanical Engineering, 2004
Ph.D., Rutgers University-New Brunswick, Mechanical Engineering, 2018

Baltzis, Basil C.
Professor of Chemical and Materials Engineering (1983)
Ph.D., University of Minnesota, 1983
M.S., University of Illinois at Urbana-Champaign, 1980
Diploma, National Technical University of Athens, 1978

Bandelt, Matthew J.
Assistant Professor of Civil and Environmental Engineering (2015)
Ph.D. Civil and Environmental Engineering, Stanford University, 2015
M.S. Civil Engineering, Villanova University, 2011
B.S. Civil Engineering, Villanova University, 2010

Bandera, Cesar
Associate Professor of Management (2012)
Certification Executive Development, Harvard School of Management, 1996
Ph.D. Systems Engineering, University at Buffalo, 1990
M.S. Computer Engineering, University at Buffalo, 1985
Barat, Robert B.
Professor of Chemical and Materials Engineering (1990)
Ph.D. Chemical Engineering, Massachusetts Institute of Technology, 1990
M.S. Chemical Engineering, New Jersey Institute of Technology, 1983
B.S. Chemical Engineering, New Jersey Institute of Technology, 1980

Barden, Phillip M.
Assistant Professor of Federated Biology (2017)
Ph.D. Comparative Biology, Richard Gilder Graduate School, 2015
B.S. Ecology and Evolution, Arizona State University, 2009

Basu Roy, Senjuti
Assistant Professor of Computer Science (2016)
Ph.D. Computer Science, The University of Texas at Arlington, 2011
M.S. Computer Science, The University of Texas at Arlington, 2007
B.Tech Computer Science and Engineering, University of Calcutta, 2004

Basuray, Sagnik
Assistant Professor of Chemical and Materials Engineering (2014)
Ph.D. Chemical and Bio-Molecular Engineering, University of Notre Dame, 2010

Bechtold, John K.
Professor of Mathematical Sciences (1994)
Ph.D. Applied Mathematics, Northwestern University, 1987
B.S. Mathematics, Siena College, 1982

Belfield, Kevin D.
Professor of Chemistry and Environmental Science (2014)
Ph.D. Chemistry, Syracuse University, 1988
B.S. Chemistry, Rochester Institute of Technology, 1982

Bengu, Golgen
Associate Professor of Mechanical and Industrial Engineering (1988)
Ph.D., Clemson University, 1987
M.S., North Carolina A&T State University, 1985
B.S., Bosphorus University, 1981

Bilgili, Ecevit A.
Professor of Chemical and Materials Engineering (2021)
Ph.D. Chemical Engineering, Illinois Institute of Technology, 2001
B.S. Chemical Engineering, Bogazici University, 1996

Biswal, Bharat
Distinguished Professor of Biomedical Engineering (2012)
Ph.D., Medical College of Wisconsin, 1996
M.S., Michigan Technological University, 1996
M.S., Michigan Technical University, 1991
B.S., Utka University, India, 1989
B.S., Utka University, 1989

Biocca, Frank
Professor Informatics (2018)

Bladikas, Athanassios
Associate Professor of Mechanical and Industrial Engineering (1988)
Ph.D., Polytechnic Institute of New York, 1983
M.S., Polytechnic Institute of New York, 1976
MBA, Columbia University in the City of New York, 1975
B.S., City College of New York, 1971
Bonitsis, Theologos H.
Associate Professor of Management (1984)
Ph.D. Economics, CUNY Graduate School and University Center, 1984
M.A. Economics, CUNY Hunter College, 1981
B.A. Economics, CUNY Bernard M Baruch College, 1976
A.A. Liberal Arts, CUNY New York City College of Technology, 1975

Bookey, Michael R.
Professor of Mathematical Sciences (1993)
Ph.D. Mathematics, Imperial College, 1983
M.A. Part III Mathematics Tripos, Cambridge University, 1979
M.A. Mathematics, Cambridge University, 1978

Borcea, Cristian M.
Associate Professor of Computer Science (2004)
Ph.D. Computer Science, Rutgers University-New Brunswick, 2004
M.S. Computer Science, Rutgers University-New Brunswick, 2002
M.S. Computer Science, Politehnica University of Bucharest, 1997
B.S. Computer Science, Politehnica University of Bucharest, 1996

Borgaonkar, Ashish
Assistant Professor of Engineering Technology (2013)

Bose, Amitabha K.
Professor of Mathematical Sciences (1996)
Ph.D., Brown University, 1993
M.S., Brown University, 1991
B.S., Columbia University in the City of New York, 1989

Boubendir, Yassine
Associate Professor of Mathematical Sciences (2007)
Ph.D., Universite de Toulouse, France, 2002
M.S., University of Paul, France, 1996
B.S., University of Constantine, Algeria, 1993

Boufadel, Michel
Professor of Civil and Environmental Engineering (2012)
Ph.D., University of Cincinnati, 1998
M.S., University of Cincinnati, 1992
B.S., Jesuit University at Beirut, Lebanon, 1988

Bucher, Dirk M.
Associate Professor of Federated Biology (2013)
Ph.D.

Buffone, Alexander
Assistant Professor of Biomedical Engineering
B.S., SUNY Buffalo, Chemical Engineering, 2006
Ph.D., SUNY Buffalo, Chemical Engineering, 2012

Bukiet, Bruce G.
Professor of Mathematical Sciences (1989)
Ph.D., New York University, 1986
M.S. Mathematics, New York University, 1983
B.S. Applied Mathematics - Biology, Brown University, 1980

Bunker, Daniel E.
Assistant Professor of Federated Biology (2008)
Ph.D. Biology, University of Pittsburgh-Pittsburgh Campus, 2004
B.S. Ecology and Evolution, The Evergreen State College, 1994
Buntain, Cody
Assistant Professor of Computer Science and Informatics (2019)
- Ph.D. Computer Science, University of Maryland-College Park, 2016
- M.S. Computer Science, University of Alabama in Huntsville, 2010
- B.S. Computer Science and Mathematics, University of Alabama in Huntsville, 2007

Buyukahtakin-Toy, Ismet Esra
Associate Professor of Mechanical and Industrial Engineering (2017)

Brooks, Charles R.
Professor of Practice, Humanities

Cai, Wenbo
Assistant Professor of Mechanical and Industrial Engineering (2012)
- Ph.D. Industrial Engineering and Operations Research, University of California-Berkeley, 2012
- M.S. Industrial Engineering and Operations Research, University of California-Berkeley, 2007
- B.S. Electrical and Computer Engineering; Operations Research and Industrial Engineering, Cornell University, 2005

Cakareski, Jakov
Associate Professor, Informatics

Calvin, James M.
Professor of Computer Science (1996)
- Ph.D., Stanford University, 1990
- M.S., University of California-Berkeley, 1979
- B.A., University of California-Berkeley, 1978

Cao, Wenda
Associate Professor of Physics (2002)
- Ph.D. Astrophysics and Astronomical Instrument, National Astronomical Observatories, Chinese Academy of Sciences, 2001
- M.S., National Astronomical Observatories, Chinese Academy of Sciences, 1992
- B.S., University of National Defense Science and Technology (China), 1989

Carpinelli, John D.
Professor of Electrical and Computer Engineering (1986)
- Ph.D., Rensselaer Polytechnic Institute, 1987
- M.E., Rensselaer Polytechnic Institute, 1984
- B.E., Stevens Institute of Technology, 1983

Cartwright, Mark B.
Assistant Professor of Informatics
- B.M., Northwestern University, Music Technology, 2004
- M.A., Stanford University, Music Science and Technology, 2007
- Ph.D., Northwestern University, Computer Science, 2016

Casado Zapico, Sara
Assistant Professor of Chemistry and Environmental Science
- B.S., University of Oviedo, Biochemistry, 2006
- B.S., University of Oviedo, Biological Sciences, 2003
- M.S., University of Granada, Forensic Anthropology and Genetics, 2011
- M.S., University of Oviedo, Biochemistry, 2008
- M.S., University of Oviedo, Education, 2004
- Ph.D., Institute for Cancer Research of Principado de Asturias, Biochemistry, 2012

Caudill, Reggie J
Professor of Mechanical and Industrial Engineering (1990)
- Ph.D. Dynamics and Controls/Mechanical Engineering, University of Minnesota-Twin Cities, 1976
- M.S. Engineering Mechanics, The University of Alabama, 1973
- B.S. Mechanical Engineering, The University of Alabama, 1971

Chakareski, Jacob
Associate Professor Informatics (2019)
Ph.D. Electrical and Computer Engineering, Rice University, 2006
M.S. Electrical and Computer Engineering, Worcester Polytechnic Institute, 1999
B.S. Electrical Engineering, Ss. Cyril and Methodius University, 1997

Champagne, Pier Alexandre
Assistant Professor of Chemistry and Environmental Science (2019)
Ph.D. Organic Chemistry (honors), Université Laval, Canada, 2015
B.Sc. Chemistry, Université Laval, Canada, 2010

Chandra, Namas
Distinguished Professor of Biomedical Engineering (2013)
Ph.D., Texas A&M University, 1986
M.S., University of Houston, 1983
B.E., University of Madras, India, 1973
A.M.I.E., Institute of Engineers, Calcutta, India, 1978

Chang, Aichih Jasmine
Assistant Professor MT School of Management (2019)
Ph.D. Management, Rutgers Business School, 2019
M.B.A. Supply Chain Management and Finance, Rutgers Business School, 2009
M.A. International Economics, Shanghai University of Finance & Economics, 2006
B.A. Economics and Russian, National Chengchi University, 2003

Chen, Hao
Professor of Chemistry and Environmental Science (2018)
Ph.D. Chemistry and Environmental Science, Purdue University, 2005
MS, Analytical Chemistry, University of Massachusetts at Dartmouth, 2001
MS, Polymer Chemistry and Physics, Shanghai Institute of Organic Chemistry, China, 1999
BS, Chemistry, Wuhan University, Wuhan, China, 1996

Chen, Yi
Professor of Management (2013)
Ph.D., University of Pennsylvania, 2005
M.S., University of Pennsylvania, 2000
B.S., Central South University, China, 1999

Chen, Bin
Assistant Professor of Physics (2016)
Ph.D. Astronomy, University of Virginia-Main Campus, 2013
M.S. Astronomy, University of Virginia-Main Campus, 2010
M.S. Astrophysics, University of Chinese Academy of Sciences, 2008
B.S. Physics, Peking University, 2005

Chester, Shawn A.
Assistant Professor of Mechanical and Industrial Engineering (2013)
Ph.D. Mechanical Engineering, Massachusetts Institute of Technology, 2011
M.S. Mechanical Engineering, New Jersey Institute of Technology, 2006
B.S. Mechanical Engineering, New Jersey Institute of Technology, 2005

Chien, I Jy Steven
Professor of Civil and Environmental Engineering (1996)
Ph.D. Civil and Environmental Engineering, University of Maryland-College Park, 1995
M.S. Civil and Environmental Engineering, University of Maryland-College Park, 1991
B.S. Civil Engineering, Tamkang University, 1983

Chin, Ken K.
Professor of Physics (1987)
Ph.D., Stanford University, 1986
M.S., University of Georgia, 1982
B.S., Peking Institute of Aeronautics, 1959

Chintersingh, Kerri Lee A.
Cho, Cheul
Assistant Professor of Chemical and Materials Engineering
B.Eng., University of Technology Jamaica, Chemical Engineering, 2013
Ph.D., New Jersey Institute of Technology, Chemical Engineering, 2019

Choi, Wooyoung
Assistant Professor of Physics (2007)
Ph.D. Chemical Engineering, Wayne State University, 2003
M.S. Biomedical Engineering, University of Iowa, 1992
B.S. Chemical Engineering, Dong-A University, 1990

Chong Jin, Assistant Professor

Cohen, Maurie
Professor of Humanities (2001)
Ph.D., University of Pennsylvania, 1993
M.S., Columbia University in the City of New York, 1987
B.S., New York University, 1984

Crespo Solis, Andres
Professor of Mathematical Sciences (2005)
Ph.D. Engineering Science, California Institute of Technology, 1993
M.S. Naval Architecture, Seoul National University, 1986
B.S. Naval Architecture, Seoul National University, 1984

Cummings, Linda J.
Associate Professor of Mathematical Sciences (2008)
B.A. Mathematics, University of Oxford, 1993

Curtmola, Reza
Associate Professor of Computer Science (2008)
Ph.D. Computer Science, Johns Hopkins University, 2007
M.S. Computer Science, Johns Hopkins University, 2003
B.S. Computer Science, Politehnica University of Bucharest, 2001

Daher, Salam
Assistant Professor of Informatics (2019)
Ph.D. Modeling and Simulation, University of Central Florida, 2018
M.S. Modeling and Simulation, University of Central Florida, 2015
M.S. Digital Arts and Science, University of Florida, 2006
B.S. Computer Science, Lebanese American University, 2004

Daniel, Janice R.
Associate Professor of Civil and Environmental Engineering (1999)
Ph.D. Civil and Environmental Engineering, Texas A&M Health Science Center, 1995
M.S. Transportation Planning and Engineering, Polytechnic Institute of New York University, 1989
B.S. Civil Engineering, Princeton University, 1985

Das, Sanchoy K.
Professor of Mechanical and Industrial Engineering (1989)
Ph.D., Virginia Polytechnic Institute and State University, 1989
M.S., Virginia Polytechnic Institute and State University, 1985
B.S., University of Science and Technology (Ghana), 1982

Dasgupta, Aritra
Assistant Professor of Informatics (2018)

Datta, Dibakar
Assistant Professor of Mechanical and Industrial Engineering (2016)
Ph.D. Philosophy, Brown University, 2015
M.S. Computational Mechanics, Universitat Politecnica de Catalunya, 2010
M.S. Structural Engineering, Indian Institute of Science, 2008
B.S. Civil Engineering, Indian Institute of Engineering Science, 2006

Dave, Rajesh N.
Distinguished Professor of Chemical and Materials Engineering (1985)
Ph.D. Mechanical Engineering, Utah State University, 1983
M.S. Mechanical Engineering, Utah State University, 1981
B.S. Mechanical Engineering, Indian Institute of Technology, 1978

Deane, Johanna M.
University Lecturer, Department of Humanities
B.A., University of Maryland-Baltimore County, English Literature and Creative Writing, 2008
M.F.A., Rutgers University-Camden, Creative Writing, 2011

Decker, Martina
Assistant Professor of Architecture and Design (2012)
Diploma Architektur, FHM Munich University of Applied Sciences, 2004
Diploma, FHM Munich University of Applied Sciences, 2000

Deek, Fadi P.
Distinguished Professor of Information System (1986)
Ph.D. Computer and Information Science, New Jersey Institute of Technology, 1997
M.S. Computer Science, New Jersey Institute of Technology, 1986
B.S. Computer Science, New Jersey Institute of Technology, 1985

Dent, Rosanna J.
Assistant Professor of Federated History (2018)

Dhar, Sunil K.
Professor of Mathematical Sciences (1991)
Ph.D., Michigan State University, 1988
M.Sc., University of Poona, 1981
M.S., Michigan State University, 1983
B.Sc., University of Poona, 1979

Dhawan, Atam P.
Senior Vice Provost, Research

Dias, Cristiano Luis
Assistant Professor of Physics (2012)
Ph.D., McGill University, Canada, 2007
M.S., Universite de Montreal, Canada, 2001
B.S., Universidade de Brasilia, Brazil, 1998

Diekmann, Casey O.
Assistant Professor of Mathematical Sciences (2013)
Ph.D., University of Michigan, 2010
M.S., University of Michigan, 2005
B.S., Purdue University, 2002

Dimitrijevic, Branislav
Assistant Professor of Civil & Environmental Engineering (2003)

Ding, Xiaoning
Assistant Professor of Computer Science (2012)
Ph.D., Ohio State University, 2010
M.S., Northwestern Polytechnic University, 1998
B.E., Northwestern Polytechnic University, 1996

Ding, Yuan
Dong, Lin
Assistant Professor of Mechanical & Industrial Engineering
B.E., Harbin Institute of Technology, Mechanical Engineering, 2008
M.E., Stevens Institute of Technology, Mechanical Engineering, 2011
Ph.D., Stevens Institute of Technology, Mechanical Engineering, 2017

Dreyzin, Edward L.
Distinguished Professor of Chemical and Materials Engineering (1999)
Ph.D., Odessa University, 1992
M.S., Odessa University, 1985
B.S., Odessa College of Measurements, 1980

Dytso, Alex
Assistant Professor of Electrical and Computer Engineering
B.S., University of Illinois at Chicago, Electrical and Computer Engineering, 2011
M.S., University of Illinois at Chicago, Electrical Engineering, 2014
Ph.D., University of Illinois at Chicago, Electrical and Computer Engineering, 2016

Eberhart, Michael S.
Assistant Professor of Chemistry and Environmental Science
B.S., New Mexico State University-Main Campus, Chemistry, 2010
Ph.D., Columbia University in the City of New York, Chemistry, 2016

Egbelu, Pius J.
Distinguished Professor of Management (2011)
Ph.D., Virginia Polytechnic Institute and State University
M.S., Virginia Polytechnic Institute and State University
B.S., Louisiana Tech University

Ehrlich, Michael A.
 Associate Professor of Management (2007)
 B.A. Economics, Yale University, 1981

Eren, Canan
Senior University Lecturer, Department of Computer Science
B.S., Anadolu University, Industrial Engineering, 1988
M.S., CUNY City College, Computer Science, 1993
Ph.D., CUNY Graduate School and University Center, Computer Science, 2008

Eskandari, Marzieh
Senior University Lecturer, Department of Computer Science
B.S., Sharif University of Technology, Applied Mathematics, 2001
M.S., Amirkabir University of Technology, Applied Mathematics - Computational Geometry, 2003
Ph.D., Amirkabir University of Technology, Applied Mathematics - Computational Geometry, 2009

Esperdy, Gabrielle
Professor of Architecture and Design (2001)
Ph.D. Art and Architectural History, CUNY Graduate School and University Center, 1999
M.S., CUNY Graduate School and University Center, 1999
B.A. Art History, Smith College, 1987

Farinas, Edgardo T.
 Associate Professor of Chemistry and Environmental Science (2004)
 Ph.D. Chemistry, University of California-Santa Cruz, 1997
B.S. Chemistry, Loyola University Chicago, 1990

Farokhirad, Samaneh
Assistant Professor of Mechanical and Industrial Engineering (2019)
Ph.D. Mechanical Engineering, City College of New York, 2015
M.Phil. Mechanical Engineering, City College of New York, 2013
M.S. Mechanical Engineering, Iran University of Science and Technology, 2009
B.S. Mechanical Engineering, Sharif University of Technology, 2006

Federici, John F.
Distinguished Professor of Physics (1992)
Ph.D. Plasma Physics, Princeton University, 1989
B.S. Physics, University of Notre Dame, 1983

Fischer, Ian S.
Professor of Mechanical and Industrial Engineering (1988)
Sc.D. Mechanical Engineering, Columbia University in the City of New York, 1985
M.S.E. Aerospace and Mechanical Sciences, Princeton University, 1973
B.S. Mechanical Engineering, Columbia University in the City of New York, 1970

Fjermestad, Jerry L.
Professor of Management (1993)
Ph.D., Rutgers University, 1994
MBA, Iona College, 1987
M.S., Polytechnic Institute of New York, 1982
M.S., State University of New York, 1977
B.A., Pacific Lutheran University, 1971

Flammang-Lockyer, Brooke E.
Assistant Professor of Biological Sciences (2014)
Ph.D.
M.S. Marine Science, California State University-Monterey Bay, 2005
B.S. Marine Biology, Fairleigh Dickinson University-College at Florham, 1998

Fortune, Eric S.
Associate Professor of Federated Biology (2012)
Ph.D., University of Chicago, 1995
B.S., University of Chicago, 1989

Frederick, Christina A.
Assistant Professor of Mathematical Sciences (2017)
Ph.D. Mathematics, The University of Texas at Austin, 2015
B.A. Mathematics, University of Maryland-College Park, 2008

Fresneda Fernandez, Jorge Eduardo
Assistant Professor of Management (2017)

Friedland, Bernard
Distinguished Professor of Electrical and Computer Engineering (1990)
Ph.D., Columbia University in the City of New York, 1957
M.S., Columbia University in the City of New York, 1954
B.S., Columbia University in the City of New York, 1953
B.A., Columbia University in the City of New York, 1952

Froese, Brittany D.
Assistant Professor of Mathematical Sciences (2015)
Ph.D. Applied Mathematics, Simon Fraser University, 2012
M.S. Applied Mathematics, Simon Fraser University, 2009
B.S. Mathematics, Trinity Western University, 2007

Funkhouser, Christopher T.
Professor of Humanities (1997)
 Ph.D., University of Albany, 1997
 M.A., University of Virginia-Main Campus, 1988
 B.A., University of Virginia-Main Campus, 1986

Garnier, Simon J.
Assistant Professor of Federated Biology (2012)
 Ph.D. Ethology, Universite de Toulouse, 2008
 M.S. Neuroscience and Behavior, Universite de Toulouse, 2004
 B.S. Cell and Molecular Biology, Universite Victor Segalen - Bordeaux II, 2002

Gary, Dale E.
Distinguished Professor of Physics (1997)
 Ph.D. Astroseophs, University of Colorado at Boulder, 1982
 B.S. Physics, University of Michigan-Ann Arbor, 1976

Gatley, Ian
Distinguished Professor of Physics (2010)
 Ph.D., California Institute of Technology, 1978
 B.Sc., Imperial College, University of London, 1972

Ge, Hongya
Associate Professor of Electrical and Computer Engineering (1995)
 Ph.D., University of Rhode Island, 1994
 M.S., Nanjing Aeronautical Institute, 1985
 B.S., University of Electronic Science and Technology of China, 1982

Geller, James
Professor of Computer Science (1988)
 Ph.D. Computer Science, SUNY College at Buffalo, 1988
 M.S. Computer Science, SUNY College at Buffalo, 1984
 M.S. Electrical Engineering, Technisch Universitaet Wien, 1979

Geng, Xiaolong
Assistant Research Professor for Center for Natural Resources (2019)

Gerbessiotis, Alexandros
Associate Professor of Computer Science (1998)
 Ph.D. Computer Science, Harvard University, 1993
 M.S. Computer Science, Harvard University, 1988
 B.S. Electrical Engineering, National Technical University of Athens, 1987

Gerrard, Andrew J.
Professor of Physics (2006)
 Ph.D., Pennsylvania State University, 2002
 M.S., Pennsylvania State University, 1999
 B.A., State University of New York at Geneseo, 1996

Gilbert, Kathleen M.
University Lecturer, Department of Chemistry and Environmental Science

Goldman, Glenn
Professor of Architecture and Design (1982)
 M. Arch., Harvard University, 1978
 B.A. Architecture, Columbia University in the City of New York, 1974

Golowasch, Jorge P.
Professor of Federated Biology (2002)
 Ph.D. Biophysics, Brandeis University, 1991
 B.S. Biology, Faculty of Sciences, Universida de Chile, 1984

Gonclaves da Silva, Bruno M.
Assistant Professor of Civil and Environmental Engineering (2016)
Ph.D. Civil and Environmental Engineering, Massachusetts Institute of Technology, 2016
M.S. Civil and Environmental Engineering, Massachusetts Institute of Technology, 2009
Other - Licenciatura Civil and Environmental Engineering, Instituto Superior Técnico, 2004

Goode, Philip R.
Distinguished Research Professor

Goodman, Roy H.
Associate Professor of Mathematical Sciences (2001)
Ph.D. Mathematics, New York University, 1999
B.S. Mathematics, University of Michigan-Ann Arbor, 1994

Gopalakrishnan, Shanthi
Professor of Management (1999)
Ph.D. Management, Rutgers University-Newark, 1995
MBA. Rutgers University-Newark, 1991
MBA Marketing, Jamnalal Bajaj Institute of Management Studies, 1983
B.A. History and Economics, Women's Christian College, 1981

Gor, Gennady
Assistant Professor of Chemical and Materials Engineering (2016)
Ph.D. Philosophy, St Petersburg State University, 2009
M.S. Theoretical and Mathematical Physics, St Petersburg State University, 2006
B.S. Physics, St Petersburg State University, 2003

Gotsman, Craig J.
Professor (2017)
Ph.D. Computer Science, Hebrew University of Jerusalem, 1991
M.S. Computer Science, Hebrew University of Jerusalem, 1985
B.S. Mathematics, Physics, and Computer Science, Hebrew University of Jerusalem, 1983

Grasman, Jonathan
Assistant Professor of Bio-Medical Engineering (2019)
Ph.D. Biomedical Engineering, Worcester Polytechnic Institute, 2015
B.S. Bioengineering, University of Pittsburgh-Pittsburgh Campus, 2008

Grebel, Haim
Professor of Electrical and Computer Engineering (1987)
Ph.D., The Weizmann Institute of Science, 1985
M.S., The Weizmann Institute of Science, 1980
B.S., Tel Aviv University, 1977

Gund, Tamara
Professor of Chemistry and Environmental Science (1981)
Ph.D. Physical Organic Chemistry, Princeton University, 1973
M.S. Organic/Organometallic Chemistry, University of Massachusetts Amherst, 1966
B.A. Chemistry, Rutgers University-Newark, 1963

Guo, Wenge
Assistant Professor of Mathematical Sciences (2009)
Ph.D. Biostatistics, University of Cincinnati, 2007
M.S., North Dakota State University, 2004

Guvendiren, Murat
Assistant Professor of Chemical and Materials Engineering (2016)
Ph.D. Materials Science and Engineering, Northwestern University, 2007
M.S. Metallurgical and Materials Engineering, Middle East Technical University, 2003
B.S. Metallurgical and Materials Engineering, Middle East Technical University, 2000

Haimovich, Alexander M.
Distinguished Professor of Electrical and Computer Engineering (1992)
Ph.D. Systems, University of Pennsylvania, 1989
M.S. Electrical Engineering, Drexel University, 1983
B.S. Electrical Engineering, Technion, Israel Institute of Technology, 1977

Halper, Michael H.
Professor of Information Technology (2010)
Ph.D., New Jersey Institute of Technology
M.S., Fairleigh Dickinson University
B.S., New Jersey Institute of Technology

Hamfeldt, Brittany D.
Associate Professor of Mathematical Sciences
Ph.D. Mathematical Sciences, Simon Fraser University, 2007

Hamidi, Fuad
University Lecturer
B.S., Middle East Technical University, Mathematics, 2009
M.S., Middle East Technical University, Cryptography, 2011
Ph.D., Middle East Technical University, Cryptography, 2017

Hamilton, Louis I.
Professor (2017)
Ph.D. Medieval History, Fordham University
MPhil. Medieval History, Fordham University
M.A. History, University of Virginia
Other - License in Mediaeval Studies, Pontifical Institute of Mediaeval Studies
B.A. Honors, Villanova University
B.A. History, Villanova University

Han, Tao
Associate Professor of Electrical and Computer Engineering
B.E., Dalian University of Technology, Electrical and Computer Engineering, 2006
M.E., Beijing University of Posts of Telecommunications, Computer Engineering, 2009
Ph.D., New Jersey Institute of Technology, Electrical Engineering, 2015

Haorah, James
Associate Professor of Biomedical Engineering (2014)
Ph.D. Biophysics, North-Eastern Hill University, 1995
M.S. Biochemistry, North-Eastern Hill University, 1989
B.S. Zoology, North-Eastern Hill University, 1987
B.S. Life Sciences, North-Eastern Hill University, 1986

Haspel, Gal
Assistant Professor of Federated Biology (2013)
Ph.D., Ben-Gurion University of the Negev Beer-Sheva (Israel), 2003
B.Sc., Ben-Gurion University of the Negev Beer-Sheva (Israel), 1996

Hassane Assaad, Rayan
Assistant Professor, Civil & Environmental Engineering

Hendela, Arthur H.
Professor of Practice of Information Systems (2016)
Ph.D. Information Systems, New Jersey Institute of Technology, 2016
M.S. Computer Science, New Jersey Institute of Technology, 1987
B.S. Chemical Engineering, New Jersey Institute of Technology, 1981

Hijazi, Hussein
University Lecturer, Department of Physics
M.S., Université de Caen Basse-Normandie, Physics of Matter & Radiation, 2008
M.S., Lebanese University, General Physics, 2007
Ph.D., Centre de Recherche sur les Ions, les Matériaux et la Photonique CIMAP-CEA, Physics, 2011
Holbrook, James Britt
Assistant Professor of Humanities
Ph.D. Philosophy, Emory University, 2004
M.A. Philosophy, Emory University, 1997
B.A. Philosophy, Sewanee-The University of the South, 1992

Hoover, Amy K.
Assistant Professor of Informatics (2017)
Ph.D. Computer Science, University of Central Florida, 2014
M.S. Computer Science, University of Central Florida, 2014
B.S. Computer Science, University of Central Florida, 2009
B.S. Mathematics, University of Central Florida, 2009

Horn trop, David J.
Associate Professor of Mathematical Sciences (2001)
Ph.D. Applied and Computational Mathematics, Princeton University, 1995
M.A. Applied and Computational Mathematics, Princeton University, 1992
B.A. Mathematics, Washington University in St Louis, 1990
B.S. Systems Science and Engineering, Washington University in St Louis, 1990

Hou, Sui-Hoi Edwin
Professor of Electrical and Computer Engineering (1989)
Ph.D. Electrical Engineering, Purdue University-Main Campus, 1989
M.S. Computer Science, Stanford University, 1984
B.S. Computer Engineering, University of Michigan-Ann Arbor, 1982
B.S. Electrical Engineering, University of Michigan-Ann Arbor, 1982

Hsieh, Hsin-Neng
Professor of Civil and Environmental Engineering (1983)
Ph.D. Civil engineering, University of Pittsburgh-Pittsburgh Campus, 1983
M.S. Environmental Engineering, University of Iowa, 1973
B.S. Civil Engineering, National Cheng Kung University, 1970

Hubbi, Walid
Associate Professor of Electrical and Computer Engineering (1983)
Ph.D., The Queens University of Belfast, 1977
M.S., University of London, 1974
B.S., Aleppo University, 1971

Hung, Daochuan
Associate Professor of Computer Science (1988)
Ph.D. Computer Engineering, Purdue University-Main Campus, 1988
M.S., National Tsing Hua University, 1988
B.S., Chung Yuan University, 1988

Hurtado De Mendoza Wahrolen, Maria A.
Associate Professor of Architecture and Design (2013)

Hutzell, Kelly J.
Associate Professor of Architecture and Design
B.Arch., Roger Williams University, 1996
M.Arch., Columbia University in the City of New York, Architecture and Urban Design, 2002

Ihlefeld, Antje
Assistant Professor of Biomedical Engineering (2015)
Ph.D. Cognitive and Neural Systems, Boston University, 2007
M.A. Cognitive and Neural Systems, Boston University, 2002
Other - Prediploma Electrical Engineering, Dresden University of Technology, 1999

Inoue, Satoshi
Assistant Professor of Physics
B.S., Hiroshima University, Science, 2001
M.S., Hiroshima University, Science, 2003
Jackson, Nancy L.
Professor of Chemistry and Environmental Science (1992)
Ph.D. Geography, Rutgers University-New Brunswick, 1992
M.S. Natural Resource Management, Antioch University New England, 1986
B.A. Geography, Clark University, 1978

Ji, Zhiming
Professor of Mechanical and Industrial Engineering (1987)
Ph.D. Mechanical Engineering, Stanford University, 1987
M.S. Mechanical Engineering, Southeast University, 1982
B.S. Mechanical Engineering, Northeastern University, 1979

Jiang, Shidong
Professor of Mathematical Sciences (2004)
Ph.D. Mathematics, New York University, 2001
M.S. Physics, New York University, 1998
B.S. Applied Physics, Shanghai Jiaotong University, 1994

Jin, Chong
Assistant Professor

Jin, Huiran
Assistant Professor of Engineering Technology (2017)
Ph.D. Geospatial Information Science and Engineering, SUNY College of Environmental Science and Forestry, 2013
M.E. Photogrammetry and Remote Sensing, Peking University, 2009
B.S. Geographical Information System, Peking University, 2006

Johnson, Carol S.
Associate Professor of Humanities (2002)
Ph.D. English, CUNY Graduate School and University Center, 1995
B.A. Studio Art, Mount Holyoke College, 1980

Jones, Quentin
Associate Professor of Information System (2001)
Ph.D., University of Haifa, 2001
M.Phil., University of Sydney, 1994
B.A., University of Sydney, 1989

Juliano, Thomas
Associate Professor of Engineering Technology (1999)
M.S., Newark College of Engineering, 1970
B.S., Newark College of Engineering, 1967

Kam, Moshe
Professor of Electrical and Computer Engineering (2014)
Ph.D., Drexel University, 1987
M.S., Drexel University, 1985
B.Sc., Tel Aviv University, 1976

Kane, Steven
University Lecturer, Department of Physics
B.A., Haverford College, Physics, 1991
M.S., University of Michigan-Ann Arbor, Electrical Engineering, 1993
Ph.D., University of Michigan-Ann Arbor, Applied Physics/Ultrafast Optics, 1996

Kappraff, Jay M.
Associate Professor of Mathematical Sciences (1974)
Ph.D., Courant Institute of Mathematical Sciences, New York University, 1974
M.S., Iowa State University, 1960
M.A., Courant Institute of Mathematical Sciences, New York University, 1968
B.S. Chemical Engineering, Polytechnic University, 1958

Karaa, Fadi A.
Associate Professor of Civil and Environmental Engineering (2006)
Ph.D. Civil engineering, Massachusetts Institute of Technology, 1984
M.S. Management, Massachusetts Institute of Technology, 1983
M.S. Civil Engineering, Massachusetts Institute of Technology, 1982

Katz, Eric M.
Professor of Humanities (1989)
Ph.D., Boston University, 1983
M.A., Boston University, 1977
B.A., Yale University, 1974

Khalizov, Alexei
Associate Professor of Chemistry and Environmental Science (2013)
Ph.D., Ufa Research Center of the Russian Academy of Sciences, 1997
B.S., Bashkir State University, Russia, 1994

Khreishah, Abdallah
Assistant Professor of Electrical and Computer Engineering (2012)
Ph.D. Electrical and Computer Engineering, Purdue University-Main Campus, 2010
M.S. Electrical and Computer Engineering, Purdue University-Main Campus, 2006
B.S. Computer Engineering, Jordan University of Science & Technology, 2004

Khusid, Boris
Professor of Chemical and Materials Engineering (1998)
Ph.D. Thermal Sciences and Engineering, The Luikov Heat & Mass Transfer Institute, Byelorussian Academy of Sciences, 1975
M.S. Thermal Sciences and Engineering and Chemical Physics, Byelorussian State University, 1972

Kim, Chulmin
Senior University Lecturer, Department of Mathematical Sciences
B.S., Kyunghee University, Mathematics/Business Administration, 1993
M.S., Wichita State University, Mathematics/Statistics, 1998
Ph.D., The University of Iowa, Statistics, 2005

Kim, Hyojin
Associate Professor Hillier College of Arch & Design (2019)
Ph.D. Architecture, Texas A & M University, 2012
M.S. Housing and Interior Design, Yonsei University, 2006
B.S. Housing and Interior Design, Yonsei University, 2004

Kim, Hyomin
Associate Research Professor, Center for Solar Associate Research (2015)
Ph.D. Mechanical Engineering, University of New Hampshire, 2010
M.S. Engineering Physics, Dartmouth College, 2004
M.S. Astronomy and Space Sciences, Kyung Hee University, 2001
B.S. Astronomy and Space Science, Kyung Hee University, 1999

Kim, Yong I.
Assistant Professor of Chemistry and Environmental Science (2015)
Ph.D. Biochemistry, Texas A&M University, 2008

Kim, Yong-Ick
Assistant Professor of Chemistry and Environmental Science
Ph.D. Texas A&M University, Biochemistry, 2008

Kimmelman, Burt J.
Professor of Humanities (1988)
Ph.D., City University of New York, 1991
M.A., Hunter College, 1987
B.A., SUNY College at Cortland, 1983

Kliewer, Joerg
Associate Professor of Electrical and Computer Engineering (2014)
Ph.D.

Klobucar, Philip Andrew
Associate Professor of Humanities (2008)
Ph.D. Postwar American Poetry, University of British Columbia, 1999
M.S. Literary Theory, Edinburgh University, 1992
B.A. English, University of Toronto, 1991

Ko, Dong Kyun
Assistant Professor of Electrical and Computer Engineering,
Ph.D. Materials Science and Engineering, University of Pennsylvania, 2011
M.S. Materials Science and Engineering, University of Pennsylvania, 2007
B.S. Materials Science and Engineering, Yonsei University, 2005
Massachusetts Institute of Technology, 2014

Ko, Won Hee
Assistant Professor of Architecture and Design
B.Arch., Yonsei University, Architecture, 2010
M.A., University of Southern California, Building Science, 2012
Ph.D., University of California-Berkeley, Architecture (Building Science, Technology and Sustainability), 2021

Kolarevic, Branko
Professor Office of the Dean (2019)
Ph.D. Doctor of Design, Harvard University, 1993
M.Arch. Master of Design Studies, Harvard University, 1989
Other Diploma Engineer in Architecture, Belgrade University, 1986

Konon, Walter
Professor of Civil and Environmental Engineering (1974)
M.S. Civil Engineering, City University of New York, 1970
B.S. Civil Engineering, City University of New York, 1966

Kosovichev, Alexander G.
Professor of Physics (2013)
Ph.D.

Koutis, Ioannis
Associate Professor of Computer Science (2017)
Ph.D., Carnegie Mellon University, 2007
B.S. Computer Engineering and Informatics, University of Patra, 1998

Krasnoperov, Lev N.
Professor of Chemistry and Environmental Science (1993)
Ph.D. Physics, Institute of Chemical Physics, 1991
Ph.D. Physics, Institute of Chemical Kinetics and Combustion, 1979
M.S. Physics, Novosibirsk University, 1972

Kristina Wicke, Assistant Professor

Kudyba, Stephan P.
Associate Professor of Management (2002)
Ph.D. Economics, Rensselaer Polytechnic Institute, 1999
MBA Management, Lehigh University, 1991
B.S. Economics, Siena College, 1985

Kumar, Vivek A.
Assistant Professor of Biomedical Engineering (2016)
Ph.D. Bioengineering, Georgia Institute of Technology-Main Campus, 2011
B.S. Biomedical Engineering, Northwestern University, 2006
Kum-Biocca, Hye Jin
Assistant Professor College of Architecture and Design (2018)

Kuzichev, Ilya
Assistant Research Professor for Center for Solar Research (2017)

Lanzerotti, Louis J
Research Professor Center for Solar Research (2003)
 Ph.D. Physics, Harvard University, 1965
 M.A. Physics, Harvard University, 1963
 B.S. Physics, University of Illinois Engineering, 1960

Lawrence, Kenneth D.
Professor of Management (1992)
 MBA Finance, Manhattan College, 1984
 Ed.D. Statistics and Industrial Engineering, Rutgers University-New Brunswick, 1979
 M.S. Statistics, Rochester Institute of Technology, 1978
 M.S. Operations Research, Rutgers University-New Brunswick, 1974
 MBA Management, Pennsylvania State University-Main Campus, 1972
 M.S. Industrial Engineering, West Virginia University, 1970
 B.S. Computer Science and Statistics, University of Delaware, 1969

Le, Huong Y.
University Lecturer, Department of Computer Science
 B.S., Louisiana State University and Agricultural & Mechanical College, Finance, 2005

LeCavalier, Jesse
Assistant Professor of Architecture and Design (2012)
 Ph.D., ETH Zurich, 2011
 M. Arch., University of California-Berkeley, 2003
 B.A. Architectural Studies, Brown University, 1999

Lee, Eun Jung
Assistant Professor of Biomedical Engineering (2011)
 Ph.D., Columbia University in the City of New York, 2006
 M.S., Columbia University in the City of New York, 2002
 B.S., Dongduk Womens University, Seoul Korea, 2000

Lee, Joyoung
Assistant Professor of Civil and Environmental Engineering (2013)
 Ph.D.

Lee, Eon Soo
Assistant Professor of Mechanical and Industrial Engineering (2013)
 Ph.D. Fluid and thermoscience in energy systems, Mechanical Engineering, Stanford University, 2007
 M.S. Mechanical Engineering, Stanford University, 2004
 B.S. Mechanical Engineering, Yonsei University, 1999

Lee Michael J.
Assistant Professor of Information Systems (2015)
 Ph.D. Information Science, University of Washington, 2015
 M.S. Information Science, University of Washington, 2012
 M.S. Information Management, University of California-Berkeley, 2009
 B.S. Cognitive Science, University of California-San Diego, 2005

Lee, Jeongwoo
Research Professor, Ctr for Solar-Terrestrial Research

Lefkovitz, Alison L.
Assistant Professor of History (2012)
 Ph.D., University of Chicago, 2010
 M.A., University of Chicago, 2003
B.A., Indiana University-Bloomington, 2002

Levy, Roland A.
Distinguished Professor of Physics (1989)
Ph.D., Queens College, 1973
M.S., Columbia University in the City of New York, 1969
B.A., Queens College, 1967

Li, Daming
Senior University Lecturer, Department of Computer Science
B.S., Wuhan University, Physics, 1998
M.S., Brandeis University, Computer Science, 2001
Ph.D., Johns Hopkins University, Astrophysics, 1999

Li, Jing
Assistant Professor of Computer Science (2017)

Li, Mengyan
Assistant Professor of Chemistry and Environmental Science (2015)
Ph.D. Environmental Engineering, Rice University, 2013
M.S. Environmental Engineering, Rice University, 2010
B.E. Environmental Engineering, Nankai University, 2008

Li, Xiaobo
Associate Professor of Biomedical Engineering (2015)
Ph.D. Computer Aided Geometric Design, University of Birmingham, 2004
B.S., Nanjing University of Aeronautics, 1999

Lieber, Samuel C.
Assistant Professor of Engineering Technology (2013)
Ph.D.
M.S. Mechanical Engineering, New Jersey Institute of Technology, 2002
B.S. Mechanical Engineering, New Jersey Institute of Technology, 2001

Liu, Chengjun
Professor of Computer Science (2001)
Ph.D., George Mason University, 1999
M.S., Harbin Institute of Technology, 1993
B.S., Harbin Institute of Technology, 1990

Liu, Rongfang
Professor of Civil and Environmental Engineering (2001)
Ph.D. Transportation Engineering, University of South Florida-Tampa, 1996
M.S. Urban and Regional Planning, Florida State University, 1991
M.S. Environmental Engineering, Beijing University, 1987
B.S. Geo-Environmental Science, Beijing University, 1984

Liu, Qing
Assistant Professor of Electrical and Computer Engineering (2016)
Ph.D. Computer Engineering, University of New Mexico, 2008

Liu, Xuan
Assistant Professor of Electrical and Computer Engineering (2014)
Ph.D. Electrical and Computer Engineering, Johns Hopkins University, 2011
M.S. Physics, Tsinghua University, 2007
B.A. Electronic Science and Technology, Tsinghua University, 2005

Loh, Ji Meng
Professor of Mathematical Sciences (2012)
Postgraduate Diploma, National Institute of Education, Singapore, 1994
Ph.D., University of Chicago, 2001
B.Sc., Victoria University of Wellington, New Zealand, 1991
Longo, Bernadette C.
Associate Professor of Humanities (2012)
 Ph.D., Rensselaer Polytechnic Institute, 1996
 M.A., California State University-Stanislaus, 1992
 B.A., California State University-Stanislaus, 1979

Lu, Lu
Assistant Professor of Mechanical and Industrial Engineering
 Ph.D. Mechanical Engineering, Purdue University, 2013
 M.S. Mechanical Engineering, Purdue University, 2010
 B.E. Mechatronic Engineering, Zhejiang University, 2008

Luke, Jonathan H.
Professor of Mathematical Sciences (1989)
 Ph.D., New York University, 1986
 M.S., New York University, 1984
 B.A., Rice University, 1982

Lushi, Enkeleida
Assistant Professor of Mathematical Sciences (2018)
 BS (Honors First Class) in Applied Mathematics, Simon Fraser University, 2004
 MS in Applied Mathematics, Simon Fraser University, 2006
 PhD in Mathematics, New York University, 2011

Ma, Yao
Assistant Professor of Computer Science
 B.S., Zhejiang University, Mathematics & Applied Mathematics, 2015
 Ph.D., Michigan State University, Computer Science and Engineering, 2021

MacLaurin, James N.
Assistant Professor of Mathematical Sciences (2018)
 B. Science (Pure Mathematics. 1st Class Honours) / B. Arts in 2006 from the University of New South Wales
 PhD (Applied Mathematics) University of Oxford 2014

Maher, Neil M.
Professor of History (2000)
 Ph.D., New York University, 2001
 M.A., New York University, 1994
 B.A., Dartmouth College, 1986

Mahgoub, Mohamed A.
Associate Professor of Engineering Technology (2009)
 Ph.D. Civil engineering, Carleton University, 2004
 M.S. Civil Engineering, McMaster University, 1997
 B.S. Civil Engineering, Al-Azhar university, 1990

Mani, Kumar
Professor of Practice of Computer Science (2016)
 MBA Finance and Strategy, Columbia University in the City of New York
 M.S. Computer Science, Columbia University in the City of New York
 B.S. Computer Engineering, New Jersey Institute of Technology

Manna, Yazan A.
Senior University Lecturer, Department of Mechanical & Industrial Engineering
 B.S., The Hashemite University, Mechatronics Engineering, 2003
 M.S., New Jersey Institute of Technology, Mechanical Engineering, 2005
 Ph.D., New Jersey Institute of Technology, Mechanical Engineering, 2010

Marhava, Taha F.
Professor of Civil and Environmental Engineering (1995)
 Ph.D., Rutgers University, 1993
M.S., Rutgers University, 1990
B.S., Rutgers University, 1989

Marras, Simone
Assistant Professor of Mechanical and Industrial Engineering (2017)
Ph.D. Computational Fluid Dynamics, Universitat Politècnica de Catalunya, 2008
M.S. Aerospace Engineering, Politecnico di Milano, 2005

Matveev, Victor V.
Professor of Mathematical Sciences (2003)
Ph.D., State University of New York at Stony Brook, 1996
M.A., State University of New York at Stony Brook, 1993

McEnnis, Kathleen
Assistant Professor of Chemical, Biological and Pharmaceutical Engineering
Ph.D. Polymer Science and Engineering, University of Massachusetts Amherst, 2013
B.S. Chemistry, Massachusetts Institute of Technology, 2007

McHugh, James
Professor of Computer Science (1977)
Ph.D. Applied Mathematics, New York University, 1970
B.A., Fordham University, 1965

McRae, Calista A.
Assistant Professor of Humanities (2016)
Ph.D. English, Harvard University, 2016
B.A. English, Amherst College, 2009

Meegoda, Jay N
Professor of Civil and Environmental Engineering (1985)
Ph.D., University of California, 1985
M.S., University of California, 1983
B.S., University of Sri Lanka, 1980

Mehta, Rajiv
Professor of Management (1999)
Ph.D. Marketing, Drexel University, 1994
MBA Marketing and Finance, University of Scranton, 1985
B. Com. (HONS) Accounting, St. Xavier's College, 1979

Micale, Joseph A.
Assistant Professor of Management
B.S., SUNY at Binghamton, Accounting, 2010
M.Phil., Fordham University, Accounting, 2020
M.S., Fordham University, Global Finance, 2018
M.S., SUNY at Binghamton, Accounting, 2011
Ph.D., Fordham University, Accounting, 2021

Michalopoulou, Zoi-Heleni
Professor of Mathematical Sciences (1994)
Ph.D., Duke University, 1993
M.S., Duke University, 1990
Diploma, National Technical University of Athens, 1988

Mili, Ali
Professor of Computer Science (2001)
Ph.D. Computer Engineering, Universite Joseph Fourier de Grenoble, 1985
Ph.D. Computer Science, University of Illinois, 1981
Ph.D. Computer Engineering, Universite Joseph Fourier de Grenoble, 1978

Milojevic, Petronije
Professor of Mathematical Sciences (1984)
Ph.D. Mathematics, Rutgers University-New Brunswick, 1975

Miri Ramsheh, Amir K.
Assistant Professor of Biomedical Engineering
B.S., Iran University of Science and Technology, Mechanical Engineering, 2005
M.S., Sharif University of Technology, Mechanical Engineering, 2007
Ph.D., McGill University, Mechanical Engineering, 2013

Misra, Durgamadhab
Professor of Electrical and Computer Engineering (1988)
Ph.D., University of Waterloo, 1988
M. Tech., Indian Institute of Technology, New Delhi, 1983
M.S., Utkal University, 1981
M.A. Appl.Sc., University of Waterloo, 1985
B.S., Utkal University, 1978

Mitra, Somenath
Distinguished Professor of Chemistry and Environmental Science (1991)
Ph.D. Analytical Chemistry, Southern Illinois University Carbondale, 1988
M.S. Environmental Engineering, Southern Illinois University Carbondale, 1984
B.S. Chemical Engineering, Indian Institute of Technology, 1981

Modesitt, Adam W.
Assistant Professor of Architecture and Design (2016)
M.Arch., Harvard University, 2007
B.A. Physics and Art History, Wesleyan University, 2000

Monogioudis, Pantelis
Professor of Practice, Computer Science
B.E., Technological Education Institute of Athens, Electronics, 1990
M.S., University of Surrey, Telematics, 1991
Ph.D., University of Surrey, Communications Theory, 1994

Moore, Richard O.
Associate Professor of Mathematical Sciences (2004)
Ph.D. Applied Mathematics, Northwestern University, 2001
M.S. Applied Mathematics, Northwestern University, 1998
B.S. Combined Honours Physics and Mathematics, University of British Columbia, 1996

Mummolo, Carlotta
Assistant Professor of Bio-Medical Engineering (2018)

Muratov, Cyrill B.
Professor of Mathematical Sciences (1999)
Ph.D. Physics, Boston University, 1998
M.S. Applied Mathematics and Physics, Moscow Institute of Physics and Technology, 1993

Musialski, Przemyslaw
Associate Professor Computer Science (2019)
Ph.D. Computer Science, Vienna University of Technology, 2011
M.A. Media System Science, Bauhaus University, 2009

Nadim, Farzan
Professor of Federated Biology (1998)
Ph.D. Mathematics, Boston University, 1994
M.A., Boston University, 1989
B.A., Northeastern University, 1987

Nadimpalli, Siva P.V.
Assistant Professor of Mechanical and Industrial Engineering (2013)
Ph.D. Mechanical Engineering, University of Toronto, 2011
M.S. Mechanical Engineering, Indian Institute of Science, 2005
Naik, Kamlesh R.
University Lecturer, Computer Science

Nakayama, Marvin K.
Professor of Computer Science (1994)
 Ph.D. Operations Research, Stanford University, 1991
 M.S. Operations Research, Stanford University, 1988
 B.A. Mathematics-Computer Science, University of California-San Diego, 1986

Narahara, Taro
Associate Professor of Architecture and Design (2010)
 Doctor of Design, Harvard University, 2010
 M.S. Design and Computation in Architecture Studies, Massachusetts Institute of Technology, 2007
 M. Arch., Washington University in St Louis, 1997
 B.S. Mathematics, Waseda University, School of Science and Engineering, 1994

Narh, Kwabena A.
Professor of Mechanical and Industrial Engineering (1994)
 Ph.D. Physics, University of Bristol, 1982
 M.S. Materials Science, University of Bristol, 1979
 B.S. Physics, University of Ghana, 1974

Nassimi, David
Associate Professor of Computer Science (1989)
 Ph.D., University of Minnesota, 1979
 M.S. Electrical Engineering, University of Minnesota, 1978
 M.S., University of Minnesota, 1975
 B.S., University of Minnesota, 1968

Neamtiu, Iulian
Associate Professor of Computer Science (2015)
 Ph.D. Computer Science, University of Maryland-College Park, 2008
 M.S. Computer Science, University of Maryland-College Park, 2005
 B.S. Computer Science, Technical University of Cluj-Napoca, 1999

Nguyen, Hieu Pham Trung
Assistant Professor of Electrical and Computer Engineering (2014)
 Ph.D. Electrical Engineering, McGill University, 2012
 M.S. Electronics Engineering, Ajou University, 2009
 B.S. Physics, College of Natural Sciences, 2005

Nguyen, Thi-Phong
Assistant Professor

Niver, Edip
Professor of Electrical and Computer Engineering (1982)
 Ph.D., Middle East Technical University, 1979
 M.S., Middle East Technical University, 1973
 B.Sc., Middle East Technical University, 1970

Nowadnick, Elizabeth A.
Assistant Professor of Physics (2017)
 Ph.D. Physics, Stanford University, 2013
 B.S. Physics, Stanford University, 2006

Olenik, Thomas J.
Associate Professor of Civil and Environmental Engineering (1970)
 Ph.D. Civil engineering, Rutgers University-New Brunswick
 B.S. Civil Engineering, New Jersey Institute of Technology
 M.S. Civil Engineering, New Jersey Institute of Technology

O'Neill, Megan E.
Assistant Professor of Humanities (2015)
Ph.D. Rhetoric and Writing, Virginia Polytechnic Institute and State University, 2012
M.A. English, Virginia Polytechnic Institute and State University, 2005
B.A. English and History, Virginia Polytechnic Institute and State University, 2002

Oria, Vincent
Professor of Computer Science (2000)
Ph.D.

Oza, Anand U.
Assistant Professor of Mathematical Sciences (2017)
Ph.D. Mathematics, Massachusetts Institute of Technology, 2014
Master of Advanced Study, University of Cambridge, 2009
B.A., Princeton University, 2008

Pal, Saikat
Assistant Professor of Biomedical Engineering (2017)
Ph.D. Mechanical Engineering, University of Denver, 2008
M.S. Mechanical Engineering, University of Denver, 2004
B.S. Computer Engineering, University of Denver, 2002

Parlac, Vera
Associate Professor Hillier College of Arch & Design (2019)
M.Arch. Architectural Design, University of California-Los Angeles, 1993
B.Arch. Faculty of Architecture, University of Belgrade, 1988

Parmelee, Kevin J.
Professor of Practice, Chemistry and Environmental Science

Patel, Dipesh
University Lecturer, Department of Informatics
B.S., Rutgers University-New Brunswick, Computer/Electrical Engineering, 2003
M.B.A., Saint Peter's University, Finance and Management Information Systems, 2009

Pemberton, Stephen G.
Associate Professor of History (2004)
Ph.D. History, University of North Carolina at Chapel Hill, 2001
M.A. History, University of North Carolina at Chapel Hill, 1997
M.A. Philosophy, University of Memphis, 1992
B.A. Philosophy, Trinity University, 1990

Pennock, William H.
Assistant Professor of Civil and Environmental Engineering
B.S., New Jersey Institute of Technology, Civil Engineering, 2013
M.S., Cornell University, Environmental Engineering, 2016
Ph.D., Cornell University, Environmental Engineering, 2019

Perl, Yehoshua
Professor of Computer Science (1985)
Ph.D., The Weizmann Institute of Science, 1975
M.S., The Weizmann Institute of Science, 1971
B.S., Bar-Ilan University, 1969

Perna, Angelo
Professor of Chemical and Materials Engineering (1967)
Ph.D. Chemical Engineering, University of Connecticut, 1967
M.S. Chemical Engineering, Clemson University, 1962
B.S. Chemical Engineering, Clemson University, 1957

Perry, Gareth
Assistant Professor Center for Solar Research (2019)

Pescetelli, Niccolo
Assistant Professor of Humanities
B.S., Università degli Studi di Padova, Cognitive Psychology, 2011
M.S., Ecole Normale Supérieure -, Brain and Mind Sciences, 2013
M.S., University College London, Brain and Mind Sciences, 2012
Ph.D., University of Oxford, Cognitive Neuroscience, 2017

Petrick, Elizabeth R.
Assistant Professor of History (2014)
Ph.D.
M.A. History of Science, University of California-San Diego, 2009
B.S. Computer Science, University of Michigan-Ann Arbor, 2003

Petropoulos, Peter G.
Associate Professor of Mathematical Sciences (1998)
Ph.D. Applied Mathematics, Northwestern University, 1991
M.S. Applied Mathematics, Northwestern University, 1988
B.S. Electrical Engineering, Rutgers University-New Brunswick, 1986

Pfister, Bryan J.
Professor of Biomedical Engineering (2006)
Ph.D., Johns Hopkins University, 2002
M.S. Mechanical Engineering, Johns Hopkins University, 1998
B.S. Interdisciplinary Engineering and Management, Clarkson University, 1991

Phan, Hai Nhat
Assistant Professor of Information Systems (2016)
Ph.D. Computer Science and Engineering, CNRS, University Montpellier 2, 2013
M.S. Computer Science and Engineering, Konkuk University, 2010
B.S. Computer Science and Engineering, HCM City University of Technology, 2008

Plastock, Roy A.
Associate Professor of Mathematical Sciences (1975)
Ph.D. Mathematics, Yeshiva University, 1972
M.S., Yeshiva University, 1972
B.S., CUNY Brooklyn College, 1972

Pong, Wing Tat
Associate Professor, Electrical and Computer Engineering

Pople, Laura E.
University Lecturer, Humanities

Porus, Jonathan J.
Director of Mathematics Tutoring, Mathematical Sciences

Potts, Laramie
Associate Professor of Engineering Technology (2006)
Ph.D. Geodetic Science and Surveying, Ohio State University-Main Campus, 2000
M.S. Geodetic Science and Surveying, Ohio State University-Main Campus, 1993
B.S. Land Surveying, University of Cape Town, 1984

Prodan, Camelia
Associate Professor of Physics (2005)
Ph.D., University of Houston, 2003
B.S., University of Bucharest, 1997

Qiu, Zeyuan
Professor of Chemistry and Environmental Science (2002)
Ph.D. Agricultural Economics, University of Missouri-Columbia, 1996
M.S. Land Management, Renmin University of China, 1989
B.S. Land Use Planning, Central China Agricultural University, 1986
Rajendran, Bipin
Associate Professor of Electrical and Computer Engineering (2016)
Ph.D. Electrical Engineering, Stanford University, 2006
M.S. Electrical Engineering, Stanford University, 2003
I.I.T. Kharagpur, India, 2000

Rana Concepcion, Priyanka
University Lecturer, Mathematical Sciences
B.S., New Jersey Institute of Technology, Mathematical Sciences, 2013
M.S., Montclair State University, Pure and Applied Mathematics, 2018

Ranky, Paul G.
Professor of Mechanical and Industrial Engineering (1995)
Ph.D. Mechanical, and Industrial Engineering, Automation with IT, Technical University of Budapest, 1980
M.S., Technical University of Budapest, 1974
B.S., Technical University of Budapest, 1974

Rao, I. Joga
Professor of Mechanical and Industrial Engineering (1999)
Ph.D., Texas A&M University, 1999
M.S., University of California-Berkeley, 1992
B. Tech., Indian Institute of Technology, 1990

Ravindra, N. M.
Professor of Physics (1987)
Ph.D., University of Roorkee, 1982
M.S., Bangalore University, 1976
B.S., Bangalore University, 1974

Riether, Gernot
Associate Professor of Architecture and Design (2016)

Rodriguez Freire, Lucia
Assistant Professor of Civil and Environmental Engineering (2017)
Ph.D. Environmental Engineering, University of Arizona, 2014
M.S. Environmental Engineering, University of Arizona, 2010
B.C. Chemical Engineering, Universidad de Santiago de Compostela, 2008

Rohloff, Kurt R.
Associate Professor of Computer Science (2014)
Ph.D.

Rojas-Cessa, Roberto
Professor of Electrical and Computer Engineering (2002)
Ph.D., Polytechnic University, 2001
M.S., Center for Research and Advanced Studies, Mexico, 1995
M.S., Polytechnic University, 2000
B.S., University of Veracruz, 1991

Rosato, Anthony D.
Professor of Mechanical and Industrial Engineering (1987)
Ph.D. Mechanical Engineering, Carnegie Mellon University, 1985
M.S. Mathematics, Carnegie Mellon University, 1981
M.S. Theoretical and Applied Mechanics, Northwestern University, 1979
B.S. Mechanical Engineering, Pratt Institute-Main, 1975

Roshan, Usman W.
Associate Professor of Computer Science (2004)
Ph.D., University of Texas-Austin, 2004
M.S. Computer Science, University of Texas-Austin, 2002
B.S. Computer Science, University of Texas-Austin, 1998
Ross, Jessica C.
University Lecturer, Architecture and Design
B.F.A., Montclair State University, Animation and Illustration, 2011
M.F.A., Marywood University, Graphic Design and Illustration, 2018

Rothenberg, David B.
Distinguished Professor of Humanities (1992)
Ph.D., Boston University, 1991
B.A., Harvard College, 1984

Rotstein, Horacio G.
Professor of Mathematical Sciences (2006)
Ph.D. Applied Mathematics, Technion, Israel Institute of Technology, 1998
M.S. Applied Mathematics, Technion, Israel Institute of Technology, 1994
Licenciado en Quimica Chemistry, Universidad Nacional del Sur, 1989

Roy, Raja
Assistant Professor of Management (2017)
Ph.D. Strategic Management, University of Pittsburgh, 2003
MBA International Marketing, Indian Institute of Foreign Trade, 1995
B.E. Production Engineering, Jadacpur University, 1991

Russell, Gareth J.
Associate Professor of Federated Biology (2005)
Ph.D.

Russo, Onofrio L.
Associate Professor of Physics (1963)
Ph.D. Optical Physics, New Jersey Institute of Technology, 1975
M.S. Electrophysics, Stevens Institute of Technology, 1963
B.S. Electrical Engineering, Clarkson University, 1962

Rutkoff, Rebekah A.
Assistant Professor of Humanities (2017)
Ph.D. English, The Graduate Center of the City University, 2013
B.A. Visual Art and English, Oberlin College, 1995

Saadeghvaziri, Mohamad A.
Professor of Civil and Environmental Engineering (1988)
Ph.D. Civil engineering, University of Illinois at Urbana-Champaign, 1988
M.S. Civil Engineering, University of Illinois at Urbana-Champaign, 1983
B.S. Civil Engineering, University of Illinois at Urbana-Champaign, 1981
Sadik, Omowunmi A.
Distinguished Professor of Chemistry and Environmental Science (2019)
Ph.D. (Chemistry) University of Wollongong, 1994
M.Sc. (Chemistry) University of Lagos, 1987
B.Sc. Honors (Chemistry) University of Lagos, 1985

Sahin, Mesut
Professor of Biomedical Engineering (2005)
Ph.D. Biomedical Engineering, Case Western Reserve University, 1998
M.S. Biomedical Engineering, Case Western Reserve University, 1993
B.S. Electrical Engineering, Istanbul Technical University, 1986

Saigal, Sunil
Distinguished Professor of Civil and Environmental Engineering (2007)
Ph.D., Purdue University, 1985
M.S., Indian Institute of Science, India, 1980
B.S., Punjab Engineering College, India, 1978

Savir, Jacob
Distinguished Professor of Electrical and Computer Engineering (1996)
 Ph.D., Stanford University, 1977
 M.S., Technion, Israel Institute of Technology, 1973
 M.S., Stanford University, 1976
 B.Sc., Technion, Israel Institute of Technology, 1968

Schachter, Hindy L.
Professor of Management (1979)
 Ph.D., Columbia University in the City of New York, 1978
 M.A., New York University, 1968
 B.A., CUNY Brooklyn College, 1966

Schieber, Baruch
Professor of Computer Science (2018)

Schwartz, Matthew L.
Assistant Professor of Architecture and Design (2017)
 M.S. Arch., University of Michigan-Ann Arbor, 2012
 BFA, University of Michigan-Ann Arbor, 2011

Schweizer, Karl W.
Professor of History (1988)
 Ph.D., Cambridge University, 1976
 M.A., University of Waterloo, 1970
 B.A., Wilfrid Laurier University, 1969

Sebastian, Donald H.
Professor of Chemical and Materials Engineering (1995)
 Ph.D. Chemical Engineering, Stevens Institute of Technology, 1977
 M.E., Stevens Institute of Technology, 1975
 B.E., Stevens Institute of Technology, 1974

Semizer Kaplan, Yelda
Assistant Professor of Humanities
 B.A., Bogazici University, Psychology, 2010
 M.A., Bogazici University, Psychological Sciences, 2013
 M.S., Rutgers University-New Brunswick, Statistics, 2016
 M.S., Rutgers University-New Brunswick, Cognitive Psychology, 2015
 Ph.D., Rutgers University-New Brunswick, Cognitive Psychology, 2019

Sengupta, Arijit
Associate Professor of Engineering Technology (1994)
 Ph.D. Ergonomics/Industrial Engineering, Dalhousie University, 1995
 M.S. Mechanical Engineering, National Institute of Technology, 1983
 B.S. Mechanical Engineering, National Institute of Technology, 1976

Severi, Kristen
Assistant Professor of Biological Sciences (2017)
 Ph.D. Biology, Northeastern University, 2012
 B.S. Biology, Dickinson College, 2004

Shakib, Farnaz A.
Assistant Professor of Chemistry & Environmental Science (2019)
 Ph.D. in Theoretical and Computational Chemistry, University of Alberta, 2016
 M.S. in Computational Organic Chemistry, Tarbiat Modares University, 2008
 B.S. in Applied Chemistry, University of Tabriz, 2005

Shang, Zuofeng
Associate Professor of Mathematical Sciences (2019)
 B.S. Mathematics, Nankai University, 2003
 M.S. Mathematics, Nankai University, 2006
Chandra, Shantanu
Assistant Professor Computer Science
Ph.D., National Institute of Technology, Computer Engineering, 2011
M.Tech., Ben-Gurion University of the Negev, Computer Science, 2016

Shekhar, Prateek
Assistant Professor Engineering Technology (2019)
Ph.D. Mechanical Engineering, The University of Texas at Austin, 2016
M.S. Electrical Engineering, University of Southern California, 2010
B.S. Electronics and Communication Engineering, UP Technical University, 2009

Shi, Junmin
Associate Professor Management (2014)
Ph.D.

Shih, Frank Y.
Professor of Computer Science (1988)
Ph.D. Electrical and Computer Engineering, Purdue University-Main Campus, 1987
M.S. Electrical and Computer Engineering, Stony Brook University, 1984
B.S., National Cheng Kung University, 1980

Shirokoff, David G.
Associate Professor of Mathematical Sciences (2014)
Ph.D. Mathematics, Massachusetts Institute of Technology, 2011
University of Toronto, 2006

Siegel, Michael S.
Professor of Mathematical Sciences (1995)
Ph.D., New York University, 1989
B.S., Duke University, 1984

Simeone, Osvaldo
Professor of Electrical and Computer Engineering (2005)
Ph.D., Politecnico di Milano, 2005

Simon, Laurent
Associate Professor of Chemical and Materials Engineering (2001)
Ph.D., Colorado State University, 2001
M.S., Colorado State University, 1998
B.S., New Jersey Institute of Technology, 1996

Singh, Pushpendra
Professor of Mechanical and Industrial Engineering (1996)
M.S. Aerospace Engineering, University of Minnesota-Twin Cities, 1989

Sirenko, Andrei
Professor of Physics (2003)
Ph.D. Physics, A. F. Ioffe Institute, 1993
M.S. Optoelectronic Devices, Electrical Engineering University, 1987

Sirkar, Kamalesh K.
Distinguished Professor of Chemical and Materials Engineering (1992)
Ph.D., University of Illinois at Urbana-Champaign, 1969
M.S., University of Illinois at Urbana-Champaign, 1966
B. Tech., Indian Institute of Technology, Kharagpur, 1963

Soares, Daphne F.
Assistant Professor of Federated Biology (2014)
Ph.D.

Sodhi, Rajpal Singh
Professor of Mechanical and Industrial Engineering (1986)
Ph.D., University of Houston, 1980
M.S., Union College, 1976
B.S., Thapar College of Engineering, 1971

Sohn, Andrew
Associate Professor of Computer Science (1991)
Ph.D. Computer Engineering, University of Southern California, 1991
M.S. Computer Engineering, University of Southern California, 1986
B.S. Electrical Engineering, University of Southern California, 1985

Sollohub, Darius T.
Associate Professor of Architecture and Design (1995)
M. Arch., Columbia University in the City of New York, 1988
B.A. Architecture, Columbia University in the City of New York, 1983

Somers, Mark
Professor of Management (1986)
Ph.D. Business, CUNY, 1986
MBA Industrial Organizational Psychology, CUNY Bernard M Baruch College, 1982
B.S. Psychology, Tulane University of Louisiana, 1977

Son, Jongsang
Assistant Professor of Biomedical Engineering
B.S., Yonsei University, Biomedical Engineering, 2007
M.S., Yonsei University Graduate School, Biomedical Engineering, 2009
Ph.D., Yonsei University Graduate School, Biomedical Engineering, 2014

Sosnowski, Marek
Professor of Electrical and Computer Engineering (1986)
Ph.D. Physics, University of Warsaw, 1973
M.S., University of Warsaw, 1964

Spasovic, Lazar
Professor of Civil and Environmental Engineering (1990)
Ph.D. Systems Engineering, University of Pennsylvania, 1990
M.S. Civil Engineering, University of Maryland-College Park, 1986
B.S. Transportation Engineering, Belgrade University, 1985

Stanislavchuk, Taras
Assistant Research Professor of Physics (2011)

Steffen, Nancy L.
Associate Professor of Humanities (1971)
Ph.D. English Literature, Brandeis University, 1977
M.A., Brandeis University, 1969
B.A. English Literature, Stanford University, 1965

Subramanian, Sundarraman
Associate Professor of Mathematical Sciences (2007)
Ph.D. Statistics, Florida State University, 1995
M.S., Florida State University, 1995
M.S., Madras Christian College, India, 1983

Sun, Hongtao
Assistant Professor of Mechanical and Industrial Engr (2018)

Sylla, Cheickna
Professor of Management (1989)
Ph.D. Industrial Engineering and Operations Research, University at Buffalo, 1983
M.S. Industrial Research and operations research, University at Buffalo, 1980
B.S. Electromechanical Engineering, Ecole Nationale D’Ingenieurs (ENI), 1975

Tafuni, Angelantonio
Assistant Professor of Engineering Technology (2018)

Tai, Xiaonan
Assistant Professor of Biological Sciences
B.S., Wuhan University, Geographical Information Science, 2011
Ph.D., University at Buffalo, Geography, 2018

Tang, Qiang
Assistant Professor of Computer Science (2016)
Ph.D. Computer Science, University of Connecticut, 2015
M.S. Computer Science, Graduate University of Chinese Academy, 2009
B.S. Information and Computational Science, Hefei University of Technology, 2002

Tao, Xinyuan
Assistant Professor MT School of Management (2018)

Taylor, Ming Fang
Assistant Professor of Management (2015)

Theodoratos, Dimitrios
Associate Professor of Computer Science (2001)
Ph.D. Computer Science, University of Paris at Orsay, 1991
M.S. Computer Science, Ecole Nationale Superieure de Telecommunications de Paris, 1986
Diploma Electrical and Computer Engineering, National Technical University of Athens, 1985

Theodore, Georgeen
Associate Professor of Architecture and Design (2005)
M. Arch., Harvard University, 2002
B. Arch., Rice University, 1994
B.A. Architecture, Rice University, 1992

Thomas, Benjamin P.
Assistant Professor of Physics (2016)
Ph.D., Lyon 1 University, 2013
M.S. Physics, Lyon 1 University, 2010
Graduate Degree Physics and Chemistry, Lyon 1 University, 2008
Graduate Degree Computational Science, Grenoble 2 University, 2005

Thomas, Ellen J.
Associate Professor of Management (2010)
Ph.D. Marketing, Temple University, 2010
MBA Marketing, Drexel University, 2002
B.S. Mechanical Engineering and Applied Math, University of Pennsylvania, 1981

Thomas, Gordon A.
Professor of Physics (2000)
Ph.D., University of Rochester, 1972
B.S., Brown University, 1965

Thi-Phong Nguyen, Assistant Professor

Towfi, Nissim M.
Associate Professor of Physics (1955)
B.S., Bombay University, 1949
M.A., Columbia University in the City of New York, 1953

Tricamo, Stephen J.
Professor of Mechanical and Industrial Engineering (1995)
Ph.D., City College of New York, 1980
M.S., City College of New York, 1969
B.S., City College of New York, 1966

Tsybeskov, Leonid
Professor of Electrical and Computer Engineering (2001)
Ph.D. Applied Physics, Odessa Mechnikov University, 1983
M.S., Odessa Mechnikov University, 1978
B.S., Odessa Mechnikov University, 1978

Tukel, Oya
Professor MT School of Management (2019)
Ph.D. University of Florida, 1992
B.S. Middle East Technical University, 1988

Turc, Catalin C.
Associate Professor of Mathematical Sciences (2012)
Ph.D. Mathematics, University of Minnesota-Twin Cities, 2005
M.S., A. I. Cuza University, 1999
B.S. Mathematics, A. I. Cuza University, 1997

Tyson, Trevor A.
Distinguished Professor of Physics (1996)
Ph.D., Stanford University, 1991
B.S., Andrews University, 1983

Ullman, David F.
Professor of Practice, Informatics
B.S., University of Delaware, Mathematics, Statistics and Computer Science, 1979
M.S., New Jersey Institute of Technology, Management, 1992
Admitted to Ph.D. Candidacy, ABD Rutgers, The State University of New Jersey, Management, 2005
Certificate of Completion Columbia University Graduate School of Business, 2003

Varkouhi, Amir Khashayar
Assistant Professor of Chemistry and Environmental Science
MD, Lorestan University of Medical Sciences, Medicine, 2005
Ph.D., University of Utrecht, Pharmaceutics, 2011

Venerus, David C.
Professor of Chemical & Materials Engineering (2018)

Vinnikov, Margarita
Assistant Professor of Informatics (2018)

Voronov, Roman S.
Assistant Professor of Chemical and Materials Engineering (2013)
Ph.D., University of Oklahoma, 2010
M.S., University of Oklahoma, 2006
B.S., University of Oklahoma, 2003

Wang, Antai
Associate Professor of Mathematical Sciences (2013)
Ph.D., University of Rochester, 2002
M.A., University of Rochester, 1999
M.A., York University, Toronto, Canada, 1997
B.A., Fudan University, China, 1995

Wang, Cong
Assistant Professor of Electrical and Computer Engineering (2015)
Ph.D. Controls and Dynamics, University of California-Berkeley, 2014
M.S. Automotive Engineering, Tsinghua University, 2010
B.S. Manufacturing and Automation, Tsinghua University, 2008
Wang, Guiling
Professor of Computer Science (2006)
Ph.D. Computer Science and Engineering, Pennsylvania State University-Main Campus, 2006

Wang, Haimin
Distinguished Professor of Physics (1995)
Ph.D. Astrophysics, California Institute of Technology, 1988
B.S. Astronomy, Nanjing University, 1982

Wang, Jason T.
Professor of Computer Science (1991)
Ph.D. Computer Science, New York University, 1991
M.S., New York University, 1988
M.S. Mathematics, University of Memphis, 1985
B.S. Mathematics, National Taiwan University, Taipei, Taiwan, 1980

Wang, Jinghua
Assistant Professor, Management
Ph.D. Illinois Institute of Technology, Management Science in Finance (2012)
BSc. Heilongjiang University, Economics (1995)

Wang, Shaohua
Assistant Professor of Information Systems (2017)
Ph.D. Computer Science, Queen's University, 2016
M.S. Computer Science, University of Windsor, 2010
B.S. Software Engineering, Jilin University, 2007

Wang, Xianqin
Associate Professor of Chemical and Materials Engineering (2007)
Ph.D. Chemical Engineering, Virginia Polytechnic Institute and State University, 2002
M.S. Chemical Engineering, Tianjin University, 1997
B.S. Chemical Engineering, Shandong University, 1994

Warner, Genoa R.
Assistant Professor of Chemistry and Environmental Science
B.S., Yale University, Chemistry, 2012
M.S., Carnegie Mellon University, Chemistry, 2016
Ph.D., Carnegie Mellon University, Chemistry, 2017

Washington, David W
Associate Professor of Engineering Technology (1997)
Ph.D. Geotechnical Engineer, New Jersey Institute of Technology, 1996
M.S. Civil Engineering, Manhattan College, 1988
B.S. Civil Engineering, Columbia University in the City of New York, 1984

Wecharatana, Methi
Professor of Civil and Environmental Engineering (1982)
Ph.D., University of Illinois, 1982
M.E., Asian Institute of Technology, 1978
B.E., Chulalongkorn University, 1976

Wei, Hua
Assistant Professor of Informatics
B.S., Beihang University, Computer Science, 2013
M.S., Beihang University, Computer Science, 2017
Ph.D., Pennsylvania State University-Main Campus, Information Sciences and Technology, 2020

Wei, Zhi
Associate Professor of Computer Science (2008)
Ph.D. Bioinformatics, University of Pennsylvania, 2008
M.S. Computer Science, Rutgers University-New Brunswick, 2004
B.S. Computer Science, Wuhan University, 2000

Weiss, Tomer
Assistant Professor Informatics (2020)
Ph.D. Computer Science, University of California-Los Angeles, 2018
M.S. Computer Science, University of California-Los Angeles, 2015
B.S. Computer Science, University of Tel Aviv, 2012

Whitman, Gerald
Professor of Electrical and Computer Engineering (1970)
Ph.D. Electrophysics, Polytechnic Institute of New York University, 1969
M.S. Electrophysics, Polytechnic Institute of New York University, 1967
B.S. Electrical Engineering, Columbia University in the City of New York, 1963
B.S. Physics, CUNY Queens College, 1963

Wicke, Kristina
Assistant Professor

Wohn, Donghee Yvette
Assistant Professor of Information Systems (2014)
Ph.D. Media and Information Studies, Michigan State University, 2013
M.A. Journalism, Harvard University, 2009
B.A. Journalism, Film and Television (joint degree), Ewha Womans University, 2002

Wu, Yi-Fang Brook
Associate Professor of Information System (2001)
Ph.D. Information Science, SUNY at Albany, 2001
M.S. Information Resources Management, Syracuse University, 1996
B.B.A. Management Information Systems, Tamkang University, 1993

Wu, Chase Qishi
Associate Professor of Computer Science (2015)
Ph.D. Computer Science, Louisiana State University and Agricultural & Mechanical College, 2003
M.S. Geomatics, Purdue University-Main Campus, 2000
B.S. Remote Sensing, Zhejiang University, 1995

Xu, Pan
Assistant Professor Computer Science (2019)
M.Arch. Computer Science, University of Maryland-College Park, 2019
Ph.D. Operations Research, Iowa State University, 2012
B.S. Mathematics, Xidian University, 2007

Xu, Xiaoyang
Assistant Professor of Chemical and Materials Engineering (2014)
Ph.D. Material Chemistry, Northwestern University, 2010
Massachusetts Institute of Technology, 2014
Harvard University, 2014

Yang, Junjie
Assistant Professor of Physics (2019)
Ph.D. Physics, Tsinghua University, 2010
B.S. Physics, Tianjin University, 2005

Yaramothu, Chang
Assistant Professor of Applied Engineering Technology
B.S., New Jersey Institute of Technology, Biomedical Engineering, 2013
M.S., New Jersey Institute of Technology, Biomedical Engineering, 2014
Ph.D., New Jersey Institute of Technology and Rutgers Biomedical & Health Sciences, Biomedical Engineering, 2017

Ye, Xinyue
Associate Professor Informatics (2018)
Ph.D. Geographic Information Science, University of California at Santa Barbara, 2010
M.S. Geographic Information System, Eastern Michigan University, 2004
M.A. Economic Geography, University of Wisconsin at Milwaukee, 2002
B.S. Urban Planning, Zhejiang University, 1996

Young, Joshua
Assistant Professor of Chemical & Materials Engineering (2019)
B.S. Chemistry, Case Western Reserve University, 2011
Ph.D. Materials Science and Engineering, Drexel University, 2016

Young, Yuan-Nan
Professor of Mathematical Sciences (2004)
Ph.D., University of Chicago, 2000
M.S. Astronomy and Astrophysics, University of Chicago, 1996
B.A. Physics, National Taiwan University, 1993

Yu, Dantong
Associate Professor of Management (2016)
Ph.D. Computer Science, SUNY College at Buffalo, 2001
M.S. Computer Science, SUNY College at Buffalo, 1998
B.S. Computer Science, Beijing University, 1995

Yu, Sijie
Assistant Research Professor, Ctr for Solar-Terrestrial Research

Zarzycki, Andrzej
Associate Professor of Architecture and Design (2008)
Ph.D., University of Texas-Austin, 2007
M. Arch., Massachusetts Institute of Technology, 1994
M. Arch., Politechnika Gdanska (Gdansk University of Technology), 1992

Zdepski, Michael S.
Associate Professor of Architecture and Design (1974)
M. Arch. II (Post Professional Degree), University of Pennsylvania, 1970
B. Arch., Syracuse University, 1969

Zhang, Wen
Associate Professor of Civil and Environmental Engineering (2012)
Ph.D. Environmental Engineering, Georgia Institute of Technology-Main Campus, 2011
M.S. Environmental Engineering, Tongji University, 2007
B.S. Environmental Engineering, Tsinghua University, 2004

Zhang, Yuanwei
Assistant Professor of Chemistry and Environmental Science (2016)
Ph.D. Philosophy, University of Central Florida, 2013
M.S. Chemistry, State Key Laboratory of Elemento, 2008
B.S. Chemistry, Nankai University, 2005

Zhang, Haisu
Associate Professor of Management (2015)
Ph.D. Business Administration, University of Illinois at Chicago, 2012
M.B.A. Management, Purdue University-Calumet Campus, 2006
B.S. Business Management, Beijing Technology and Business University, 2004

Zhang, Lijie
Assistant Professor of Chemistry and Environmental Science
B.S., Tsinghua University, Environmental Science and Engineering, 2012
Ph.D., Washington University in St Louis, Energy, Environmental & Chemical Engineering, 2018

Zhao, Mengqiang
Assistant Professor of Chemical and Materials Engineering
B.S., Tsinghua University, Chemical Engineering, 2008
Ph.D., Tsinghua University, Chemical Engineering, 2013

Zhou, Mengchu
Emeritus Faculty

NJIT

Ahluwalia, Daljit Singh
Professor of Mathematical Sciences (1986)
Ph.D. Applied Mathematics, Indiana University-Bloomington, 1965
M.S. Physics, Indiana University-Bloomington, 1965
M.A., Punjab University, 1955
B.A., Punjab University, 1952

Barnes, William
Associate Professor of Engineering Technology (1986)
M.S. Electrical Engineering, Fairleigh Dickinson University-Metropolitan Campus, 1982
B.S. Electrical Engineering, Northeastern University, 1967

Bar-Ness, Yeheskel
Distinguished Professor Emeritus of Electrical and Computer Engineering (1985)
Ph.D. Applied Mathematics, Brown University, 1969
M.S. Electrical Engineering, Technion, Israel Institute of Technology, 1963
B.S. EE, Technion, Israel Institute of Technology, 1958

Beaton, W. Patrick
Professor Emeritus of Humanities (1992)
Ph.D.

Bieber, Michael P.
Professor of Information System (1992)
Ph.D., University of Pennsylvania, 1990
M.S., University of Pennsylvania, 1990
B.S., University of Pennsylvania, 1980

Bozzelli, Joseph W.
Distinguished Professor of Chemistry and Environmental Science (1975)
Ph.D., Princeton University, 1972
M.S., University of Dayton, 1968
B.S., Marietta College, 1964

Buteau, Leon J.

Zhou, Tao
Associate Professor of Physics (2004)
Ph.D., Max-Planck Institute for Solid State Research, 1998
B.S., Nanjing University, 1989

Zhou, Xianlian
Associate Professor of Bio-Medical Engineering (2018)

Zhu, Chao
Professor of Mechanical and Industrial Engineering (1998)
Ph.D., University of Illinois at Urbana-Champaign, 1991
M.S., University of Illinois at Urbana-Champaign, 1989
B.S., Tsinghua University, 1984

Ziavras, Sotirios G.
Professor of Electrical and Computer Engineering (1990)
D.Sc., George Washington University, 1990
M.S., Ohio University, 1985
Diploma, National Technical University of Athens, 1984

Emeritus Faculty

Ahluwalia, Daljit Singh
Professor of Mathematical Sciences (1986)
Ph.D. Applied Mathematics, Indiana University-Bloomington, 1965
M.S. Physics, Indiana University-Bloomington, 1965
M.A., Punjab University, 1955
B.A., Punjab University, 1952

Barnes, William
Associate Professor of Engineering Technology (1986)
M.S. Electrical Engineering, Fairleigh Dickinson University-Metropolitan Campus, 1982
B.S. Electrical Engineering, Northeastern University, 1967

Bar-Ness, Yeheskel
Distinguished Professor Emeritus of Electrical and Computer Engineering (1985)
Ph.D. Applied Mathematics, Brown University, 1969
M.S. Electrical Engineering, Technion, Israel Institute of Technology, 1963
B.S. EE, Technion, Israel Institute of Technology, 1958

Beaton, W. Patrick
Professor Emeritus of Humanities (1992)
Ph.D.

Bieber, Michael P.
Professor of Information System (1992)
Ph.D., University of Pennsylvania, 1990
M.S., University of Pennsylvania, 1990
B.S., University of Pennsylvania, 1980

Bozzelli, Joseph W.
Distinguished Professor of Chemistry and Environmental Science (1975)
Ph.D., Princeton University, 1972
M.S., University of Dayton, 1968
B.S., Marietta College, 1964

Buteau, Leon J.
Professor Emeritus of Physics (1965)
Ph.D., University of Florida, 1963
Ph.D., Stanford University, 1959
Ph.D., Newark College of Engineering, 1958

Carr, William N.
Professor Emeritus of Electrical and Computer Engineering (1986)
Ph.D., Carnegie Institute of Technology, 1962
M.S., Southern Methodist University, 1966
M.S., Carnegie Institute of Technology, 1959
B.S., Carnegie Institute of Technology, 1959

Chakrabarti, Alok K.
Distinguished Professor Emeritus of Management (1989)
Ph.D., Northwestern University, 1972
MBA, Indian Institute of Technology, 1966

Chen, Rong-Yaw
Professor Emeritus of Mechanical and Industrial Engineering (1966)
Ph.D., North Carolina State University, 1966
M.S., University of Toledo, 1963
B.S., National Taiwan University, 1957

Clements, Wayne I.
Associate Professor Emeritus of Electrical and Computer Engineering (1959)

Conley, Robert J.
Emeritus of Chemistry and Environmental Science (1981)
Ph.D., Brown University, 1971
M.S., Brown University, 1968
B.A., Marist College, 1963

Coppola, Nancy Walters
Professor of Humanities (1984)
D.Arts, Syracuse University, 1983
M.A., Syracuse University, 1980
B.A., Simmons College, 1977

Cordero, Rene
Associate Professor Emeritus of Management (1991)
Ph.D. Management, Rutgers University, 1985
MBA Management, Fairleigh Dickinson University, 1978
M.E., University of Delaware, 1968
B.M.E., Catholic University of America, 1966

Cornely, Roy H.
Professor Emeritus of Electrical and Computer Engineering (1971)
Ph.D., Rutgers University, 1972
M.S., University of Pennsylvania, 1962
B.S. EE, Drexel University, 1960

Dauenheimer, Edward G.
Professor Emeritus of Civil and Environmental Engineering (1975)
Ph.D.

De Souza Santos, Antonio P.
Professor Emeritus of Architecture and Design (1991)
M. Arch., University of Pennsylvania, 1968
B. Arch., University of Cape Town, 1966

Dresnack, Robert
Professor of Civil and Environmental Engineering (1966)
Ph.D. Civil engineering, New York University, 1966
M.S. Civil Engineering, New York University, 1963
Emeritus Faculty

B.S. Civil Engineering, City College of New York, 1961

Droughton, John V.
Professor Emeritus of Mechanical and Industrial Engineering (1960)
 Ph.D., Rutgers University, 1969
 M.S., Newark College of Engineering, 1962
 B.S., Rutgers University, 1959

Elliot, Norbert
Professor Emeritus of Humanities (1988)
 Ph.D. English, The University of Tennessee, 1981
 M.A. English, University of New Orleans, 1975
 B.A. English, University of New Orleans, 1973

Elwell, David H.
Associate Professor Emeritus of Architecture and Design (1975)
 M.F.A., Princeton University, 1965
 B.A., Cambridge University, 1963
 B.S., Yale University, 1957

Engler, Peter
Associate Professor Emeritus of Chemical and Materials Engineering (1984)
 Ph.D., State University of New York at Buffalo, 1974
 M.S., Cornell University, 1961
 B.E., McGill University, 1957

English, Robert
Professor Emeritus of Engineering Technology (1990)
 M.S., Purdue University, 1979
 M.S., Purdue University, 1976
 B.S., Purdue University, 1970

Featheringham, Tommy R.
Associate Professor Emeritus of Computer Science (1975)
 Ph.D.

Fenster, Saul K.
Professor Emeritus of Mechanical and Industrial Engineering (1978)
 Ph.D., University of Michigan, 1959
 M.S., Columbia University in the City of New York, 1955
 B.M.E., City College of New York, 1953

Foulds, Richard A.
Associate Professor of Biomedical Engineering (1999)
 Ph.D., Tufts University, 1986
 M.S. Engineering Design, Tufts University, 1972
 B.S. Mechanical Engineering, Tufts University, 1972

Frank, Joseph
Associate Professor Emeritus of Electrical and Computer Engineering (1968)
 Ph.D.

Garfield, Ralph
Associate Professor Emeritus of Mathematical Sciences (1986)
 Ph.D.

Gauchat, Urs P.
Professor of Architecture and Design (1991)
 M. Arch., Harvard University, 1967
 B.Arch., University of Sydney, 1966

Gehani, Narain
Professor of Computer Science (2003)
 Ph.D. Computer Science, Cornell University, 1975
 M.S. Computer Science, Cornell University, 1975
M.S. Mechanical Engineering, Stevens Institute of Technology, 1971
B.S. Mechanical Engineering, Indian Institute of Technology, 1969

Geithman, David T.
Professor Emeritus of Humanities (1983)
Ph.D.

Getzin, Donald
Associate Professor Emeritus of Chemistry and Environmental Science (1965)
Ph.D., Columbia University in the City of New York, 1967
M.A., Columbia University in the City of New York, 1961
B.A., State University of New York, 1960

Goldberg, Vladislav
Distinguished Professor Emeritus of Mathematical Sciences (1981)
Ph.D., Moscow State University, 1961
M.S., Moscow State University, 1958

Greenfeld, Joshua S.
Professor Emeritus of Civil and Environmental Engineering (1988)
Ph.D., Ohio State University, 1987
M.S., Ohio State University, 1979
B.A., Tel Aviv University, 1975

Greenfield, Sanford R.
Professor Emeritus of Architecture and Design (1981)
Ed.D., Harvard University, 1975
M. Arch., Massachusetts Institute of Technology, 1954
B. Arch., Massachusetts Institute of Technology, 1952

Haddad, Richard A.
Professor Emeritus of Electrical and Computer Engineering (1996)
Ph.D., Polytechnic Institute of Brooklyn, 1962
M.S., Polytechnic Institute of Brooklyn, 1958
B.E., Polytechnic Institute of Brooklyn, 1956

Hanesian, Deran
Professor of Chemical and Materials Engineering (1963)
Ph.D., Cornell University, 1961
B.S. Chemical Engineering, Cornell University, 1952

Hatch, C. Richard
Professor Emeritus of Mechanical and Industrial Engineering (1975)

Hiltz, S. Roxanne
Distinguished Professor Emeritus of Information System (1985)
Ph.D. Sociology, Columbia University in the City of New York, 1969
M.A., Columbia University in the City of New York, 1964
B.A., Vassar College, 1963

Hodge, Elizabeth J.
Assistant Professor Emeritus of Humanities (1969)
Ph.D., New York University, 1975
M.A., New York University, 1960
B.A., New York University, 1958

Huang, Ching-Rong
Professor Emeritus of Chemical and Materials Engineering (1966)
Ph.D., University of Michigan, 1966
M.S., University of Michigan, 1965
M.S., Massachusetts Institute of Technology, 1958
B.S., National Taiwan University, 1954

Kebbekus, Barbara B.
Professor Emeritus of Chemistry and Environmental Science (1974)
Ph.D., Pennsylvania State University, 1964
B.S., Rosemont College, 1960

Khader Michael
Engineering Technology

Khera, Raj P.
Professor Emeritus of Civil and Environmental Engineering (1966)
Ph.D., Northwestern University, 1967
M.S., Ohio State University, 1962

Kimmel, Howard S.
Professor Emeritus of Civil and Environmental Engineering (1966)
M.S., West Virginia University, 1961
B.S., CUNY Brooklyn College, 1959
Ph.D., City University of New York, 1967

Kirchner, Robert P.
Professor Emeritus of Mechanical and Industrial Engineering (1962)
Ph.D., Rutgers University, 1968
M.S., Newark College of Engineering, 1964
B.S., Newark College of Engineering, 1962

Klapper, Jacob
Professor Emeritus of Electrical and Computer Engineering (1967)
Sc.D., New York University, 1965
M.S., Columbia University in the City of New York, 1958
B.E., City College of New York, 1956

Kriegsmann Gregory
Foundation Chair: Mathematics

Kristol, David
Professor Emeritus of Chemical and Materials Engineering (1966)
Ph.D., New York University, 1969
M.S., New York University, 1966
B.S., CUNY Brooklyn College, 1958

Kuo, Marshall C.
Professor Emeritus of Electrical and Computer Engineering (1965)
Ph.D., University of Michigan, 1964
M.S., Texas A&M University, 1958
B.S., National Taiwan University, 1954

Lambert, Donald G.
Associate Professor Emeritus of Chemistry and Environmental Science (1966)
Ph.D.

Lei, George Y.
Associate Professor Emeritus of Chemistry and Environmental Science (1975)
Ph.D.

Linden, Martin J.
Professor Emeritus of Mechanical and Industrial Engineering (1958)
Ph.D.

Lynch, Robert E.
Professor Emeritus of Humanities (1967)
Ph.D., New York University, 1971
M.A., New York University, 1963
B.A., St. Francis College, 1962

McDermott, Kevin J.
Associate Professor of Mechanical and Industrial Engineering (1982)
Ed.D. Educational Leadership, Fairleigh Dickinson University-Metropolitan Campus, 1975
M.S. Industrial and Management Engineering, Columbia University in the City of New York, 1970
B.S. Electrical Engineering, New Jersey Institute of Technology, 1965

Meyer, Andrew U.
Professor Emeritus of Electrical and Computer Engineering (1965)
Ph.D., Northwestern University, 1961
M.S., Northwestern University, 1958

O'Connor, John E.
Professor Emeritus of History (1969)
Ph.D., City University of New York, 1974
M.A., Queens College, 1967
B.A., St. John's University, 1965

Papademetriou, Peter C.
Professor Emeritus of Architecture and Design (1987)
M.Arch., Yale University, 1968
B. Arch., Princeton University, 1965

Perlmutter, Howard D.
Professor Emeritus of Chemical and Materials Engineering (1965)
Ph.D.

Pfeffer, Robert
Distinguished Professor Emeritus of Chemical and Materials Engineering (1992)
Ph.D., New York University, 1962
M.S., New York University, 1958
B.S., New York University, 1956

Raghu, Dorairaja
Professor Emeritus of Civil and Environmental Engineering (1977)
Ph.D. Civil Engineering, Texas Tech University, 1975
M.S. Civil Engineering, University of Kentucky, 1972
M.S. Civil Engineering, University of Madras, 1962
B.E. Civil Engineering, Annamalai University, 1961

Reisman, Otto
Assistant Professor Emeritus of Physics (1962)
Ph.D.

Reisman, Stanley
Professor Emeritus of Biomedical Engineering (1968)
Ph.D., Brooklyn Polytechnic Institute, 1974
M.S., Massachusetts Institute of Technology, 1963
B.S., Brooklyn Polytechnic Institute, 1962

Roche, Edward C.
Professor Emeritus of Chemical and Materials Engineering (1967)
Sc.D., Stevens Institute of Technology, 1967
M.S., Harvard University, 1958
M.E., Stevens Institute of Technology, 1954

Rockland, Ronald H.
Professor of Engineering Technology (1995)
Ph.D., New York University, 1972
M.S., New York University, 1969
M.B.A., University of St. Thomas, 1977
B.E., New York University, 1967

Rosenstark, Solomon
Professor Emeritus of Electrical and Computer Engineering (1968)
Ph.D., New York University, 1966
M.E., New York University, 1961
B.E., City College of New York, 1958
Rotter, Naomi G.
Professor Emeritus of Management (1977)
 Ph.D. Industrial and Organizational Psychology, New York University, 1974
 B.A. Psychology, Skidmore College, 1963

Rusinkiewicz, Marek E.
Professor of Computer Science (2013)
 Ph.D. Informatics, Polish Academy of Sciences, 1973
 M.S. Computer Engineering, Moscow University of Technology, 1970
 B.S., Lodz University of Technology, 1966

Salek, Franklin
Professor Emeritus of Civil and Environmental Engineering (1969)
 Ph.D.

Savin, William
Professor Emeritus of Physics (1960)
 Ph.D., Rutgers University, 1969
 M.S., Newark College of Engineering, 1962
 B.S., Newark College of Engineering, 1960

Scher, Julian M.
Associate Professor Emeritus of Information System (1971)
 Ph.D., New York University, 1971
 M.S., New York University, 1967
 B.A., CUNY Brooklyn College, 1965

Schuring, John R.
Professor of Civil and Environmental Engineering (1982)
 Ph.D., Stevens Institute of Technology, 1987
 M.S., University of Alaska, 1977
 B.E., Stevens Institute of Technology, 1974

Sher, Doris H.
Assistant Professor Emeritus of History (1970)
 Ph.D. Operations Research/Computer Science, New York University, 1971
 M.S. Operations Research/Computer Science, New York University, 1967
 B.A. Mathematics, CUNY Brooklyn College, 1965

Sher, Richard B.
Distinguished Professor of History (1979)
 Ph.D., University of Chicago, 1979
 M.A., University of Chicago, 1971
 B.A., George Washington University, 1970

Shi Yun-Qing
Electrical and Computer Engineering

Shilman, Avner
Professor Emeritus of Chemical and Materials Engineering (1963)
 Ph.D., Polytechnic Institute of Brooklyn, 1961
 Ph.D., American University of Beirut, 1945
 M.A., Columbia University in the City of New York, 1957
 M.S., Columbia University in the City of New York, 1953

Simon J.
Physical Education

Sofer, Samir
Professor Emeritus of Chemical and Materials Engineering (1986)
 Ph.D.

Sohn, Kenneth S.
Professor Emeritus of Electrical and Computer Engineering (1966)
 Sc.D. Electrical Engineering, Stevens Institute of Technology, 1967
M.S., Stevens Institute of Technology, 1959
B.S., Upsala College, 1957

Stickler, David
Professor Emeritus of Mathematical Sciences (1987)
 Ph.D., Ohio State University, 1964
 M.S., Ohio State University, 1959
 B.S., Ohio State University, 1956

Tavantzis, John
Professor Emeritus of Mathematical Sciences (1977)
 Ph.D., New York University, 1976
 M.S., Columbia University in the City of New York, 1966
 B.A., Columbia University in the City of New York, 1962

Tomkins, Reginald P.T.
Professor of Chemical and Materials Engineering (1977)
 Ph.D. Physical Chemistry, University of London, 1966
 B.S. Chemistry and Physics, University of London, 1963

Tremaine, Marilyn M.
Professor Emeritus of Information System (2001)
 Ph.D., University of Southern California, 1982
 M.S., University of Southern California, 1978
 B.S., University of Wisconsin, 1969

Turoff, Murray
Distinguished Professor Emeritus of Information System (1973)
 Ph.D., Brandeis University, 1965
 B.A., University of California, 1958

Van Buskirk, William C.
Distinguished Professor Emeritus of Biomedical Engineering (1998)
 Ph.D., Stanford University, 1970
 M.S., Stanford University, 1966
 B.S., United States Military Academy, 1964

Venanzi, Carol A.
Distinguished Professor Emeritus of Chemistry and Environmental Science (1982)
 Ph.D. Chemistry, University of California, 1978
 M.S. Chemistry, Johns Hopkins University, 1970
 B.A. Chemistry, Catholic University of America, 1969

Voronka, Roman W.
Professor Emeritus of Mathematical Sciences (1962)
 Ph.D., New York University, 1974
 M.S., New York University, 1967
 M.S., Newark College of Engineering, 1964
 B.S., Newark College of Engineering, 1962

Wall, Donald R.
Associate Professor Emeritus of Architecture and Design (1974)
 D. Arch., Catholic University of America, 1970
 M. Arch., Cornell University, 1959
 B. Arch., University of Manitoba, 1958

Weisman, Leslie K.
Professor Emeritus of Architecture and Design (1975)
 M.A., University of Detroit, 1973
 B.F.A., Wayne State University, 1967

West, Troy
Associate Professor Emeritus of Architecture and Design (1974)
 M. Arch., Carnegie Institute of Technology, 1965
B. Arch., Carnegie Institute of Technology, 1958

Wilson, Charles E.
Professor Emeritus of Mechanical and Industrial Engineering (1956)
Ph.D., City College of New York, 1951

Wolf, Carl
Professor Emeritus of Mechanical and Industrial Engineering (1961)
Ph.D.
M.S., New York University, 1971
B.B.A., Columbia University in the City of New York, 1954

Professional/Instructional Staff

NJIT

Ahn, Kwangsu
Assistant Research Professor of Physics (2008)

Alcala, Jose M.
University Lecturer, Architecture and Design (2007)

Arcadi, Teal.
University Lecturer

Ascarelli, Cleveland
Senior University Lecturer of Humanities (2009)

Ascarelli, Miriam F.
University Lecturer, Humanities (2009)

Balasubramanian, Bhavani
Director of Undergraduate Studies Programs, Department of Chemical and Environmental Science

Bess, Mark E.
University Lecturer, Architecture and Design (2005)
 B. Arch., Pratt Institute-Main, 1987
 B.A., Rutgers University, 1982

Bonchonsky, Michael P.
University Lecturer, Chemistry and Environmental Science (2007)
 J.D., Law, Seton Hall University
 M.S., Environmental Health Sciences, School of Engineering, NYU
 B.S., Biology, SUNY at Albany

Brateris, Daniel J.
University Lecturer, Engineering Technology (2013)

Brothers, David A.
Senior University Lecturer, Architecture and Design (2009)
 M. Arch., Rice University, 1994
 B.A. Economics, Tufts University, 1986

Brutherus, Alexander D.
University Lecturer, Chemistry and Environmental Science (2008)
 Ph.D. Michigan State University

Bruzzano, Carol a.
University Lecturer, Humanities

Callahan, Brian F.
PE Specialist, Department of Physical Education

Carfora, Kristin
University Lecturer of Mathematical Sciences (2020)
Casal, Jose C.
Senior University Lecturer, Management (2001)
M.S., Information Systems, New York University, 2001
Ph.D., CUNY Graduate School and University Center, 1992
M.B.A., CUNY Bernard M Baruch College, 1985
B.S., Tulane University of Louisiana, 1977

Castro, Eduardo
Senior University Lecturer

Castronova, Louise
Senior University Lecturer, Humanities (1986)
M.A., Seton Hall University, 1975
B.A., Upsala College, 1973

Cays, John M.
Associate Dean for Academics, College of Architecture and Design (2005)

Ciancia, Andrew
Senior University Lecturer Civil & Environmental Engineering (2019)
M.S. Civil Engineering, Rutgers University, 1970
B.S. Civil Engineering, Rutgers University, 1968

Cimino, Richard
Senior University Lecturer Chemical & Materials Engineering (2019)
Ph.D. Chemical and Biochemical Engineering, Rutgers University-New Brunswick, 2016
M.S. Chemical and Biochemical Engineering, Rutgers University-New Brunswick, 2013
B.S. Chemical and Biochemical Engineering, Rutgers University-New Brunswick, 2011

Chen, Kim
University Lecturer of Humanities (2019)
M.A. Comparative Literature, Rutgers University-New Brunswick, 2011
B.A. English, Framingham State University, 1986

Chou, Porchiung B.
Senior University Lecturer, Management (2003)
Ph.D., The George Washington University, Columbian College of Arts and Sciences, 2003
M.Phil., The George Washington University, Columbian School of Arts and Sciences, 2001
M.A., The Johns Hopkins University, School of Arts and Sciences, 1996
M.A., Yale University, Graduate School of Arts and Sciences. 1994
M.F.S., Yale University, School of Forestry and Environmental Studies, 1993
B.S., National Taiwan University, 1988

Cohen, Barry
Associate Dean, College of Computing Sciences (2001)
Ph.D., State University of New York at Stony Brook, 2001
B.A., City University of New York, 1993

Curley, Jonathan R.
Senior University Lecturer, Humanities (2003)
Ph.D., New York University, 2003
M.A., New York University, 1998
B.A., Brown University, 1995

Dass, Ananya
University Lecturer, Computer Science (2016)
Ph.D. Computer Science, New Jersey Institute of Technology, 2016
B.Tech Computer Science, West Bengal University, 2011

Deek, Maura A.
Senior University Lecturer, Information Technology (1986)
M.S. Computer Science, New Jersey Institute of Technology, 1986
B.S., Rutgers University, 1982
DeSantis, Christopher
University Lecturer, Chemistry & Environmental Science (2019)
Ph.D. Organic Chemistry, The Ohio State University, 2017
B.A. Chemistry, Rutgers University, 2011

Devan, Caroline Marie
University Lecturer, Federated Biology (2016)
Ph.D. Biology, New Jersey Institute of Technology, 2016
B.A. Environmental Studies, The University of Tennessee, 2004

Di, Xin
Assistant Research Professor of Biomedical Engineering (2012)
Ph.D.

Edel, Gareth A.
University Lecturer, Humanities (2017)
Ph.D. Science and Technology Studies, Rensselaer Polytechnic Institute, 2014
M.S. Science and Technology Studies, Rensselaer Polytechnic Institute, 2012
B.A. Sociocultural Studies of Science and Medicine, Hampshire College, 2000

Egan, John A.
University Lecturer, Humanities (1997)
M.A., University of Hawaii, 1979
B.A., St. Peter's College, 1971

Egan, Richard W.
Senior University Lecturer, Information System (2002)
M.S., Stevens Institute of Technology, 1978
M.S., St. Peter's College, 1995
B.S., City College of New York, 1974

Eljabiri, Osama
Senior University Lecturer, Computer Science (2001)
M.S., New Jersey Institute of Technology, 2001
M.S., Arab Academy for Banking and Financial Services, 1999
B.S., Kuwait University, 1986

Erdi, Alev K.
Programs Director, Biomedical Engineering
Ph.D.

Esche, John N.
University Lecturer, Humanities (2001)
J.D., Georgetown Law School, 1972
B.A., Southwestern College, 1969

Esmaili, Danial
University Lecturer, Civil and Environmental Engineering (2016)
Ph.D. Geotechnical Engineering, University of Oklahoma, 2014
M.S. Geotechnical Engineering, Shiraz University, 2007
B.S. Civil Engineering, Gilan University, 2004

Estrada, Daniel J.
University Lecturer, Humanities (2015)
Ph.D. Philosophy, University of Illinois at Urbana-Champaign, 2014
M.A. Philosophy, University of Illinois at Urbana-Champaign, 2005
B.A. Philosophy, University of California-Riverside, 2003
B.S. Computer Science, University of California-Riverside, 2003

Feknous, Mohammed
University Lecturer, Electrical and Computer Engineering (2005)
M.S., University of Missouri-Rolla, 1979
B.S., Ecole Nationale Polytechnique d'Alger, 1976

Fisher, David R.
Fleischer, Doris Z.
Senior University Lecturer, Humanities (1988)
Ph.D., New York University, 1979
M.A., New York University, 1961
B.A., CUNY Brooklyn College, 1958

Fox, Wayne
Senior University Lecturer, Management
J.D., Rutgers School of Law, 2004

Fleishman, Gregory David
Distinguished Research Professor of Physics (2007)
Ph.D.

Frissel, Nathaniel
Research Practice

Garcia Figueroa, Julio C.
University Lecturer, Architecture and Design (2007)

Georges, Penelope
University Lecturer, Biomedical Engineering (2015)
Ph.D. Bioengineering, University of Pennsylvania, 2006
B.S. Biomedical Engineering, Dartmouth College, 2000

Georgiou, George E.
University Lecturer, Physics (2005)
Ph.D., Columbia University in the City of New York, 1979
M.S., Columbia University in the City of New York, 1975
B.S., Columbia University in the City of New York, 1974

Gogos, Costas G.
Distinguished Research Professor of Chemical and Materials Engineering (1999)
Ph.D., Princeton University, 1965
M.S., Princeton University, 1962
M.A., Princeton University, 1964
B.S., Princeton University, 1961

Gu, Pin
Lab Supervisor, Department of Chemistry and Environmental Science

Gokce, Oktay Huseyin
Senior University Lecturer, Physics (1993)
Ph.D., Montana State University, 1991
M.S., Ort Dogu Technical, 1985
B.S., Ort Dogu Technical, 1981

Gorelick, Risa P.
University Lecturer, Humanities (2017)
Ph.D. English/Rhetoric, University of Louisiana, 2001
M.A. English Composition and Rhetoric, Miami University, 1994
B.A. English, Coucher College, 1991

Guilbault, Melodi D.
Assistant Dean, Management (2013)
Ph.D.
D.B.A. Marketing, Anderson University
M.B.A., Queens University of Charlotte
B.S. Mathematics, University of North Carolina at Greensboro
Gulotta, Miriam
University Lecturer, Chemistry and Environmental Science (2012)
B.A. Chemistry, CUNY Hunter College, 1993
Ph.D. Physical Chemistry, Carnegie Mellon University, 1988

Harp, Cleveland J.
University Lecturer, Architecture and Design (2009)

Hayes, Jimmy L.
University Lecturer, Mathematical Sciences (1998)

Hendela, Arthur H.
Professor of Practice of Information Systems (2016)
Ph.D. Information Systems, New Jersey Institute of Technology, 2016
M.S. Computer Science, New Jersey Institute of Technology, 1987
B.S. Chemical Engineering, New Jersey Institute of Technology, 1981

Henry, Rolanne
Senior University Lecturer, Humanities (1994)
Ph.D., Columbia University in the City of New York, 1972
L.L.M., New York University School of Law, 1980
J.D., Rutgers Law School, 1978
B.A., Rutgers University, 1964

Hetherington, Eric D.
University Lecturer, Humanities (2002)
M.A., New York University, 1995
B.A., New York University, 1992

Horwitz, Kenneth A.
University Lecturer, Mathematical Sciences (2013)
Ed.D. Math Education, Rutgers University-New Brunswick,

Hunt, Theresa A.
University Lecturer, Humanities (2005)
M.A., Rutgers University, 2002
B.A., Rutgers University, 2000

Itani, Abdul-Rahman M.
Senior University Lecturer, Computer Science (2017)

Jaffe, Michael
Research Professor of Biomedical Engineering (2000)
Ph.D., Rensselaer Polytechnic Institute, 1967
B.A., Cornell University, 1963

Janow, Richard H.
University Lecturer, Physics (2001)
Ph.D., City University of New York, 1977
M.A., City College of New York, 1967
B.A., Columbia College, 1964

Jerez, Andres
Senior University Lecturer, Physics (2007)
Ph.D.

Jing, Ju
Research Professor of Physics (2005)
Ph.D.

Kakulavarapu, Venkata R.
Assistant Research Professor of Biomedical Engineering (2016)
Ph.D. Neuroscience, University of Hyderabad, 1996
M.S. Life Sciences, University of Hyderabad, 1988
B.S. Biology and Chemistry, Andhra University, 1986

Kapleau, Jonathan J.
University Lecturer, Computer Science (2004)
 M.S., New Jersey Institute of Technology, 2003
 B.A., Adelphi University, 1992

Karvelas, Dionissios
Senior University Lecturer, Computer Science (1989)
 Ph.D., University of Toronto, 1990
 M.S., University of Toronto, 1984
 B.S. Electrical Engineering, National Technical University of Athens, 1982

Kehoe, Donald J.
University Lecturer, Information Technology (2015)
 M.S. Computer Science, New Jersey Institute of Technology, 2009
 B.A. Computer Science, New Jersey Institute of Technology, 2003

Kelly, Rudy
University Lecturer, Mathematical Sciences (2010)

Kerley, Michael V.
Associate Director of Theater

Ketterring, Joan M.
Senior University Lecturer, Information Technology (2009)
 M.S., University of Pittsburgh, 1997
 B.S., Carnegie Mellon University, 1979

Khichi, Narendra-Neel
University Lecturer, Humanities (2011)

Kim, Hyomin
Associate Research Professor, Center for Solar Associate Research (2015)
 Ph.D. Mechanical Engineering, University of New Hampshire, 2010
 M.S. Engineering Physics, Dartmouth College, 2004
 M.S. Astronomy and Space Sciences, Kyung Hee University, 2001
 B.S. Astronomy and Space Science, Kyung Hee University, 1999

King, Paul W.
University Lecturer, Humanities (2011)
 Ph.D.

Kondic, Lou
Distinguished Professor of Mathematical Sciences (1999)
 Ph.D. Physics, City University of New York, 1995
 M.Phil., University of Zagreb, 1989

Konsolaki, Mary
University Lecturer, Federated Biology (2016)
 Ph.D. Biology, University of Crete, 1991
 B.S. Biology, University of Athens, 1986

Kostopoulou, Ilektra
University Lecturer, Federated History

Kountouras, Harry V.
Senior University Lecturer, Mechanical and Industrial Engineering (1983)
 M.S. Mechanical Engineering, City College of New York, 1973
 B.S. Mechanical Engineering, City College of New York, 1971

Krishtal, Alisa R.
University Lecturer, Chemistry and Environmental Science (2016)
 Ph.D. Theoretical Chemistry, University of Antwerp, 2009
 M.S. Chemistry, University of Antwerp, 2004
Kristin Carfora, University Lecturer

Kumar, Suresh U.
Professor of Practice

Kwestel, Morty D.
Senior University Lecturer, Computer Science (1999)
M.S., New Jersey Institute of Technology, 1999
B.A., Yeshiva University, 1956

Lanzerotti, Louis J
Research Professor Center for Solar Research (2003)
Ph.D. Physics, Harvard University, 1965
M.A. Physics, Harvard University, 1963
B.S. Physics, University of Illinois Engineering, 1960

Levkov, Serhiy P.
University Lecturer, Electrical and Computer Engineering (1995)
Ph.D., Kyiv Polytechnic Institute, 1992
Diploma, Ukrainian Academy, 1976

Li, Ying
Research Professor Bio-Medical Engineering (2018)
Ph.D. Shanghai Institute of Physiology, 1999
Other M.D, Yanbian Medical College, 1991

Lin, Lin
Senior University Lecturer, Information System (2012)
Ph.D.

Lipuma, James M.
Senior University Lecturer, Humanities (1996)
Ph.D., New Jersey Institute of Technology, 2001
M.S., New Jersey Institute of Technology, 1996
B.S., Stanford University, 1992

Liu, Chang
Research Professor of Physics (2007)
Ph.D.

Livingstone, Victoria J.
Associate Director of Humanities

Lubliner, David J.
Senior University Lecturer, Engineering Technology (2005)
M.S., New Jersey Institute of Technology, 1981
M.S., New Jersey Institute of Technology, 1977
B.S., Ramapo State College, 1974

Mahmood, Sirag
University Lecturer

Maljian, Libarid A.
University Lecturer, Physics (2002)
M.S., Rutgers University, 2002
B.S., Rutgers University, 1995

Mani, Balraj Subra
University Lecturer, Mechanical and Industrial Engineering (2009)
M.S., University of Texas-Austin, 1982
B.S. Mechanical Engineering, University of Madras, India, 1967

Mani, Kumar
Professor of Practice of Computer Science (2016)
MBA Finance and Strategy, Columbia University in the City of New York
M.S. Computer Science, Columbia University in the City of New York
B.S. Computer Engineering, New Jersey Institute of Technology

Mantilla, Bruno Antonio
University Lecturer, Biomedical Engineering (2002)
M.S., New Jersey Institute of Technology, 2002
B.S., University of Bogota, 1980

Manzhura, Oksana Yu
University Lecturer, Electrical and Computer Engineering (2013)

Michal, Matthew P.
University Lecturer, Mathematical Sciences (2016)

Michal Rydchowski,
Professor of Practice

Milano, Geraldine
Senior University Lecturer, Civil and Environmental Engineering (1985)

Molodetsky, Irina
Senior University Lecturer, Biological and Pharmaceutical Engineering (2017)
Ph.D. Thermodynamics and Solid State Chemistry, Princeton University, 1999
M.S. Physics, Chemical Physics, Odessa State University, 1985

Momenihaeri, Mohammadreza
University Lecturer, Chemistry & Environmental Science (2019)
Ph.D. in Theoretical and Computational Chemistry, University of Alberta, 2015
M.S. in Computational Organic Chemistry, Tarbiat Modares University, 2011
B.S. / Chemistry, University of Kashan, 2006

Moon, Swapnil
University Lecturer, Mechanical and Industrial Engineering (2016)
Ph.D. Mechanical Engineering, New Jersey Institute of Technology, 2014
M.S. Mechanical Engineering, New Jersey Institute of Technology, 2009
B.S. Mechanical Engineering, Nagpur University, 2005

Natarajan, Padma
University Lecturer, Mathematical Sciences (2011)

Navin, Thomas R.
Senior University Lecturer, Architecture and Design (1987)
M. Arch., University of Virginia-Main Campus, 1979
B.F.A., Rhode Island School of Design, 1975

Nersesian, Eric W.
University Lecturer, Information Technology (2016)
M.S. Information Systems, New Jersey Institute of Technology
B.A. Economics, Rutgers University-New Brunswick

Nicholson, Theodore L.
Senior University Lecturer, Computer Science (1998)
J.D., Syracuse University College of Law, 1990
B.A., New York University, 1987

Nita, Gelu M.
Research Professor, Center for Solar Research (2003)
Ph.D., New Jersey Institute of Technology, 2004
B.S., University of Bucharest, 1987

Obuskovic, Gordana
Program Director of Chemical and Mechanical Engineering

Rudna, Olena
Senior University Lecturer
Ph.D., Management, Rutgers, 2021
M.B.A., Fairleigh Dickinson University, 2013
Mini-MBA in Management, Rutgers, 2009
BS in Library Science, State Academy of Culture, 2002

Omran, Ahmed
Professor of Practice of Engineering Technology (2019)
 Ph.D., Civil Engineering, University of Sherbrooke, 2009
 M.E., Structural Engineering - Strength and Testing of Materials, University of Menoufia, 2003
 B.S., Civil Engineering, University of Menoufia, 1999

Onat, Drew D.
Assistant Director of Undergraduate Studies, Department of Biomedical Engineering

Ogorzalek, Thomas
University Lecturer, Architecture and Design (2004)

Ophir, Zohar
Research Professor of Biomedical Engineering (2001)
 Ph.D.

Opyrchal, Halina
Senior University Lecturer, Physics (1993)
 Ph.D., Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 1976
 M.S., Polytechnic University, Poland, 1969

O’Sullivan, William
University Lecturer, Humanities (1991)
 M.A., City College of New York, 1995
 B.A., CUNY Brooklyn College, 1967

Pacheco, Carlos N.
Senior University Lecturer, Chemistry & Environmental Science (2019)
 Ph.D. Chemistry, University of Rhode Island, 1996
 M.S. Chemical Engineering, Federal University of Rio de Janeiro, 1986
 B.Sc. Chemical Engineering, Federal University of Rio de Janeiro, 1983

Pardi, Nina L.
Senior University Lecturer, Humanities (1989)
 M.A., Kean College, 1986
 A.B., Bucknell University, 1961

Paris, Jerome
Director of Humanities (1982)
 Ph.D., Cornell University, 1972
 M.A., Columbia University in the City of New York, 1979
 M.A., Johns Hopkins University, 1965
 B.A., Reed College, 1964

Penalba Estebanez, Ana
University Lecturer of Architecture (2020)
 M.S. Environmental Studies and Bioclimatic Architecture, Polytechnic University of Madrid at the School of Architecture, 2007
 M.Arch. Architecture, Polytechnic University of Madrid at the School of Architecture, 2006
 B.Arch. Architecture, Polytechnic University of Madrid at the School of Architecture, 2006

Petrova, Roumiana S.
Senior University Lecturer, Chemistry and Environmental Science (1994)
 Ph.D., Bulgarian Academy of Sciences, 1993
 M.S., Chemical Technical Institute, Bulgaria, 1976

Phillips, Vanessa
University Lecturer Humanities (2019)
 M.A. English, Montclair State University, 2014
 B.F.A. Art Education, University of Arizona, 2006

Platek, Slawomir
Senior University Lecturer, Physics (1994)
Ph.D., Rutgers University, 1994
B.S., New Jersey Institute of Technology, 1988

Pimentel Cavaleiro, Marta Sofia
Senior University Lecturer, Management
B.S., University of Coimbra, Mathematics, 2010
M.S., University of Coimbra, Applied Mathematics, 2011
Ph.D., Rutgers University-New Brunswick, Operations Research, 2020

Pole, Andrew
Senior University Lecturer of Mathematical Sciences (2011)

Polyakov, Yuriy S.
Associate Research Professor of Computer Science (2016)
Ph.D. Chemical and Environmental Engineering, Moscow State University, 2004
M.S. Computer Science, New Jersey Institute of Technology, 2003
B.S. Computer Information Systems, SUNY, 2002

Porus, Jonathan J.
Director of Mathematics Tutoring

Potocki-Dul, Magdallena M.
University Lecturer, Mathematical Sciences (2012)

Qerimaj, Jertishta
University Lecturer of Computer Science (2019)
M.S. Computer Science, New Jersey Institute of Technology, 2002
B.S. Computer Science, New Jersey Institute of Technology, 2001

Rabie, Mohammad A.
University Lecturer, Engineering Technology (2014)

Rahman, Sahidur
University Lecturer, Engineering Technology (2010)
Ph.D. Mechanical Engineering, New Jersey Institute of Technology
M.S. Mechanical Engineering, New Jersey Institute of Technology
B.S. Mechanical Engineering, Regional Engineering College, India

Raj, Ratna
University Lecturer, Electrical and Computer Engineering (2014)
Master of Technology Power Electronics and Electrical Machines/Drives, Indian Institute of Technology, 1996
B.E. Electrical Engineering, BIT, 1992

Riismandel, Kyle
Senior University Lecturer, History (2012)
Ph.D.

Rittenhouse, Michele R.
Producer and Creative Director, Humanities (1974)

Ratnaswamy, Jeyakumaran
Senior University Lecturer
Ro, Je Hyun
University Lecturer, Mathematical Sciences (2017)
M.S. Pure Mathematics, CUNY City College, 2014
B.A. Education, Hanyang University, 2003

Roman, Max
Director of Bio-Medical Engineering MS Program

Rutkowski, Wallace
Senior University Lecturer, Computer Science (2000)
Ph.D., University of Maryland, 1981
M.S., Stevens Institute of Technology, 1974
B.S., Stevens Institute of Technology, 1974

Ryan, Gerard W.
Senior University Lecturer, Computer Science (2012)

Ryduchowski, Michal
Professor of Practice

Samardzic, Veljko
University Lecturer, Mechanical and Industrial Engineering (2012)
Ph.D.

Santos, Stephanie R
University Lecturer, Civil and Environmental Engineering (2012)

Schesser, Joel
Senior University Lecturer, Biomedical Engineering (2004)
Ph.D., City University of New York, 1978
M.E., City University of New York, 1971
B.E., City University of New York, 1968

Schmidt, Donivyn C.
University Lecturer, Mathematical Sciences (2017)
M.S. Applied Mathematics, New Jersey Institute of Technology, 2014
B.A. Mathematics, William Paterson University of New Jersey, 2009

Schoenitz, Mirko
Associate Research Professor of Chemical and Materials Engineering (2001)
Ph.D., Princeton University, 2001
M.A., Princeton University, 1997
Diploma, RWTH Aachen, 1995

See, Adam
University Lecturer of Humanities (2019)
Ph.D., Philosophy, CUNY Graduate School and University Center, 2019
M.A., Philosophy and Humanities, Columbia University in the City of New York, 2010
B.A., Philosophy and English, University of Guelph, 2008

Senesy, Stanley J.
Senior University Lecturer, Information Technology (2001)
M.S., New Jersey Institute of Technology, 2000
B.A., McKendree College, 1994

Sequeira, Marc T.
University Lecturer, Information Technology (2002)
B.S., New Jersey Institute of Technology, 2002

Shen, Yao
University Lecturer Computer Science (2019)
Ph.D. Computational Chemistry, University of Notre Dame, 2011
M.S. Computer Science and Engineering, University of Notre Dame, 2011
B.S. Interdisciplinary training in Mathematics, Physics and Biology, Nanjing University, DII, 2004

Shneidman, Vitaly A.
Senior University Lecturer, Physics (1999)
Ph.D., Physico-Technological Institute of Metals and Alloys, 1987
M.S., Kharkov State University, 1979
B.S., Kharkov State University, 1977

Siemann, Catherine A.
University Lecturer, Humanities (2014)
Ph.D. English and Comparative Literature, Columbia University in the City of New York, 2008
J.D., New York University, 1988
B.A. English Literature, SUNY at Binghamton, 1983

Sieminska, Katarzyna M.
University Lecturer Mathematical Sciences (2012)
M.S. Statistics, Montclair State University, 2009
B.S. Mathematics, Montclair State University, 2007

Skotak, Maciej
Assistant Research Professor of Biomedical Engineering (2013)
Ph.D. Chemistry, Institute of Physical Chemistry, 2004
M.A. Chemistry, University of Podlasie, 1999

Slovis, Jake R.
Senior University Lecturer

Sodhi, Jaskirat S.
University Lecturer, Mechanical and Industrial Engineering (2014)
Ph.D. Mechanical Engineering, New Jersey Institute of Technology
B.S. Aeronautical Engineering, Punjab University

Soto Chavez, Angel R.
Assistant Research Professor, Center for Solar Research (2015)
Ph.D. Physics, The University of Texas at Austin, 2010
Diploma High Energy Physics, ICTP, 2003
B.S. Electrical Engineering, Universidad de San Carlos de Guatemala, 2001

Spirollari, Junilda
Senior University Lecturer, Computer Science (2007)
M.S., New Jersey Institute of Technology, 2003
B.S., New Jersey Institute of Technology, 2002

Stanko, Maria L.
Senior University Lecturer, Federated Biology (2010)
Ph.D.

Statica, Robert
Senior University Lecturer, Information Technology (1998)
M.S., New Jersey Institute of Technology, 2000
B.S., New Jersey Institute of Technology, 1996

Steele, Timothy W.
University Lecturer, Electrical and Computer Engineering (2012)

Surjanhata, Herli
Senior University Lecturer, Mechanical and Industrial Engineering (1988)
M.S., New Jersey Institute of Technology, 1984
B.S., Triskati University, 1976

Taher, Rima
Senior University Lecturer, Architecture and Design (1989)
Ph.D., Ecole Nationale des Ponts et Chaussées, 1986
M.S., Ecole Nationale des Ponts et Chaussées, 1983
B.S., Institut National des Sciences Appliquées de Lyon, 1982

Tamke, William R.
Senior University Lecturer (2016)
MBA Marketing, Rutgers University
MBA Finance, Rutgers University
B.S. Mathematics, St Peter's University

Thomson, Susan E.
Senior University Lecturer, Computer Science (2017)
Ph.D. Computer Science, University of Cambridge
M.S. Computer Science, University of Witwatersrand
B.S. Computer Science, University of Witwatersrand

Toegel, Matthew
University Lecturer Informatics (2019)
M.S. Information Systems, New Jersey Institute of Technology, 2014
B.S. Information Technology, New Jersey Institute of Technology, 2013

Tolboom, Ryan
University Lecturer Informatics (2019)
M.S. Computer Science, New Jersey Institute of Technology, 2019
B.S. Computer Science, New Jersey Institute of Technology, 2004

Tyrol, Katherine A
Senior University Lecturer

Vaish, Prabhat K
Senior University Lecturer

Varadarajan, Ravi
Professor of Practice Computer Science (2020)
Ph.D. Computer Science, University of Pennsylvania, 1987
M.S. Industrial Engineering, The University of Texas at Arlington, 1979
B.E. University of Madras, 1978

Varsik, John R.
Research Professor of Physics (1997)
Ph.D., University of Hawaii, 1987
M.S., University of Hawaii, 1981
B.S., Stanford University, 1979

Ward, Peter J.
University Lecturer, Mathematical Sciences (2017)
M.S. Mathematics, Ohio State University, 2012
B.A. Mathematics, Rutgers University, 2010

Watrous-deVersterre, Lori L.
Senior University Lecturer, Information Technology (2010)

Wells, Louis A.
University Lecturer, Humanities (2010)
M.F.A. Directing, Rutgers University, Mason Gross School of Arts, 2005
B.F.A. Acting, University of Central Missouri, 1998

Wendell, Augustus E.
University Lecturer, Architecture and Design (2009)

Wiggins, John
Senior University Lecturer, Engineering Technology (1993)

Williams, Keith A.
University Lecturer, Information System (2007)

Wolf, John M.
University Lecturer, Humanities (2012)
Ph.D.

Zhang, Xi
Senior University Lecturer, Management
Ph.D., Business Data Science, NJIT, 2022
M.B.A., NJIT, 2014
B.S. Economics, Xiamen University, 2012

Xu, Yan
Research Professor of Physics (2008)
Ph.D.

Yarotsky, John J.
University Lecturer, Federated Biology (2014)

Yurchyshyn, Vasyl
Research Professor of Physics (1998)
Ph.D., Main Astronomical Observatory, Kiev, Ukraine, 1998
M.A., L'viv Ivan Franko State University

Zaleski, Joseph
University Lecturer, Mathematical Sciences (1989)
M.S., New Jersey Institute of Technology, 1990
B.S., Rutgers University, 1982
Graduate Catalog

Graduate programs (https://www.njit.edu/graduatestudies/degree-programs/) are available to full-time students, or working professionals who are interested in part-time study. Many programs are also offered online (https://www.njit.edu/online/).

More than 3,000 students from across the country and around the world are engaged in graduate study each year at NJIT. NJIT currently offers about 50 master's degree programs, 19 doctoral degree programs, and dozens of graduate certificate (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/) programs in a wide range of technological specialties through the following colleges and schools:

- Newark College of Engineering (p. 394)
- Hillier College of Architecture and Design (p. 142)
- College of Science and Liberal Arts (p. 265)
- Martin Tuchman School of Management (p. 583)
- Ying Wu College of Computing (p. 179)

NJIT also offers the following program options:

- Accelerated programs where some courses double count toward two degrees
 - BS-MS & BS-PhD program options (p. 106)
 - MS-MS & MS-MBA program options (p. 106)
- Collaborative doctorate program (p. 141) (for working professionals)

Professional options (https://www.njit.edu/graduatestudies/degree-programs/) are also available in some master's degree programs. Some of these options are affiliated with the PSM (Professional Science Master's) National Office.

Academic Policies and Procedures

The academic calendar lists the dates classes begin and end, dates on which the university is closed for holidays, deadline dates for registration and withdrawal and other dates of interest to the academic community. It may also be accessed at https://www.njit.edu/registrar/calendars/.

Registration for Courses at NJIT

Registration is required each semester (after receiving advice from the academic advisor in the student's academic program). The Registrar's office is located in the Student Mall, on the ground floor of the parking deck. NJIT has an advance self-registration system that obligates all students currently enrolled in graduate degree programs to register in advance for their courses. All admitted students register online via the Registrar's website at www.njit.edu/registrar/ (http://www.njit.edu/registrar/).

Currently Enrolled Students

Currently enrolled students are informed of registration procedures for the fall and spring semesters by the Office of the Registrar during April and October, respectively, and must then register during the advance registration period. Instructions for the summer session are provided separately and mailed to students. Priority registration is provided to Veteran and service member students. Please contact the Office of Military/Veteran Students to confirm eligibility.

New and Readmitted Students

The Office of University Admissions informs prospective and readmitted students of registration procedures.

International Students

New international students are only permitted to register after attending the required international student orientation program. International students who register appropriately for full-time study will be reported in the Student and Exchange Visitor Information System (SEVIS) administered by the U.S. Immigration and Customs Enforcement Agency.

Non-Matriculated Students

Non-matriculated students should contact the Office of University Admissions for details of admission and registration procedures at least one month before the date of intended enrollment.

Non-Matriculated Studies of NJIT Alumni

NJIT students awarded a degree in Fall 2020 or later, including students previously approved for program acceleration, can register within seven years after graduation as non-matriculated students to take up to two graduate courses without paying an application fee or having their academic record evaluated as long as these courses are in the same discipline with their prior degree and they satisfy course prerequisite requirements. This policy
applies to alumni having upon graduation a minimum CGPA of 2.8 for their undergraduate, 3.3 for their master’s or certificate, or 3.5 for their Ph.D. studies at NJIT.

Approval of Initial Registration

Students are required to arrange a conference with their graduate advisor, as soon as possible after notification of admission, to formulate a course of study that meets the requirements of the particular degree program, and reflects the interests and aspirations of the individual student. New students are required to obtain advisor approval for initial course registration. Graduate advisors are normally available for new international students during the international student orientation program.

Auditing a Course

Students who wish to audit a course must state their intention to do so at the time of registration. Change in auditing status is not permitted once a semester has begun. Students who audit are required to pay full tuition and fees for the course. Financial awards are not applicable to audited courses. Audited courses are not counted in determining full-time status. Students on probation are not permitted to audit. Students who wish to attend a course must have an authorized reason for attendance and a registration in that course (regular or audit) and cannot merely “sit in” at their own discretion.

Policy on Midterm and Final Exams

NJIT policy requires that all midterm and final exams must be proctored, regardless of delivery mode, in order to increase academic integrity. Note that this does not apply to essay or authentic based assessments. Effective beginning Fall semester 2019, students registered for a fully online course section (e.g., online or Hyflex mode) must be given the option to take their exam in a completely online format, with appropriate proctoring.

Undergraduate Registration in Graduate Courses

Matriculated undergraduate students may register for graduate courses only in the final two semesters of their anticipated undergraduate degree completion, unless they are pursuing an accelerated baccalaureate/graduate dual degree program. Specifics are given in the below.

Undergraduate Registration in Graduate Courses as part of a Baccalaureate/Master’s or Baccalaureate/PhD accelerated dual degree program

Undergraduate students who wish to take graduate level courses as part of a Baccalaureate/Master’s or Baccalaureate/PhD accelerated dual degree program must formally apply through the Office of Admissions into one of the B.S./M.S., B.S./M.B.A., B.S./M.I.P., B.S./M.A.R, B.Arch./M.S., B.Arch./M.Arch., B.A./M.S., B.A./M.A., or B.S./Ph.D. Admission into an accelerated dual degree program is required before a student can enroll for a graduate course to be used as part of the program. If a student, admitted into an accelerated dual degree program, takes a graduate course as per the accepted application into the program and passes it with a grade of B or better, then the course applies towards both the undergraduate and graduate degree requirements. If a student admitted into an accelerated dual program takes a graduate course and passes it with a grade lower than B, then the course counts only towards fulfillment of the undergraduate degree requirements; this course – if required in the graduate program – will have to be repeated when the student is formally admitted to the graduate program.

Students enrolled in a baccalaureate/masters or baccalaureate/PhD accelerated dual degree program are billed at the undergraduate tuition rate for the classes allowed to fulfill accelerated dual degree requirements, irrespective of the grade received for the course. Graduate tuition rates will apply for additional graduate courses taken before completion of the undergraduate degree requirements. A graduate course cannot be repeated before the student completes the undergraduate degree requirements.

Once admitted into an accelerated dual degree program students must maintain a minimum cumulative GPA of either 3.0 (for BS/MS and all variations) or 3.5 (for BS/PhD and all variations) and achieve a grade of B or better in all graduate courses taken; failure to meet the foregoing conditions leads to the students losing admission into the dual program and they continue pursuing their undergraduate degree only. Additional provisions for the various accelerated dual degrees are given in the below.

Students admitted in accelerated dual degree programs still need to apply separately at a later time to get formal admission into the respective graduate program. Graduate courses are valid for up to seven years after having taken them as an undergraduate student in an accelerated dual degree program. For admission to the graduate program, the NJIT GER or GMAT requirements must be met as well.

BS/MS and BA/MA Criteria:

• Cumulative GPA of 3.0 or better for taking up to two courses in the BA/MA or BS/MS program
• Cumulative GPA of 3.5 or better for taking up to three courses in the BA/MA or BS/MS program

Before admission into an accelerated dual program, students must have at least junior standing or at least two full time semesters (24 credits) left before graduation, and at least five (5) major courses in the baccalaureate program completed.
BArch/MS and BS/MBA Criteria:

- Cumulative GPA of 3.0 or better for taking up to four courses in the BArch/MS or BS/MBA program

Before admission into an accelerated dual program, students must have at least junior standing or at least two full time semesters (24 credits) left before graduation, and at least five (5) major courses in the baccalaureate program completed.

BS/PhD and BA/PhD Criteria:

- Cumulative GPA of 3.5 or better for taking up to four courses in the BS/PhD or BA/PhD program
- Students must meet with the Vice Provost for Graduate Studies (go to the Contact Us (https://www.njit.edu/graduatestudies/contact.php) page to request an appointment) after receiving approval from the PhD academic advisor.

Before admission into a BS/PhD or BA/PhD program, students must have at least junior standing or at least two full time semesters (24 credits) left before graduation, and at least five (5) major courses in the baccalaureate program completed.

Accelerated dual degree program students who wish to take 500-level courses (500-G for Architecture) or 600-level courses must obtain written approval of the graduate advisor for the program that offers the course, their undergraduate advisor, and the Vice Provost for Graduate Studies via submission an UNDERGRADUATE STUDENTS TAKING GRADUATE COURSES AS PART OF A JOINT DEGREE (https://www.njit.edu/registrar/sites/njit.edu.registrar/files/lcms/forms/pdf/Approval%20for%20BSMS%20Courses_2020.pdf) form.

Undergraduates are not permitted to take 700-level courses, except in rare cases requiring explicit approval with justification from the Vice Provost for Graduate Studies.

The courses taken as part of an accelerated dual program will be considered as undergraduate credits for billing and financial aid purposes.

Undergraduate Registration in Graduate Courses (not part of a joint Baccalaureate/Master’s or Baccalaureate/PhD accelerated dual degree program)

Undergraduate (not in an accelerated dual program) students in the final two semesters of their anticipated degree completion may opt to take up to three graduate courses, provided their cumulative GPA is at least 2.8. Successful completion of these graduate courses will not count towards their undergraduate degree requirements, will be billed at the graduate tuition rate, and cannot be covered by either an undergraduate scholarship award or financial aid.

Permission to take graduate credits as an undergraduate student cannot be viewed as guaranteeing admission into the graduate program. A student (not in an accelerated dual program) is allowed to take only a maximum of nine graduate credits (3 courses) before completion of their undergraduate degree.

Undergraduate students in an accelerated dual degree program, who have successfully completed the graduate courses allowed to be counted towards both their undergraduate and graduate degree, may in the last semester of their anticipated baccalaureate graduate degree completion take up to three additional graduate courses. Successful completion of these additional graduate courses will not count towards their undergraduate degree requirements, will be billed at the graduate tuition rate, and cannot be covered by either an undergraduate scholarship award or financial aid. Before completion of the undergraduate portion of their dual degree, students cannot take more than three graduate courses beyond what their accelerated dual degree program allows for.

Undergraduate students should be aware that need-based financial aid may not be sustainable for registration in graduate courses.

Graduate Registration in Undergraduate Courses

To improve their background, graduate students may be asked by their advisor to register in undergraduate bridge courses before they start taking graduate courses. These courses do not count toward the required credits in their program of study. Enrollment in other undergraduate courses requires the approval of the graduate advisor, and the undergraduate department offering the course. Tuition for these courses is assessed at the graduate rate. Grades will follow the undergraduate grading system.

Multiple Program Registrations

A student cannot be matriculated in more than one degree program at a time. This also applies to programs run cooperatively with Rutgers-Newark and RBHS. Currently enrolled graduate students who wish to enroll in a subsequent graduate degree program should not file an application for admission to the new program until they are in the final semester of their initial program.
Policies for Online Courses

In any given semester, there are two types of online courses, Virtual Campus and Newark Campus:

- Enrollment in Virtual Campus courses is restricted to Virtual Campus students.
- Enrollment in Newark Campus online courses is restricted to Newark Campus students.

Virtual Campus Online Courses

Enrollment in Virtual Campus courses is restricted to Virtual Campus students. Virtual Campus students are those who are accepted, at the time of admission, to a fully online program (the program is what matters, not whether a student has been taking all online courses).

Virtual Campus students (in-state, out-of-state, international attending from abroad) are eligible for eTuition provided that all of their courses, in a given semester, are offered online through the Virtual Campus.

Virtual Campus students who wish to register for courses that are not part of the Virtual Campus will need to either:

1. Officially apply for a change of campus (this can only be completed once), or
2. Obtain special permission from the home department.

Please note that Virtual Campus students who take courses that are not part of the Virtual Campus, will lose their eligibility for eTuition for that semester and for all courses they take.

- For more information about NJIT’s online programs, please visit online.njit.edu (https://www.njit.edu/academics/degrees/#/?tab=degree°ree_offerings=online).
- Questions on changing campus should be addressed to the Registrar’s Office.

Newark Campus Online Courses

NJIT offers a number of online courses that can be taken by students who are normally enrolled in face-to-face courses offered on the main Newark campus. These online courses are identified as Newark Campus courses on the course schedule.

Newark Campus students are those who are accepted, at the time of admission, to a program that requires in-person attendance. Newark Campus students are not eligible to register for Virtual Campus courses.

Online courses that are identified as Newark Campus are not eligible for eTuition. eTuition is only available to Virtual Campus students.

International students who have been admitted to Newark Campus programs can take as many Newark Campus online courses as the federal policies allow for. The Office of Global Initiatives can be consulted about the allowed number.

Graduate Program Change

Graduate students are admitted to one degree program and not to the university as a whole. Master’s students who wish to change major must file the Graduate Change of Program Form. Interested students are expected to submit the program change form close to the end of the first semester in their current program. There is no guarantee or requirement that the program change will be approved. Those on financial support are liable to loss of support from the original department and cancellation of a current award. Program changes require the approval of two academic advisors (for the current and future programs). Also, international students may require approval of the Global Initiatives Office.

Ph.D. students cannot apply for program change using the aforementioned form. Ph.D. program changes must be approved by the Vice Provost of Graduate Studies who consults with the graduate advisors.

Adding Courses

Students who add a course to their program will be charged the full tuition and fee for the course added; however, the flat rate (12-19 credits) may still apply. All schedule changes are completed via Highlander Pipeline and a schedule change fee will be assessed during late registration as determined by the Registrar.

Students cannot receive credit for courses if they are not registered. Attendance in a class without proper registration for that class is not permitted.

Withdrawal from Courses

Students who wish to withdraw from one or more courses should first determine if the withdrawal would have an impact on their full-time status, financial support, immigration status, or academic standing and progress. They should consult with their advisor. Sometimes their advisor may contact the Office of Graduate Studies to appeal on their behalf (e.g., appeal for late withdrawal due to extenuating circumstances). International students must consult with the Global Initiatives Office because of the possible impact on their status reported in SEVIS. Withdrawals before the deadline set by the Registrar are completed through Highlander Pipeline. Failure to withdraw by the deadline will result in a final grade other than W.
Discontinued attendance, or verbal approval alone to withdraw, will not result in a W and most likely will instead result in an undesirable final grade, generally an F or U.

Withdrawing from courses does not necessarily lead to a refund and students should consult with their academic and financial aid advisor on the issue before they actually withdraw.

Detailed information on Withdrawal policies can be found at the following link:
https://www.njit.edu/registrar/registration/

Master's Project, Master's Thesis and Ph.D. Dissertation

Students should not register for master's project, master's thesis or Ph.D. dissertation credits until they arrange for a department or program-approved faculty advisor to supervise their work. Continued registration for additional thesis or dissertation credits within the overall time limits for completion may be allowed with approval of the academic and research advisors. A master's project registration is only for one semester and the incomplete (I) grade cannot be assigned. Credits for which a U (unsatisfactory) grade is given are not counted as degree credits toward completion of the thesis, project or dissertation. Master's project and master's thesis registration must be at least 3 credits during a semester. Summer session registration, if needed to allow completion for the August 31st degree date, must be at least 3 credits of project or thesis. A procedure is available to determine full-time academic status for master's students (https://www.njit.edu/graduatetudies/full-time-status-ms-students/).

Students who were already enrolled in the Ph.D. program before August 2015 must register for at least three credits of dissertation research each semester in order to accumulate 24 pre-doctoral and doctoral dissertation research credits (20 credits for YWCC students). A student may then register for one dissertation research credit each semester until graduation; a minimum of 36 credits in pre-doctoral and doctoral research courses is needed to meet degree program requirements. The required doctoral dissertation research credits for students who entered the Ph.D. program after August 2015 are based on program milestones. A procedure is available to determine full-time academic status for Ph.D. students (https://www.njit.edu/graduatetudies/full-time-status-phd-students/).

Maximum credit registration each semester is 12 credits for the doctoral dissertation (this large number of credits may be needed only for students with first Ph.D. program enrollment before Fall 2015), six credits for the master's thesis and three credits for the master's project. Additional credit registrations will require the approval of the Vice Provost for Graduate Studies. It is highly recommended that the Master's thesis registration be only three credits in a semester unless a single semester completion is anticipated.

With permission of their research advisor, in some MS programs students intending to do an MS thesis may first register in the 700B MS Project course; the curriculum of the academic program must explicitly show that this project-thesis combination is allowed. They must receive a satisfactory (S) grade in 700B before 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in 700B. (Thesis work undertaken by MS students in federated departments and joint programs with other universities are exempt from this policy.)

Once a student has begun master's thesis or doctoral dissertation work, the student must register for the respective courses each semester until the thesis or dissertation is completed. Unapproved interruptions in thesis or dissertation registrations are subject to billing for omitted credits.

Students must be registered in project, thesis or dissertation in any semester or summer session in which completion is expected. The Graduate Studies Office assigns the final grade of P in thesis/dissertation courses after receipt of all thesis/dissertation documents in final and approved form.

Approval by the graduate program advisor and the Office of Graduate Studies must be obtained if, for extenuating circumstances, the student wishes to interrupt the thesis, project or dissertation for a semester or more. Students may neither maintain registration, nor fail to register without notifying and getting approval from the graduate program advisor and the Office of Graduate Studies. If a master's project is not completed after two semesters of registration (with prior approval of the Graduate Studies Office to repeat the project course), a final grade of U is given. Failure to complete a master's project by students who received financial support to do the project may result in academic dismissal. The university complies with all state and federal laws related to military service.

Although up to two semesters of master's thesis registration is allowed, additional registration requires an appeal of the academic and research advisors to the Vice Provost for Graduate Studies. A similar appeal is also required if a master's thesis registration follows a master's project registration. However, no more than four semesters and two summers of registration in master's thesis (and project for programs allowing a project registration to be followed by a thesis registration) are permitted. Failure to complete a master's thesis within this period will result in a final grade of U and may result in academic dismissal.

No more than six years of registration for pre-doctoral and doctoral dissertation research is permitted. Failure to complete a doctoral dissertation in this period will result in a final grade of U and dismissal from the program.

All students must have the program advisor's approval and appropriate section identification each time they register for project, thesis, dissertation, pre-doctoral research, co-op, or Independent Study. Students must register within the deadlines established by the Registrar.
Continuous Registration Requirement, Programs

Once admitted to a degree program, students must be continuously registered for credit each semester until they complete all degree requirements, unless they have been approved for a leave of absence.

Continuous Registration Requirement, Thesis/Dissertation

Once a thesis or dissertation has begun, students must register in MS thesis or dissertation research each semester until completion. Maintaining registration is not permitted in place of a credit registration for thesis or dissertation work. The grade of I is not permitted for the MS thesis or doctoral dissertation courses.

Students who complete work for thesis or dissertation over several semesters receive a final grade in the semester in which the work is completed, and after approval of the final document by the Graduate Studies Office.

Discontinuance

Domestic students enrolled in graduate programs who find it necessary to temporarily discontinue their studies may either maintain registration, request a leave of absence, or voluntarily discontinue. A discontinuance form must be filed with the Office of Graduate Studies. International students may not discontinue studies without approval from the Office of Global Initiatives, but should seek approval for a leave of absence at which time maintaining registration may be authorized. PhD students may maintain registration only by permission of the Office of Graduate Studies. Students who have discontinued must follow procedures defined by the offices of University Admissions and Graduate Studies to resume their studies.

Leave of Absence

Ph.D. students who anticipate a protracted absence from the university may request a leave of absence from the Office of Graduate Studies. Students requesting a leave of absence for medical reasons will be required to consult with the Dean of Students office first. Leaves are granted for up to one year and may be extended for a second year. Leaves of absence are not counted toward the time limit in which the degree must be completed, but rules regarding expiration of credit do apply for course work, MS project, MS thesis and doctoral dissertation research. Ph.D. students returning on-time from an approved leave of absence are generally not required to apply for readmission, but are required to inform the Office of Graduate Studies on their return. International students may be required to apply for readmission and file new financial documents. They also are required to consult with their graduate advisor. The university complies with all state and federal laws related to military service.

To All Students, Advisors and Faculty

The university continues to make every effort to protect student’s academic and personal information. Moreover, maintaining the confidentiality of student’s medical information is a legal and ethical duty, as defined by federal and state laws and regulations, and by the courts. Whenever students have a personal situation that affects their academic standing, it should be brought to the Dean of Students. This includes medical or psychological documentation to support a student’s claim. Students should not bring such information to their instructors, nor should it be requested by a faculty member. The Dean of Students has staff to evaluate such information to verify its legitimacy. The Dean of Students will then notify the faculty member(s) if a student has a legitimate absence and will ask that the student receive consideration in making up any missed course work or exam. This process ensures student privacy and, just as important, consistency in dealing with such matters.

Readmission After Voluntary Discontinuance

Students who have voluntarily discontinued their studies without receiving a leave of absence, and who have not been dismissed from an NJIT graduate program, must apply for readmission to the Office of University Admissions by the application deadline. A non-refundable application fee must accompany applications. Applicants are subject to all probationary and unmet conditions in force at the time they discontinued their studies. Program requirements at the time of readmission will apply in addition to satisfaction of any prior unmet conditions.

Maintenance of Registration

Students enrolled in a degree program who find it necessary to temporarily discontinue their studies are permitted to maintain registration with approvals as noted above, for a fee for each semester they do not register. Master’s students may maintain registration for a maximum of two consecutive semesters per leave. Ph.D. students may maintain registration for up to four semesters (consecutive or not) with appropriate justification. Registration holds are placed on students who reach or exceed these limits. Continuation of financial support for Ph.D. students after their return from maintaining registration is not guaranteed so they should contact their department before deciding to maintain registration. Students working on a MS project, MS thesis or doctoral dissertation are generally not permitted to register for maintaining registration. International students on F-1 and J-1 visa status may not maintain registration unless they have obtained prior written permission from the Office of Global Initiatives.

Students who maintain registration are mailed registration notices for the following semester and are not required to apply for readmission. After receiving approval to maintain registration, students must register for “Maintaining Registration” on the course registration website.

Each semester in which registration is officially maintained is not counted in the total time period allotted to complete degree requirements.
Responsibility for Registration
NJIT emails notices in advance, but cannot guarantee delivery. Regardless, students are expected to obtain all necessary information and comply with all registration procedures on time.

Scheduling of Classes
Graduate courses are, in general, scheduled for late afternoon and evening hours. Special programs, such as the Executive Management and some online programs, have their own schedules.

Course Cancellations
The university does not guarantee offering all or any of the courses listed in this catalog. When there is inadequate registration, a course may be canceled without notice. The Registrar will attempt to notify all students of course cancellations before the first meeting of the semester.

Room Changes
Room and laboratory changes are in the online schedule maintained by the Registrar via Highlander Pipeline.

Courses Taken at Other Colleges

Cross-Registration Procedures
Students may take courses at Rutgers-Newark provided that the:

- Course is used toward a degree.
- Course is not offered at NJIT, or, because of a conflict in schedule, cannot be taken at NJIT.
- Approval is obtained, in advance, from the student’s advisor.
- Approved cross-registration form is submitted by the student to the host school. The course must also be included on the NJIT registration form.

Students in joint programs should register at the school that admitted them to their current degree program. Students from Rutgers-Newark must be matriculated in graduate programs at their home institution to cross-register for NJIT courses. Students from Rutgers-Newark who cross-register into NJIT are considered NJIT non-matriculated students and are therefore limited to 9 credits maximum. In order to take more than 9 credits, these students would have to apply and be admitted as matriculated students for an NJIT graduate degree program.

Summer course registration procedures, and inclusion of courses on NJIT transcripts for students wishing to take courses at Rutgers-Newark, are determined by the Transfer of Credits policy outlined below. In general, cross-registration cannot occur for summer sessions.

Registration at Another College
To take graduate courses at colleges other than those in the cross-registration program or during the summer sessions at Rutgers-Newark, students must obtain prior approval from their advisor and the Office of Graduate Studies. Students should review the section on “Transfer of Credits” if they wish to transfer these courses to an NJIT program. Tuition remission from NJIT is not available for courses taken at educational institutions not participating in NJIT’s cross-registration program.

Transfer of Credits
Transfer credits are calculated by NJIT according to the total number of instructional minutes earned at the other institution. The equivalent instructional minutes of a maximum of 9 credits of graduate work, taken within seven years, from accredited US educational institutions may be transferred and applied to degree requirements at NJIT. Credits from educational institutions outside the United States (except Canada) cannot be transferred as individual courses. In limited situations, assessment of a student’s prior learning may allow the transfer of up to six graduate credits in specific master-level programs as credits by examination (CBE) or credits by portfolio assessment (CBP). Approval by the pertinent Dean (in consultation with the program director) is needed. CBE/CBP and courses transferred from other universities cannot account for more than nine credits total. Rigorous credit-by-exam (CBE) or credit-by-portfolio (CBP) administered by the student’s academic program assesses knowledge acquired professionally or through non-credit professional development courses. The transferred course(s) will not affect the student’s CGPA. The corresponding college dean will provide oversight of the CBE/CBP process to ensure consistency and integrity of the assessment process and criteria. CBP applies only to MTSM. A fee is charged for CBE/CBP examinations/assessment.

Groups of courses may sometimes be accepted as a block of credits toward some types of programs. Subject to specific MBA program conditions, an equivalent block of 12 credits can be accepted from a graduate degree previously awarded by a US AACSB accredited management program or internationally from a program accredited by AACSB or an AACSB-affiliated accrediting agency. For the MBA program, the proposed block must be based on courses with grades of B or better and on courses with equivalent credit values of 3 or more credits. Subject to approval, up to 15 credits from a previously completed NJIT MBA can be applied toward the completion of the 30-credit MS in Management program.
Credits are transferred only if the courses were taken for full academic credit, were never applied to any other degree, and a final grade of at least B (3.0 GPA equivalent) was attained. In addition, the student's graduate advisor and the Office of Graduate Studies must agree that such courses directly relate to the student's program of study at NJIT before they can be transferred.

Requests for transfer credit must be submitted on a form available from the Office of Graduate Studies, accompanied by course descriptions from the other educational institution. Students must also arrange for the other institution to send an official transcript to the Office of Graduate Studies at NJIT. Requests may be submitted and approved at any time but are not added to a student's record until matriculation is granted and one semester completed. Grades that are transferred will not be calculated in cumulative GPAs.

Transfer of Credits Within NJIT

A student may transfer credits from one program to another program within NJIT under certain circumstances. This type of transfer requires consultation with the Office of Graduate Studies but does not require completion of a transfer credit form or submittal of NJIT transcripts. All graduate credits taken at NJIT, regardless of the major, appear on a general transcript.

Responsible Conduct of Research (RCR) course

INTD 799, the 0-credit RCR course, must be taken by all PhD students in their first year of studies. Master's students registering for the first time in Master's Thesis (commonly a 701B or 701C course) or Master’s Project (commonly a 700B course) must take simultaneously this RCR course. Students learn in this online course how to maintain high standards in professional integrity and ethics while working on research projects. The course focuses on such topics as conflict of interest, research and ethics, plagiarism, reproducibility of results, research misconduct, authorship, and data management. To receive the satisfactory (S) grade, a student must be awarded the course completion certificate.

Academic Standing

Enrollment Status

Students registered for 9 credits or more in a semester are considered full-time. Also, PhD students and MS students completing an MS thesis may be considered full-time under certain conditions. Please, contact the Graduate Studies Office or visit its website (https://www.njit.edu/graduatestudies/full-time-status-ms-students/) for further details. International students must be in full-time status every semester. The Office of Global Initiatives will report, in SEVIS, international students who meet the full-time definition under F-1 regulation 8CFR 214(f)(6). Any international students unsure of their status should contact the office at 973-596-2451 or e-mail to global@njit.edu. Students who are not registered for 9 credits and do not meet the conditions for full-time certification are considered part-time.

Full-time Certification

The Office of Graduate Studies may certify students as full-time even if they are not registered for 9 credits, under any of the following circumstances:

- If a master's thesis registration is included in a prior semester, an additional semester (maximum of two semesters) with only a master's thesis registration is acceptable. The student must be in good academic standing.
- Students have fewer than 9 credits remaining for completion of all degree requirements and are registered for all credits needed to complete the degree. This certification can only be given for one semester.
- Doctoral candidates who completed all required course work and meet the minimum dissertation registration requirements as per NJIT's outlined policy (see below).
- Students originally registered for 9 credits but have substantial extenuating circumstances that require a reduction in course load. Normally this certification applies only in cases of medical or similar emergencies that incapacitate a student for a significant part of a semester. Improper course registration, failure to seek proper advisement, inadequate academic progress, or risk of earning a weak or failing grade are not extenuating circumstances. Inability of an international student who had earlier filed a financial attestation to pay tuition and fees, is also not an extenuating circumstance.
- Students on a full-time cooperative education assignment are registered in a graduate co-op work experience or equivalent course. The Office of Graduate Studies should be consulted for limits on cooperative education because cooperative education has an influence on full-time certification and allowable time to complete the degree.
- Audited courses and withdrawn courses do not count toward full-time status; ESL (English as a Second Language) courses may not count as one course each.

Half-time Students

For federal, financial aid, and other reporting purposes, half-time graduate student status may be defined for students registered for 6 credits or fewer during a semester. Contact the Office of Graduate Studies for more information.

Grades

The following grades are used for graduate courses:
Grad Grades

(Unlike undergraduate courses, there is no D grade for graduate courses. Assigned grades must be consistent with the level of the course and not the matriculation level of the student in the course. Grades used in GPA calculations (A, B+, B, C+, C, and F) are not to be used as grades for dissertation research (790), pre-doctoral research (792), master's thesis, 0, 1/2, and 1 credit seminars, co-op, teaching methods, and ESL courses. Incompletes are not assignable for these courses with the exception of co-op as described later.)

Grades in MS Project, MS Thesis and Doctoral Dissertation

Grades for these courses are S or U until completion. Students who do not complete a thesis or dissertation in a semester, regardless of accumulated credits, must register again for 3 credits of thesis, or at least 1 credit of dissertation (per program requirements) in the following semester.

Effective Fall 2020, the allowable grades in the 700B MS Project are S or U (for federated departments and joint programs with other universities, the allowed MS Project grades may differ).

The final grade for a completed and approved thesis or dissertation is P. Thesis and dissertation work requires a successful defense before a thesis or dissertation committee as well as submission of the final thesis or dissertation documents to the Office of Graduate Studies, after which the P is assigned by the Graduate Studies Office.

Semester and cumulative GPA calculations by the Registrar only include courses for which a letter grade is given. Letter grades cannot be given for work not submitted. Receipt of two U grades for project, thesis, dissertation, or pre-doctoral research can result in dismissal from the program.

Special Topics

Regular letter grades are assigned for special topics courses.

Independent Study

Regular letter grades are assigned for Independent Study (normally numbered 725 and 726) courses.

Incomplete

A grade of I (Incomplete) is given when courses cannot be completed because of special circumstances. Students on academic probation are not permitted a grade of Incomplete without permission from the Office of Graduate Studies. Required course work may be finished at the discretion of the instructor, no later than the end of the subsequent semester. Receipt of an I does not require or suggest attendance in the course in the following semester. A letter grade must be assigned by then or a grade of F will be automatically assigned. Students nominated for financial awards must have I grades resolved by the fourth week of the subsequent semester to allow a determination of their eligibility for the award. The new grade cannot be changed.

A grade of I cannot be given for thesis, project, dissertation, seminar, pre-doctoral research, or English as a Second Language (ESL) courses. Students in joint programs or cross-registered from Rutgers-Newark should note that NJIT has a different and much earlier deadline for resolution of I's before they automatically become F's. Some departments may assign an initial I for co-op courses, which may be changed to an S or U based on submittal of a report by the student to the co-op advisor. Students continuing for a second consecutive registration period in co-op with the same employer will have an I assigned as a grade for the first registration. This will be changed to S or U, based on co-op performance and evaluation by the co-advisor at the end of the second registration period.

Satisfactory and Unsatisfactory

The grades S and U report progress in project, thesis, dissertation, and pre-doctoral research courses. These also can be final grades in project, seminar, co-op, teaching methods and ESL courses. The grade of S is given for satisfactory progress and U is given for unsatisfactory progress.
Students who fail to meet with the instructors of these courses or do not satisfy relevant attendance requirements will receive a U grade. Credits for courses in which U is received cannot count toward a degree.

Grade Reports
The Registrar no longer issues grade reports. Grades may be viewed using a confidential password and identification number at http://www.njit.edu/registrar, the registrar's home page.

Grade Changes
Grade change requests will not be accepted after the end of the subsequent semester. Students should carefully monitor their records and contact the Registrar about any missing or incorrect grades no later than the end of the following semester.

Grade Disputes
Students are expected to resolve disputes about grades with their instructors. If they cannot reach a satisfactory settlement with their instructor, students are permitted to request the intervention of the chairperson of the department. NJIT's grade appeal policy is available at the Office of the Provost's website.

Course Repetition
A maximum of two course repetitions are allowed in matriculated graduate study; if necessary, this will allow a student to repeat a course two additional times. The grade received in a repeated course is calculated in the cumulative GPA, but the first grade still appears on the transcript. If a course is repeated two additional times, all grades will appear on the transcript, while the first and second attempts associated with the course will be excluded from the cumulative GPA calculation.

Students may not repeat a course without prior approval from the department. Non-matriculated students, including certificate students, are allowed to repeat only one course once. Students who receive an F in a course will be required to repeat that course.

The academic advisor may contact the Vice Provost for Graduate Studies if the course is no longer offered or not applicable to the student's current program, or other extenuating circumstances are believed to exist.

Progress Toward Degree

Academic Performance and Satisfactory Progress Policy
Students must maintain satisfactory progress in working toward a degree. Federal and state regulations governing financial aid and awards require that students receiving aid from government agencies must meet academic performance and progress requirements defined by the university and approved by the appropriate government agencies.

NJIT reviews the academic standing of all graduate students at the end of each semester. To have satisfactory academic standing, students must have a cumulative GPA of 3.0 or higher, must have a GPA in two consecutive semesters of 3.0 or higher, must meet all university requirements and must be making satisfactory progress toward a degree. Students who do not have satisfactory academic standing are subject to academic warning, academic probation or academic dismissal.

Academic Warning
Students who have completed at least one full-time semester (or its equivalent of 9 credits) and do not have satisfactory academic standing should meet with their graduate advisor to review their academic record.

Academic Probation
Students who have completed at least 9 credits and do not achieve satisfactory academic standing may be placed on academic probation or be subject to dismissal. Conditions for continuing graduate study at NJIT are sent to students on academic probation. The academic advisors will work with students to determine approaches toward successful program completion. Academic probation is noted on the permanent academic record. Students on probation for two consecutive semesters are subject to dismissal from the graduate program.

Dismissal
Students may be dismissed from graduate studies for cause at any time. Cause shall include, but is not limited to:

• Failing to meet the conditions of admission.
• Failing to maintain a cumulative GPA of at least 3.0 after completing one semester or attempting at least 9 credits.
• Failing to make satisfactory progress toward a degree.
• Failing to meet the requirements for graduation.
• Failing a required or repeated course more than once.
• Failing to satisfy requirements for project, thesis, or dissertation within the required time limits.
• Failing doctoral qualifying examination for the second time.
• Not completing a PhD program milestone (qualifying examination, proposal defense, final dissertation defense) within the prescribed time limit.
• Professional conduct offenses as defined in the NJIT Code of Professional Conduct.
• Making a false representation relating to admission, registration, or the awarding of financial support.
• Failure to pay all tuition, fees and other charges within the required time limits.

Dismissal is noted on the permanent academic record.

Decisions relating to a graduate student's academic status are made in accordance with regulations approved by the faculty and the Provost's office.

PhD students cannot appeal dismissal decisions that relate to PhD program milestones (exceptions may be made based on personal or health matters by contacting the Dean of Students office). Students who disagree with their dismissal that relates to any other reason(s) should attempt to resolve the matter with their academic advisor. When a matter cannot be resolved at this level, students should appeal to the Chairperson of the department and then to the Dean of their school or college.

Students who disagree with a decision should attempt to resolve the matter with those immediately responsible. When a matter cannot be resolved at this level, students should appeal to the Chairperson of the department and then to the Dean of their school or college.

Readmission if Dismissed

Students dismissed from NJIT for academic reasons may apply for readmission to another degree program after at least one calendar year has passed.

Dismissed students who seek readmission should apply to the Office of University Admissions at least two months before the date of intended readmission. These students must complete, in full, the application for admission and provide all requested documentation, regardless of previous applications. Readmission is treated as a new application. Readmits compete against all other applicants for admission that semester. The circumstances and conditions of the dismissal will be considered in the readmission process.

Students dismissed for professional conduct offenses or for making false representation will not be readmitted to NJIT.

Students who reapply should also include supportive material to justify readmission. Such material may include, but may not be limited to, scores obtained in the GRE or GMAT, grades obtained in graduate level work at other institutions, letters of recommendation, and a statement by the applicant. A non-refundable fee must accompany applications.

General Graduate Degree Requirements

Graduate degree candidates must achieve a cumulative GPA of at least 3.0 in all graduate-level courses (500 level and above) and satisfy other academic and non-academic requirements. These include financial obligations to the university. Students whose programs require a thesis or dissertation must complete these within time limits and policies prescribed by the Office of Graduate Studies. Master's theses and doctoral dissertations must be submitted for final approval to the Office of Graduate Studies. Master's projects need to be submitted only to the advisor.

At least three program approval signatures are required for master's theses; at least five are required for doctoral dissertations (at least four signatures are required for the Urban Systems program). Fees that must be paid include, but are not limited to, the copyright fee.

Grade Point Average Calculation

GPAs are calculated for each semester and cumulatively for the entire graduate record. In order to obtain a graduate degree, candidates must have a cumulative GPA of at least 3.0 when considering all graduate-level courses. All 500 level (500G for Architecture) or higher graduate courses are included in the cumulative graduate GPA. Only the initial grades for graduate courses that have been repeated (with a maximum of two allowed) are excluded from GPA calculations. Undergraduate credits taken by graduate students are not counted. Some programs also may require a 3.0 GPA in designated core course requirements.

In addition, the cumulative GPA for all courses counted for the degree must be 3.0 or better. The passing grade for the master's project is S. Successful completion of a master's thesis or doctoral dissertation, along with defense, will be assigned a grade of P for passing. The P grade is for the thesis or dissertation credits taken in the student's final semester.

Graduation Certification Course Exclusion

Under extenuating circumstances, the graduate student's academic advisor may suggest the exclusion of specific courses for the calculation of the student's GPA. These courses will not count for graduation certification and degree requirements. Prior approval of the Vice Provost for Graduate Studies is needed. The required form may be requested only by the advisor by contacting the Office of Graduate Studies and justifying the request.

For students transferring between graduate programs, the advisor must submit the Graduation Certification Course Exclusion form within a month after the student enrolls in the new program.
Theses and Dissertations
Theses and dissertations submitted for graduate degrees must follow a prescribed university format. The approved format is based on the Estrin/Roche manual: Guidelines for Scientific and Professional Theses. The Office of Graduate Studies provides seminars, guidance documents and continuing assistance for students. The office or its website should be consulted for more information.

Degrees cannot be certified until the Graduate Studies Office receives and approves the final thesis or dissertation documents with all related requirements completed. The Graduate Studies Office assigns the final grade of P in the last semester after satisfactory submission of the thesis/dissertation documents to Graduate Studies. Arrangements can be made for a specified period to sequester a completed thesis or dissertation for proprietary or patent reasons, if requested by the student and the advisor.

Special Topics
Special Topics courses are occasionally offered by departments to present new areas of high demand where rapid developments in the field have not allowed time for formal approval of such courses. These are announced by the departments in time for registration and are typically well-enrolled. They may be at the master's or doctoral level. There is no university limitation on the number of special topics courses that may be taken.

Independent Study
Independent study is for students who want highly specialized study with a specific faculty member in areas in which specifically titled courses are not normally available. Students should see their advisors regarding independent study options. For students in doctoral programs, a maximum of two independent study courses may be used to partially satisfy the 700-level course requirement. Enrollment in independent study may be as low as one student under a faculty section number.

Expiration of Credit
For all degrees, credits expire seven years after completion of the semester in which they are earned. Expired courses cannot be used to fulfill degree requirements and must be replaced by current credits. Exceptions can be made by the Vice Provost for Graduate Studies after receiving an appeal from the student's academic advisor.

Degree requirements must be generally completed within seven years of original admission. For Ph.D. students entering the program after August 2015, the limit is six years of attendance. Approved leaves of absence do not count against these limits although the validity of individual courses may still expire during the seven-year period. Requests for waivers of the seven-year limit for extenuating circumstances, other than mere failure to register, are made to the Vice Provost of Graduate Studies after receiving an appeal from the student's academic advisor. The technical content and remaining currency of courses is considered in evaluating these requests. The majority of courses in rapidly changing fields are not likely to be accepted after seven years.

Awarding of Degrees
Degrees are awarded three times each academic year: August, December and May. The university conducts its commencement ceremony once per year, normally in May. Students who have not completed all requirements for the degree cannot participate (walk) in the May commencement.

Deadline Waiver
Advisors of applicants for the August, December or May degree dates whose master's thesis or doctoral dissertation is substantially complete, but who are unable to submit it in final form by the specified date, may request a deadline extension from the Vice Provost of Graduate Studies. Such students may then apply for the next scheduled graduation without having to pay for additional thesis or doctoral dissertation credits. Advisors should contact the Office of Graduate Studies for further information.

Students who do not meet the deadline waiver will be required to register for master's thesis or doctoral dissertation in the subsequent enrollment period to allow formal completion.

Master's Degree Requirements
NJIT offers Master's degrees in a variety of disciplines through the five degree granting colleges and schools: Newark College of Engineering, College of Science and Liberal Arts, Ying Wu College of Computing, Martin Tuckman School of Management, and College of Architecture and Design. NJIT also offers master's degrees in interdisciplinary areas that may include coursework from a number of colleges or schools. The programs are flexibly arranged to allow new specializations and to allow new programs to be developed in response to changing needs. All current programs are listed in another section of the catalog. Students seeking more than one Master's degree should consult the Office of Admissions and the Office of Graduate Studies. There are options available that can reduce the time and number of credits for completion of the second degree.

Most master's degree programs require a minimum of 30 credits to complete. Some master's degree programs, particularly those in professional areas, require additional credits beyond 30 credits. Specific program sections of the catalog describe these requirements. In general, courses for master's programs must be numbered at the 600 level or above; some programs will allow up to two courses numbered 500-599. Some programs may also require a master's thesis or a project.
Up to 9 credits from outside NJIT, subject to approval by the advisor and the Graduate Studies Office and based on NJIT transfer credit policies described elsewhere, may be applied to master's degrees. Generally, NJIT does not allow transfer of credits already used as part of the credit requirements for a prior degree awarded by another university. However, students who have completed a master's degree elsewhere that includes more than the typical 30 credits for a master's degree and are considering an NJIT master's degree that also includes much more than the typical 30 credits, such as an MBA or an MArch degree, will be considered for a block transfer of up to 12 credits from the prior degree toward the NJIT degree. These types of transfer will require approval of the advisor and the Vice Provost for Graduate Studies.

Bridge Program

Students who seek a master's degree in an academic discipline different from that of the bachelor's degree may be admitted to a master's degree program but may be required to complete appropriate undergraduate and/or graduate prerequisites in addition to the normal graduate degree requirements of the program. The program of courses will be individually designed in consultation with their graduate advisor. Bridge courses must be completed before 9 credits of graduate degree courses are earned. Bridge courses are not counted as degree credits but do count in graduate GPA calculations if the course is numbered 500 (500G for Architecture) or higher.

Master's Thesis Advisor, Committee, and Defense

A master's thesis committee should be formed at the start of the second semester of thesis registration (or at the start of the first semester if a single semester completion seems certain). The committee must have at least three members. All members of the committee must hold faculty rank.

The chair of the committee must be a tenured or tenure track faculty member in the department or program offering the degree. At least one other member of the committee must be a member of NJIT's Graduate Faculty. The Guidelines for Graduate Faculty (https://www.njit.edu/provost/guidelines-graduate-faculty-njit/) membership at NJIT must be when forming a committee. Approval of the committee is made by the program director and reported to the Graduate Studies Office on a standardized thesis committee appointment form.

The thesis defense must be defended in a public forum. Successful defense of the thesis is determined by vote of the thesis committee. The committee members must be present at the defense. Every member of the thesis committee must sign and date the approval page of the final thesis document. A report on passage, conditional passage, or failure of the defense is completed by the thesis committee chair, signed by the thesis committee members, and sent to the Graduate Studies Office on a standardized form.

Ph.D. Degree Requirements

Detailed descriptions of the degree requirements for specific degrees or degree/discipline combinations may be found in the Degree Programs section of this catalog.

PhD degree requirements for students entering a Ph.D. program after August 2015

1. Ph.D. coursework registration requirements

Ph.D. students with a recognized Master's degree or equivalent are required to take four 700-level 3-credit courses (12 credits). Ph.D. students with a recognized Baccalaureate degree are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits). Master’s project (course 700), Master’s thesis (course 701), or more than two independent study courses (courses 725 and 726) cannot be used to satisfy these coursework requirements. A Ph.D. student may substitute a 600-level course for a 700-level course only after the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. program may define an additional set of required courses that must be pre-approved by the academic college (multiple colleges may be involved for interdisciplinary programs). Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student's dissertation committee may ask the student to take additional courses.

2. Ph.D. dissertation registration requirements

• Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (792B) per semester until they defend successfully the dissertation proposal.

• Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (790A) each semester until they complete all degree requirements.

• Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

• Students who do not meet the following deadlines will be dismissed from the Ph.D. program.

• The required coursework for the Ph.D. program and the (major part of the) QE must be completed successfully by the end of the second year in the program.
• The dissertation proposal must be defended in a public forum successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier.

• The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

(Note: The credit requirements for any joint Ph.D. program, for which the names of multiple universities appear on the diploma, follow the explicit requirements of the joint program.)

• For both entry levels; baccalaureate or master's start-point, at least 12 credits of course work at the 700 level; no more than two independent study courses may be used to satisfy this requirement. master's project or thesis cannot be used to satisfy this requirement.

• Seminar attendance each semester or as required by the program. Nominal credit values, if any, for registration in seminar do not count toward fulfillment of overall credit requirements.

Students who wish to complete a master's degree while pursuing a doctorate in the same field must be approved for this by the doctoral department, the Associate Provost for Graduate Studies, and the director of graduate admissions, and satisfy all requirements for the master's degree, including any thesis or project requirement. In general, such permission is given only after passage of the research proposal exam or if the student is near completion of the doctorate. Students in doctoral programs initially, who terminate their studies at the master's level, will lose further eligibility for support.

Qualifying Examination

Students must pass a qualifying examination within two years of being admitted into a doctoral program. Students are only permitted to take the examination twice. The passage of qualifying examinations is reported to the Office of Graduate Studies on the Qualifying Examination form. Each department determines its own policies with regard to format, grading, and review of examinations by faculty and students. Students are, at their request, permitted to view their examination papers in the presence of a designated faculty member and to see correct examination answers.

Dissertation Advisor, Dissertation Committee and Research Proposal

Doctoral students with a prior master’s degree must choose their dissertation advisor(s) by the fourth semester in the program at the latest. Students without a master’s degree must make the decision by the end of the fifth semester. (Different program requirements may apply for Ph.D. programs offered jointly with other universities.)

The department chairperson or doctoral program director is responsible in the student's department/program for approving originally the formation of dissertation committees. The committee must be finally approved by the Vice Provost for Graduate Studies. The Guidelines for Graduate Faculty (https://www.njit.edu/provost/guidelines-graduate-faculty-njit/) membership at NJIT must be followed when forming a committee. (The committee consists of a minimum of five members (four for the Urban Systems program), one of whom is external to the student's academic program or to NJIT.

The majority of the committee members are tenured or tenure-track faculty from the student's program or department having research experience or developing research interests related to the dissertation research. The dissertation committee chairperson typically is the doctoral candidate's dissertation advisor, but other faculty may be selected, provided they are from the student's program or department. The dissertation committee chair must be a tenured or tenure-track faculty member in the program. Two committee members, including an external member, may serve as co-advisors. The advisor or at least one of the co-advisors must be a tenured or tenure-track faculty member from the program. Faculty with joint appointments are considered internal committee members when serving on dissertation committees in their secondary department.

Former students of any committee member, who are less than four years beyond doctoral completion, are specifically excluded from membership. The external committee member should either have appropriate faculty rank elsewhere or have sufficient research expertise to warrant inclusion on the dissertation committee.

Part-time doctoral students pursuing the doctorate with industry collaboration (i.e., collaborative Ph.D. (https://www.njit.edu/admissions/collaborative-phd-programs/)) may have at least one dissertation committee member from the participating industrial partner whose research credentials would otherwise be appropriate for a member of the university faculty. Committees for joint doctoral programs with other universities shall either follow these policies or the specific policies for the joint program consistent with the program approval and related documents.

Each doctoral program has specific requirements for preparing, presenting and accepting proposals. The dissertation defense is expected to be presented in a public forum. Research is expected to investigate or develop a unique contribution to science and technology. Research may be experimental, analytical, applied, or theoretical, provided it satisfies this criterion and is approved by the dissertation committee. It should be of a quality to warrant scholarly presentation or paper submission to reputable journals in accordance with program practice.

Residency

Doctoral candidates must spend at least one academic year in full-time residence. This requirement is sometimes waived with the approval of the dissertation committee and the Vice Provost for Graduate Studies. Such waivers are granted when a candidate's dissertation research requires use of research facilities at an approved off-campus site. A typical example for residency requirement waiver would apply in the case of students in the collaborative doctorate option.
Doctoral Candidacy

Doctoral candidates are doctoral students who have completed all other requirements for the degree except the completion of the dissertation and the defense. This includes, as a minimum, passage of the doctoral qualifying examination, approval of the research proposal and completion of all course work. Status as a doctoral candidate does not imply candidacy for the degree. A degree candidate will be both near degree completion and have made a formal degree application for a particular graduation date.

Dissertation and Defense

The dissertation should be a scholarly publication of the quality to warrant conference presentation or paper submission to reputable journals. The dissertation must be defended in a public announced oral defense. Successful defense of the dissertation is determined by vote of the dissertation committee. All members of the committee must be present to hear the defense.

In regard to dissertation format, the standard reference is the latest edition of the Estrin/Roche Manual: Guidelines for Scientific and Professional Theses. Office of Graduate Studies policies on number of copies, document submission deadlines, fee payments, information documents, and grade submission for acceptance of the final dissertation and for doctoral degree certification are to be followed. The Office of Graduate Studies provides guidance and assistance to students working on formatting their dissertation. Students should contact the office for appointments early in the final semester. The review of format should proceed well in advance of final document approval and dissertation defense.

The dissertation defense must be defended in a public forum. Successful defense of the dissertation is determined by vote of the dissertation committee. The committee members must be present at the defense. Every member of the dissertation committee must sign and date the approval page of the final dissertation document. A report on passage, conditional passage, or failure of the defense is completed by the dissertation committee chair, signed by the dissertation committee members, and sent to the Graduate Studies Office on a standardized form.

Residency Policy for International Students

During the academic year, all international students are required to live within commuting distance to campus, at the local address that they have reported to NJIT. Exceptions to the rule are:

1. A student is on a trip when the school is not in session (e.g. spring or summer breaks).
2. A student is away for academic reasons and with the permission of the student’s advisor.
3. A student has received NJIT’s official approval for out-of-state CPT and is registered in the CPT course.

Graduate students: NJIT considers dissertation and thesis credit classes to be face to face. When graduate students are taking only dissertation/thesis credit with full time certification, they must report to their advisors regularly.

If international students must travel for an extended period of time or live outside of commuting distance to NJIT in order to conduct research or gather data, the students’ advisors (dissertation or thesis advisor in the case of doctoral and Master’s students) must be able to, upon request from the Office of Global Initiatives, describe the academic reasons for the students’ distance. Writing drafts of dissertation/thesis are not considered academic reasons. If international students must travel internationally to conduct research or gather data, they must report this to the OGI since this can affect their F-1 status.

International students who do not have regular face to face meetings with their advisors can be in violation of their F-1 status and therefore are at risk of having their SEVIS records terminated.

Graduate Certificate Requirements

Graduate certificates require completion of at least 12 specified credits with a cumulative GPA of 2.75 or higher. Only one course repetition is permitted for certificate students to improve their GPA. The cumulative GPA must be at least 3.0 for the student to pursue a relevant master’s degree within seven years of the certificate award and count all certificate credits towards the master’s degree. Students who receive a certificate with a cumulative GPA lower than 3.0 and get admitted to a related MS degree program within seven years of receiving the certificate may be allowed to transfer only certificate courses with a grade of B or higher. Dual use of credits from a completed first master’s degree to a second and following certificate is not permitted.

Students who are awarded a graduate certificate either by completing its requirements before enrolling in an MS degree or based on the completion of its requirements during the pursuit of an MS degree, may be awarded additional certificates after the award of the MS by completing a minimum of two further courses per additional certificate.

Students in certificate programs are usually considered to be non-matriculated students for the duration of the certificate program. Graduate certificate programs are normally completed before students are admitted to a following matriculated master’s program. Students who did not apply for admission to a certificate program initially and instead complete the certificate requirements as part of a completed graduate degree program may be permitted to receive a certificate also with approval of the Office of Graduate Studies.

Student Privacy Concerns

Consistent with the Family Educational Rights to Privacy Act (FERPA), NJIT allows for the release of directory information, which includes a student’s preferred name. If a student does not want their directory information disclosed to external organizations or persons, they can select “Do NOT show my
profile”. Members of the NJIT community can however view ones directory information through the “Advanced Search” function. Students can log into the Directory via http://directory.njit.edu (http://directory.njit.edu/).

Students may also request to withhold disclosure of directory information altogether. New Jersey Institute of Technology assumes that failure on the part of any student to specifically request in writing preventing the disclosure of directory information indicates individual approval of disclosure.

NJIT Policy for Recording Classes (https://www5.njit.edu/registrar/njit-policy-recording-classes/)
https://www5.njit.edu/registrar/njit-policy-recording-classes/

Preferred Name Policy*
NJIT recognizes that students may wish to be addressed by a name other than their legal name to identify themselves. For this reason, the university now allows students to apply for a preferred name where reasonably possible in the course of university business and education.

In order to initiate this process, a student must submit a Preferred Name Change form with the Office of the Registrar; the application of a preferred name may only be requested once an academic year and must be completed at least one week before the start of the next academic semester. Depending on time of application, it may take several days for the preferred name to appear on university rosters.

Once a preferred name application has been approved, students may proceed to use the preferred name to identify themselves. Please note that some records may require the use of legal names only, such as Financial Aid and/or medical documentation. Students who are utilizing a preferred name should always be prepared to reference their legal name as well as provide their college identification when necessary.

NJIT reserves the right to decline or revoke an approved preferred name on the grounds the preferred name may be used for criminal or misrepresentation purposes, may be harmful to the reputation or interests of NJIT, and/or conveys inappropriate or offensive language or meaning. In the rare circumstance when a denial is made, the student may appeal the decision in writing to the Registrar. The Registrar will provide the appeal to the Dean of Students and Campus Life to reconsider the request and the denial. Abuse or misuse of this policy and process may result in disciplinary action under the Code of Student Conduct.

Students requesting a preferred name under the age of 18 must submit written permission from a parent/legal guardian in addition to a Preferred Name Change form.

Note: Students who have completed a legal name change must fill out a Request to Change Student Name (https://www.njit.edu/registrar/sites/njit.edu.registrar/files/lcms/forms/pdf/LegalNameChange2018.pdf) form with the Office of the Registrar.

Preferred Name Will Appear:*
• Athletic Team Rosters
• Online directory
• Class rosters
• Commencement programs
• Dean’s List
• Library Records
• Learning Management System
• Residence Life Rosters
• Student ID Card
• Email display name

*Implementation of these function may vary

Legal Name Will Appear:
• Financial Aid and Billing Records and Communication
• Official and Unofficial Transcripts
• Paychecks & Paystubs
• Registrar’s Office Records (i.e., permanent student file records)
• Study Abroad (i.e., travel documents, signature documents)
• Some official forms or correspondence from the University such as financial aid awards, residence life contracts, departmental or program notices, new hire forms, etc.
• Transfer credit evaluation
• Tax Records
• Diplomas and certifications
• Medical records
• Admissions records
• Disciplinary records
• Law enforcement records

ID Cards
NJIT recognizes it may be important to students for the NJIT Photo Identification Card to reflect ones preferred name. Approved students may request a new ID card with your preferred name from Facility Systems, Photo Identification and Parking Services Department located in the Laurel Hall Annex, on 141 Summit Street (at the corner of Summit and Warren Streets). A one-time $25 ID printing fee will be waived for approved students.

Gender Identity
In addition to a preferred name, students may request their legal gender (i.e., male, female) be removed from their student record.

Process and Implementation
Beginning fall 2018, the university will launch the initial use of the Preferred Name policy as described above. Updates will be communicated to the campus community as the necessary changes are complete to support continued implementation.

Frequently Asked Questions

What is a preferred name?
A “preferred name” is the name other than ones legal name that the student has indicated the desire to be identified by. A “legal name” is the name recorded on the student’s legal identification (i.e., passport, birth certificate, Social Security card) and used on official NJIT records.

Are there any Preferred Name restrictions?
NJIT reserves the right to decline or revoke an approved Preferred Name if the preferred name may be used for criminal or misrepresentation purposes may be harmful to the reputation or interests of NJIT, and/or conveys inappropriate or offensive language/meaning.

When/why will NJIT departments/personnel continue to use my legal name?
NJIT departments, offices, and/or personnel often must use appropriate identification of students’ legal name to conduct university business and functions (i.e., sending reports to federal, State, and other government agencies that require legal identity verification). Students utilizing a preferred name should always be prepared to reference their legal name as well as provide university identification when necessary.

How long will it take for my preferred name registration to take effect?
Depending on the time a preferred name application was submitted to the Office of the Registrar, it may take several business days for the preferred name to begin appearing on certain university rosters. NJIT does not guarantee the preferred name will appear in all locations or in all circumstances.

What if I’ve already received identification with my legal name only?
Students who have already received identification with legal names only may apply for new identification reflecting the approved preferred name.

Will background checks include preferred names?
Students who register a preferred name must be aware that preferred names are required to be disclosed in certain circumstances, including during background checks and other legal processes. The university is under a continued responsibility to report such names even after a student has discontinued use of the preferred name.

Cooperative Education and Internships
Cooperative Education (Co-op) and Internship programs offer students the opportunity, prior to graduation, to gain work experience that is related to their major. The Co-op Program provides students with an experiential and applications approach to education. Co-op is available to matriculated students in all majors. The program enhances the education of the student with the introduction of part- and full-time work experiences during which additive or degree credits can be earned. Co-op enables students to examine a professional field through employment in a major-related job. All co-op students earn a salary that can help defray college and other expenses. The co-op course will be for one credit and included in the student’s bill the first time they register. Any consecutive co-op courses will also be for one credit, but no tuition will be charged irrespective of change of employer. Other fees still apply.

International students only: International students who wish to participate in the co-op experience must apply for employment authorization through the Office of Global Initiatives (OGI) and Career Development Services (CDS). The Office of Graduate Studies reviews requests for all Ph.D. students and deliberates on appeals of MS students whose cumulative GPA is below 3.0. Graduate students can be considered full-time during spring and fall semesters if participating in full-time co-op in addition to at least one (1) face-to-face course. A graduate student participating in part-time co-op must maintain full-time status by registering for a minimum of 9 credits in fall and spring semesters.

Please visit the Graduate Studies Office or if you’re a MS student go to this link (https://www.njit.edu/graduatestudies/full-time-status-ms-students/). If you’re a PhD student use this link (https://www.njit.edu/graduatestudies/full-time-status-phd-students/) for further details.
<table>
<thead>
<tr>
<th>College</th>
<th>Department</th>
<th>Degree Level</th>
<th>Discipline</th>
<th>Special Degree Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Master's</td>
<td>Applied Mathematics - M.S. (p. 366)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Bachelor's</td>
<td>Applied Mathematics and Applied Physics - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>SL</td>
<td>Physics</td>
<td>Bachelor's</td>
<td>Applied Physics - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Physics</td>
<td>Master's</td>
<td>Applied Physics - M.S. (p. 386)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Physics</td>
<td>Doctoral</td>
<td>Applied Physics - Ph.D. (p. 390)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Humanities</td>
<td>Master's</td>
<td>Applied Science - M.S. (p. 349)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Master's</td>
<td>Applied Statistics - M.S. (p. 368)</td>
<td>Double Major</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Architecture (professional or post-professional) - M.Arch. and Civil Engineering - M.S.</td>
<td>Double Major (p. 166)</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Architecture (professional or post-professional) - M.Arch. and Infrastructure Planning - M.I.P.</td>
<td>Double Major</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Architecture (professional or post-professional) - M.Arch. and Management - M.S.</td>
<td>Double Major (p. 170)</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.Arch.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.Arch. and Civil Engineering - M.S.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.Arch. and Infrastructure Planning - M.I.P.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.Arch. and Management - M.S.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.Arch. and Technology - M.B.A.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.S. and Civil Engineering - M.S.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.S. and Infrastructure Planning - M.I.P.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Bachelor's</td>
<td>Architecture - B.S. and Management - M.S.</td>
<td>B.S./M.S.</td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Architecture - M.Arch. (p. 165)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Architecture - M.S. (p. 163)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Bachelor's</td>
<td>BioChemistry - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Master's</td>
<td>BioStatistics - M.S. (p. 370)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Master's</td>
<td>Bioinformatics - M.S. (p. 214)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Bachelor's</td>
<td>Biology - B.A.</td>
<td>Accelerated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cell Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ecology and Evolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Neurobiology</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Bachelor's</td>
<td>Biology - B.A./D.M.D.,O.D.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Bachelor's</td>
<td>Biology - B.A./M.D.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Bachelor's</td>
<td>Biology - B.A./Physical Therapy Ph.D.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Bachelor's</td>
<td>Biology - B.A./Physician Assistant</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Bachelor's</td>
<td>Biology - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Master's</td>
<td>Biology - M.S. (p. 302)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Doctoral</td>
<td>Biology - Ph.D. (p. 305)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>Biology and Law, Technology and Culture - B.A</td>
<td>Double Major</td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Bachelor's</td>
<td>Biology and Mathematical Sciences - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>SL</td>
<td>Biology</td>
<td>Master's</td>
<td>Biology of Health - M.S. (p. 303)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Bio-Medical Engineering</td>
<td>Bachelor's</td>
<td>Biomedical Engineering - Accelerated B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Bio-Medical Engineering</td>
<td>Bachelor's</td>
<td>Biomedical Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Bio-Medical Engineering</td>
<td>Master's</td>
<td>Biomedical Engineering - M.S. (p. 450)</td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>Department</td>
<td>Degree Level</td>
<td>Discipline</td>
<td>Special Degree Options</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>EN</td>
<td>Bio-Medical Engineering</td>
<td>Doctoral</td>
<td>Biomedical Engineering - Ph.D.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Bachelor's</td>
<td>Business & Information Systems - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Master's</td>
<td>Business & Information Systems - M.S.</td>
<td>(p. 237)</td>
</tr>
<tr>
<td>SM</td>
<td>Management</td>
<td>Bachelor's</td>
<td>Business - B.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Accounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Finance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Innovation and Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Management Information Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Marketing</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>Management</td>
<td>Doctoral</td>
<td>Business Data Science - Ph.D.</td>
<td>Double Major</td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials Engr</td>
<td>Bachelor's</td>
<td>Chemical Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials Engr</td>
<td>Master's</td>
<td>Chemical Engineering - M.S.</td>
<td>(p. 464)</td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials Engr</td>
<td>Doctoral</td>
<td>Chemical Engineering - Ph.D.</td>
<td>(p. 467)</td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>Chemistry & Law, Technology and Culture - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Bachelor's</td>
<td>Chemistry - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Master's</td>
<td>Chemistry - M.S. (p. 323)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Doctoral</td>
<td>Chemistry - Ph.D. (p. 328)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Bachelor's</td>
<td>Civil Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Master's</td>
<td>Civil Engineering - M.S.</td>
<td>(p. 498)</td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Doctoral</td>
<td>Civil Engineering - Ph.D.</td>
<td>(p. 510)</td>
</tr>
<tr>
<td>SL</td>
<td>Humanities</td>
<td>Bachelor's</td>
<td>Communication and Media - B.A.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Humanities</td>
<td>Bachelor's</td>
<td>Communication and Media - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Bachelor's</td>
<td>Computer Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Master's</td>
<td>Computer Engineering - M.S.</td>
<td>(p. 528)</td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Doctoral</td>
<td>Computer Engineering - Ph.D.</td>
<td>(p. 539)</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Bachelor's</td>
<td>Computer Science - B.A.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Bachelor's</td>
<td>Computer Science - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Master's</td>
<td>Computer Science - M.S.</td>
<td>(p. 215)</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Doctoral</td>
<td>Computer Science - Ph.D.</td>
<td>(p. 228)</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Bachelor's</td>
<td>Computer Science and Applied Physics - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Bachelor's</td>
<td>Computer Science and Mathematical Sciences, Applied Mathematics - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Bachelor's</td>
<td>Computer Science and Mathematical Sciences, Computational Mathematics - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Bachelor's</td>
<td>Computing and Business - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Master's</td>
<td>Computing and Business - M.S.</td>
<td>(p. 220)</td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Built Env, Division</td>
<td>Bachelor's</td>
<td>Concrete Industry Management - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Master's</td>
<td>Critical Infrastructure Systems - M.S.</td>
<td>(p. 504)</td>
</tr>
<tr>
<td>College</td>
<td>Department</td>
<td>Degree Level</td>
<td>Discipline</td>
<td>Special Degree Options</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Master's</td>
<td>Cyber Security and Privacy - M.S. (p. 221)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Humanities</td>
<td>Bachelor's</td>
<td>Cyberpsychology - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Data Science</td>
<td>Bachelor's</td>
<td>Data Science - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Master's</td>
<td>Data Science - Computational Track M.S. (p. 225)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Master's</td>
<td>Data Science - Statistics Track M.S. (p. 371)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>School of Art & Design</td>
<td>Bachelor's</td>
<td>Digital Design - B.A.</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Digital Design - M.S. (p. 163)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Bachelor's</td>
<td>Electrical Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Master's</td>
<td>Electrical Engineering - M.S. (p. 530)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Doctoral</td>
<td>Electrical Engineering - Ph.D. (p. 542)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical & Industrial Engr</td>
<td>Master's</td>
<td>Engineering Management - M.S. (p. 561)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Elec. & Mech. Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Computer Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Built Env, Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Construction Engineering Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Built Env, Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Construction Management Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Elec. & Mech. Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Electrical and Computer Engineering Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Elec. & Mech. Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Manufacturing Engineering Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Elec. & Mech. Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Mechanical Engineering Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Elec. & Mech. Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Medical Informatics Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Built Env, Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Surveying Engineering Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>SAET-Eng. Edu Division</td>
<td>Bachelor's</td>
<td>Engineering Technology, Technology Education - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Master's</td>
<td>Environmental Engineering - M.S. (p. 505)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Doctoral</td>
<td>Environmental Engineering - Ph.D. (p. 511)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Bachelor's</td>
<td>Environmental Science - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Master's</td>
<td>Environmental Science - M.S. (p. 324)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Doctoral</td>
<td>Environmental Science - Ph.D. (p. 331)</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>Management</td>
<td>Bachelor's</td>
<td>Financial Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Bachelor's</td>
<td>Forensic Science - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>*Office of the Dean (NCE)</td>
<td>Bachelor's</td>
<td>General Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical & Industrial Engr</td>
<td>Master's</td>
<td>Healthcare Systems Management - M.S. (p. 564)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>History - B.A.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>History - B.A./D.P.T.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>History - B.A./J.D.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>College</td>
<td>Department</td>
<td>Degree Level</td>
<td>Discipline</td>
<td>Special Degree Options</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>History - B.A./M.D., D.M.D., D.D.S., O.D.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Master's</td>
<td>History - M.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Bachelor's</td>
<td>Human-Computer Interaction - B.S.</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>School of Art & Design</td>
<td>Bachelor's</td>
<td>Industrial Design - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Bachelor's</td>
<td>Industrial Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Master's</td>
<td>Industrial Engineering - M.S. (p. 565)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Doctoral</td>
<td>Industrial Engineering - Ph.D. (p. 576)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Bachelor's</td>
<td>Information Systems - B.A.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Master's</td>
<td>Information Systems - M.S. (p. 240)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Doctoral</td>
<td>Information Systems - Ph.D. (p. 247)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Bachelor's</td>
<td>Information Technology -Accelerated B.S. and J.D.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Master's</td>
<td>Information Technology - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Master's</td>
<td>Information Technology and Administration Security - M.S. (p. 245)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>School of Art & Design</td>
<td>Bachelor's</td>
<td>Interior Design - B.A.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer</td>
<td>Master's</td>
<td>Internet Engineering - M.S. (p. 532)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>History</td>
<td>Bachelor's</td>
<td>Law, Technology and Culture - B.A.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor's</td>
<td>Law, Technology and Culture -B.A./J.D</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SM</td>
<td>Management</td>
<td>Master's</td>
<td>Management - M.S. (p. 606)</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>Management</td>
<td>Master's</td>
<td>Management of Technology - M.B.A. (p. 600)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Master's</td>
<td>Manufacturing Systems Engineering - M.S. (p. 568)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master's</td>
<td>Master of Fine Arts in Digital Design - M.F.A (p. 171)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials</td>
<td>Bachelor's</td>
<td>Materials Engineering Program - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Physics</td>
<td>Master's</td>
<td>Materials Science and Engineering - M.S. (p. 387)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials</td>
<td>Master's</td>
<td>Materials Science and Engineering - M.S. (p. 453)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Doctoral</td>
<td>Materials Science and Engineering - Ph.D. (p. 391)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials</td>
<td>Doctoral</td>
<td>Materials Science and Engineering - Ph.D. (p. 470)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Bachelor's</td>
<td>Mathematical Sciences - B.S.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Bachelor's</td>
<td>Mathematical Sciences - B.S./M.D.</td>
<td>Accelerated</td>
</tr>
<tr>
<td>SL</td>
<td>Mathematics</td>
<td>Doctoral</td>
<td>Mathematical Sciences - Ph.D. (p. 373)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Bachelor's</td>
<td>Mechanical Engineering - B.S.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Master's</td>
<td>Mechanical Engineering - M.S. (p. 570)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical &</td>
<td>Doctoral</td>
<td>Mechanical Engineering - Ph.D. (p. 576)</td>
<td></td>
</tr>
</tbody>
</table>
Special Program Options

Baccalaureate/Master’s (all BS/MS variants), Baccalaureate/PhD and dual-degree programs

These accelerated and dual-degree programs permit undergraduates to earn course credits toward a master's degree or a doctoral degree while being enrolled as an undergraduate student. Students in BS/MS normally take 6 credits of graduate course work starting in their junior or senior year. Exceptional students with a cumulative GPA higher than 3.5 may take 9 credits of graduate course work. All other students will require a min CGPA of 3.0 to double-count up to 6 credits. These credits may be counted toward both a bachelor's degree and a following master's degree. Students are encouraged to pursue graduate study immediately following the completion of the bachelor's degree. Students who may wish to start pursuing a graduate degree later should keep in mind that courses expire after seven (7) years. The graduate advisor will determine the graduate-level courses taken for the NJIT undergraduate degree that will also count toward the graduate degree. Graduate study may be completed full or part-time.

Full-time undergraduate students become eligible to apply for program acceleration after they complete at least five courses in their major and have maintained a GPA of 3.0 or better. Students in the Albert Dorman Honors College are pre-approved for the BS/MS program at the time of admission to NJIT but will receive letters about activating their status in BS/MS if their GPA is still above 3.0 and have earned between 57 and 110 undergraduate credits. The activation letter will instruct Honors College students about contacting the academic department undergraduate advisor. Applicants must satisfy all university requirements for admission to graduate programs (they must eventually submit an application to Admissions). Exceptional students may seek to go into an NJIT doctoral program directly through the BS/PhD program and must have a record consistent with university criteria for doctoral study (3.5 GPA or better). GRE scores are required for doctoral admission.

Several other combinations of Bachelor's-graduate degree acceleration exist, including dual-degree programs. The number of dual-use credits for these combinations may exceed 6 credits in accordance with specific program requirements. Two examples are the B. Arch/MS and the BS/MBA programs, which allow 12 dual-use credits. The entire suite of accelerated and dual-degree programs are listed on the Admissions web site.

MS-MS & MS-MBA Program Options

The MS-MS and MS-MBA dual degree program options allow students to pursue a second NJIT graduate degree upon completion of the first and to count two courses (6 credits) or four courses (12 credits), respectively, from the first degree toward the second. Most students

<table>
<thead>
<tr>
<th>College</th>
<th>Department</th>
<th>Degree Level</th>
<th>Discipline</th>
<th>Special Degree Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>Mechanical & Industrial Engr</td>
<td>Master’s</td>
<td>Occupational Safety and Health Engineering - M.S. (p. 573)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>History</td>
<td>Bachelor’s</td>
<td>Patent Law, Technology and Culture - B.A.</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Chemistry & Environmental Sci.</td>
<td>Master’s</td>
<td>Pharmaceutical Chemistry - M.S. (p. 326)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Chemical and Materials Engr</td>
<td>Master’s</td>
<td>Pharmaceutical Engineering - M.S. (p. 467)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mechanical & Industrial Engr</td>
<td>Master’s</td>
<td>Pharmaceutical Systems Management - M.S. (p. 574)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Physics</td>
<td>Bachelor’s</td>
<td>Physics & Law, Technology and Culture - Astronomy Option - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>SL</td>
<td>Physics</td>
<td>Bachelor’s</td>
<td>Physics & Law, Technology and Culture - Optical Science & Engineering Option - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Master’s</td>
<td>Power and Energy Systems - M.S. (p. 534)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Bachelor’s</td>
<td>Science, Technology and Society/Business and Information Systems - B.S.</td>
<td>Double Major</td>
</tr>
<tr>
<td>SL</td>
<td>Humanities</td>
<td>Bachelor’s</td>
<td>Science, Technology, & Society - B.S.</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Computer Science</td>
<td>Master’s</td>
<td>Software Engineering - M.S. (p. 227)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Electrical & Computer Engr.</td>
<td>Master’s</td>
<td>Telecommunications - M.S. (p. 535)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Humanities</td>
<td>Bachelor’s</td>
<td>Theatre Arts and Technology - B.A.</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Master’s</td>
<td>Transportation - M.S. (p. 506)</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Civil & Environmental Engr</td>
<td>Doctoral</td>
<td>Transportation - Ph.D. (p. 513)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Master’s</td>
<td>Urban Design - M.S. (p. 165)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Architecture</td>
<td>Doctoral</td>
<td>Urban Systems - Ph.D. (p. 173)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Informatics</td>
<td>Bachelor’s</td>
<td>Web & Information Systems - B.S.</td>
<td></td>
</tr>
</tbody>
</table>

Special Program Options

Baccalaureate/Master’s (all BS/MS variants), Baccalaureate/PhD and dual-degree programs

These accelerated and dual-degree programs permit undergraduates to earn course credits toward a master's degree or a doctoral degree while being enrolled as an undergraduate student. Students in BS/MS normally take 6 credits of graduate course work starting in their junior or senior year. Exceptional students with a cumulative GPA higher than 3.5 may take 9 credits of graduate course work. All other students will require a min CGPA of 3.0 to double-count up to 6 credits. These credits may be counted toward both a bachelor's degree and a following master's degree. Students are encouraged to pursue graduate study immediately following the completion of the bachelor's degree. Students who may wish to start pursuing a graduate degree later should keep in mind that courses expire after seven (7) years. The graduate advisor will determine the graduate-level courses taken for the NJIT undergraduate degree that will also count toward the graduate degree. Graduate study may be completed full or part-time.

Full-time undergraduate students become eligible to apply for program acceleration after they complete at least five courses in their major and have maintained a GPA of 3.0 or better. Students in the Albert Dorman Honors College are pre-approved for the BS/MS program at the time of admission to NJIT but will receive letters about activating their status in BS/MS if their GPA is still above 3.0 and have earned between 57 and 110 undergraduate credits. The activation letter will instruct Honors College students about contacting the academic department undergraduate advisor. Applicants must satisfy all university requirements for admission to graduate programs (they must eventually submit an application to Admissions). Exceptional students may seek to go into an NJIT doctoral program directly through the BS/PhD program and must have a record consistent with university criteria for doctoral study (3.5 GPA or better). GRE scores are required for doctoral admission.

Several other combinations of Bachelor's-graduate degree acceleration exist, including dual-degree programs. The number of dual-use credits for these combinations may exceed 6 credits in accordance with specific program requirements. Two examples are the B. Arch/MS and the BS/MBA programs, which allow 12 dual-use credits. The entire suite of accelerated and dual-degree programs are listed on the Admissions web site.
continue their studies for the second graduate degree as soon as they finish with the first. Students who may wish to start pursuing their second graduate degree later should keep in mind that courses expire after seven (7) years. The second program’s academic advisor will determine the graduate-level courses taken for the first NJIT degree that will also count toward the second degree. The approval of the advisors of the two programs is required to pursue a dual degree program option. The MS/MS program option is not intended for students who have left the doctoral program without completion of the degree. Up to 6 credits may be transferred to the second Master's degree from outside NJIT. Thesis, project, pre-doctoral research, independent research and similar courses may not be used.

Several other Master’s degree combinations can allow more than 6 credits to count toward both degrees. In general, these apply to situations in which the first or the second degree programs requires considerably more than 30 credits. Examples are the Master of Architecture and the Master of Business Administration programs. The allowable dual counting of credits for the Master of Architecture in combination with other programs is described in the catalog sections on Architecture and Infrastructure Planning. Subject to specific course approval and the two year time limit for MS/MS as described above, up to 12 credits from a previously completed NJIT MS program in Computer Science, Information Systems, or Engineering Management may be applied toward completion of the 48 credit Master of Business Administration degree program. Subject to course approval, up to 18 credits may be used from a previously completed NJIT MS program in Management toward the completion of the 48 credit Master of Business Administration degree program. Subject to approval, up to 15 credits from a previously completed NJIT MBA can be applied toward the completion of the 30-credit MS in Management program.

The Collaborative Doctorate

The Collaborative Ph.D. program is designed for engineers, executives, scientists, military personnel, state and federal government employees, and educators who want to pursue a Ph.D. degree part-time while continuing full-time employment. The admission and academic requirements are the same as for NJIT’s regular Ph.D. programs but the collaborative nature of the program allows participants to draw on the combined expertise and resources of the university and their employer. The dissertation research of students in the collaborative Ph.D. is expected to produce original contributions to science, engineering, technology or management and satisfy all quality criteria set by the dissertation committee. The student’s main dissertation advisor is an NJIT faculty member while the research may meet the needs of the student and employer in advancing knowledge in the chosen discipline.

To apply to the collaborative Ph.D. program, candidates must have been employed in their specified field for at least a year. NJIT’s standard criteria for admission will be applied but prior work-related research activity, publications, and honors will also be considered in evaluating prospective participants.

More information about the program is available at https://catalog.njit.edu/graduate/academic-policies-procedures/collaborative-doctorate/ (https://catalog.njit.edu/graduate/academic-policies-procedures/collaborative-doctorate/).

Graduate Certificates

NJIT’s graduate certificates give students the opportunity to:

(a) improve their skills in their current occupation by developing expertise in advanced topics,
(b) acquire knowledge to pursue new careers, or
(c) explore emerging fields before committing to relevant master’s degree programs that require more courses.

Many students pursue a graduate certificate for personal growth or part-time.

Each certificate program contains 4 graduate courses (equivalent to a total of 12 graduate credits) that are normally part of the curriculum for a 30-credit Master’s degree program. After successful completion of a graduate certificate, a student may decide to continue studying at NJIT towards the corresponding Master’s degree by taking advantage of rapid matriculated acceptance and eventual acquisition of two credentials (essentially for the price of the Master’s degree).

Graduate Certificates are available in:

Full List of Graduate Certificates

(click on the column header to sort) * = available online (https://www5.njit.edu/online/)

<table>
<thead>
<tr>
<th>Certificate Name</th>
<th>Industry</th>
<th>College</th>
<th>Dept</th>
<th>Advisor</th>
<th>Related MS</th>
</tr>
</thead>
</table>

* = available online (https://www5.njit.edu/online/).
<table>
<thead>
<tr>
<th>Certificate Type</th>
<th>Courses</th>
<th>Faculty</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Data Essentials</td>
<td>Computing, Analytics</td>
<td>Chase Wu</td>
<td>https://catalog.njit.edu/graduate/computing-sciences/computer-science/ms/</td>
</tr>
<tr>
<td>Biology of Health</td>
<td>Biology</td>
<td>Gareth Russell</td>
<td>https://catalog.njit.edu/graduate/science-liberal-arts/biology/ms/</td>
</tr>
<tr>
<td>Biomedical Device Development</td>
<td>Biomedical</td>
<td>Max Roman</td>
<td>https://catalog.njit.edu/graduate/newark-college-engineering/biomedical/ms/</td>
</tr>
</tbody>
</table>

* Required course(s)
<table>
<thead>
<tr>
<th>Program</th>
<th>Department</th>
<th>Website</th>
<th>Contact</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Title</td>
<td>School/Program</td>
<td>Website</td>
<td>Faculty/Instructor</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DS (http://ds.njit.edu/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS (http://catalog.njit.edu/graduate/computing-sciences/computer-science/ms/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIS (http://catalog.njit.edu/graduate/computing-sciences/information-systems/business-information-systems-ms/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CME (http://cme.njit.edu/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTEN (https://catalog.njit.edu/graduate/newark-college-engineering/chemical-materials-engineering/materials-science-engineering-ms/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DS (http://ds.njit.edu/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSCT (https://catalog.njit.edu/graduate/computing-sciences/data-science/data-science-ms/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARCH (http://architecture.njit.edu/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARCH (http://humanities.njit.edu/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Department</td>
<td>Website</td>
<td>Faculty</td>
<td>Additional Information</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IT Sales & Analytics
(https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/it-sales-analytics-cert/) *

Business, Sales
MTSM (https://management.njit.edu/)
MGMT (http://management.njit.edu/)
Benjamin Manyindo
(http://directory.njit.edu/PersDetails.aspx?persid=bm76)
MBA (http://catalog.njit.edu/graduate/management/technology-mba/)

Marketing
https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/marketing-cert/) *

Marketing, Business
MTSM (https://management.njit.edu/)
MGMT (https://management.njit.edu/)
Benjamin Manyindo
(http://directory.njit.edu/PersDetails.aspx?persid=bm76)
MBA (http://catalog.njit.edu/graduate/management/technology-mba/)

Management Information Systems
(https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/management-information-systems-cert/) *

Management, Business, MIS
MTSM (https://management.njit.edu/)
MGMT (https://management.njit.edu/)
Benjamin Manyindo
(http://directory.njit.edu/PersDetails.aspx?persid=bm76)
BIS (https://catalog.njit.edu/graduate/computing-sciences/information-systems/business-information-systems-ms)/MBA (http://catalog.njit.edu/graduate/management/technology-mba/)

Management of Technology
https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/management-technology-cert/) *

Management, Business
MTSM (https://management.njit.edu/)
MGMT (https://management.njit.edu/)
Benjamin Manyindo
(http://directory.njit.edu/PersDetails.aspx?persid=bm76)
MBA (http://catalog.njit.edu/graduate/management/technology-mba/)

Mini-MBA
(https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/mini-mba-cert/) *

Management, Business
MTSM (https://management.njit.edu/)
MGMT (https://management.njit.edu/)
Benjamin Manyindo
(http://directory.njit.edu/PersDetails.aspx?persid=bm76)
MBA (http://catalog.njit.edu/graduate/management/technology-mba/)

Network Security and Information Assurance
(https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/network-security-information-assurance-cert/)

Computing, Network Security
YWCC (http://ccs.njit.edu/)
INFO (https://informatics.njit.edu/)
David Ullman
(http://directory.njit.edu/PersDetails.aspx?persid=ullman)
IS (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms)/CSP (http://catalog.njit.edu/graduate/computing-sciences/computer-science/cyber-security-privacy-ms)/ITAS (http://catalog.njit.edu/graduate/computing-sciences/information-technology/administration-security-ms/)
Neuroscience (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/neuroscience-cert/)

Neural Networks, Biology

CSLA (http://csla.njit.edu/)

BIOL (http://biology.njit.edu/)

BIOL (https://catalog.njit.edu/graduate/science-liberal-arts/biology/ms/)

Organismal and Systems Biology (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/organismal-systems-biology-cert/)

Biology, Environmental Science

CSLA (http://csla.njit.edu/)

BIOL (http://biology.njit.edu/)

Gareth Russell (http://directory.njit.edu/PersDetails.aspx?persid=russell)

BIOL (https://catalog.njit.edu/graduate/science-liberal-arts/biology/ms/)

Pharmaceutical Management (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/pharmaceutical-management-cert/) *

Management, Pharma, FDA

NCE (http://engineering.njit.edu/)

CME (http://chemicaleng.njit.edu/)

Gordana Obuskovic (http://directory.njit.edu/PersDetails.aspx?persid=gordana)

PSM (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/pharmaceutical-systems-management-ms/)

PHEN (http://catalog.njit.edu/graduate/newark-college-engineering/chemical-biological-pharmaceutical/pharmaceutical-ms/)

Pharmaceutical Manufacturing (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/pharmaceutical-manufacturing-cert/)

Drug Manufacturing, FDA

NCE (http://engineering.njit.edu/)

CME (http://chemicaleng.njit.edu/)

Gordana Obuskovic (http://directory.njit.edu/PersDetails.aspx?persid=gordana)

PHEN (http://catalog.njit.edu/graduate/newark-college-engineering/chemical-biological-pharmaceutical/pharmaceutical-ms/)

Pharmaceutical Technology (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/pharmaceutical-technology-cert/)

Drug Development, FDA

NCE (http://engineering.njit.edu/)

CME (http://chemicaleng.njit.edu/)

Gordana Obuskovic (http://directory.njit.edu/PersDetails.aspx?persid=gordana)

PHEN (http://catalog.njit.edu/graduate/newark-college-engineering/chemical-biological-pharmaceutical/pharmaceutical-ms/)

Chemical / Materials / Polymers Engineering

NCE (http://engineering.njit.edu/)

CME (http://chemicaleng.njit.edu/)

MTSE (http://catalog.njit.edu/graduate/newark-college-engineering/chemical-materials-engineering/materials-science-engineering-ms/)
<table>
<thead>
<tr>
<th>Program</th>
<th>Department</th>
<th>Website</th>
<th>Contact</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

(links may be outdated or require additional navigation)
<table>
<thead>
<tr>
<th>Certificate Type</th>
<th>Department</th>
<th>Website</th>
<th>Coordinator</th>
<th>Website Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Studies</td>
<td>Transportation Engineer</td>
<td>CEE (http://civil.njit.edu/)</td>
<td>I Jy Steven Chien (http://directory.njit.edu/PersDetails.aspx?persid=chien)</td>
<td>TRAN (http://catalog.njit.edu/graduate/civil-environmental/transportation/ms/)</td>
</tr>
</tbody>
</table>
Collaborative Doctorate

The Collaborative Ph.D. program is designed for engineers, executives, scientists, military personnel, state and federal government employees, and educators who want to pursue a Ph.D. degree part-time while continuing full-time employment. The admission and academic requirements are the same as for NJIT’s regular Ph.D. programs but the collaborative nature of the program allows participants to draw on the combined expertise and resources of the university and their employer. The dissertation research of students in the collaborative Ph.D. is expected to produce original contributions to science, engineering, technology or management and satisfy all quality criteria set by the dissertation committee. The student’s main dissertation advisor is an NJIT faculty member while the research may meet the needs of the student and employer in advancing knowledge in the chosen discipline.

To apply to the collaborative Ph.D. program, candidates must have been employed in their specified field for at least a year. NJIT’s standard criteria for admission will be applied but prior work-related research activity, publications, and honors will also be considered in evaluating prospective participants.

Requirements

Before applying to the collaborative Ph.D. program, the candidate will seek the employer’s commitment in any of the following ways:

1. The candidate will be allowed to use the employer’s facilities (e.g., laboratory equipment or computing/IT infrastructure) to carry out dissertation research (NJIT’s Ph.D. program director or potential dissertation advisor must be contacted in advance to discuss the suitability of available resources). Should the student leave the employer, a revised study/research plan may be developed.

2. The employer may suggest an in-house researcher to serve on the student’s Ph.D. dissertation committee. This researcher, who must have a terminal degree in a relevant discipline, must be an active researcher and may serve as the candidate's dissertation co-advisor; the main advisor will be an NJIT faculty member. Patent and copyright issues are to be resolved prior to the start of the dissertation research, and preferably after successful completion of the required coursework and qualifying exam. Employers who have a proprietary interest in the student’s dissertation research, including patent, copyright and technology transfer rights, are expected to execute formal IP (Intellectual Property) agreements with NJIT prior to the start of the dissertation research.

The student’s Ph.D. dissertation committee and the Office of Graduate Studies determine residency requirements. It is expected that the employer will allow the student to concentrate on dissertation research for at least one year.

For more information about the program or to discuss potential paths that can lead to the degree, contact the Vice Provost for Graduate Studies (ziavras@njit.edu).

Online Learning

Online Learning offers numerous graduate degrees, select Graduate Certificates, and graduate courses in many disciplines including communication, computer science, information systems, information technology, humanities, management, and engineering management. Online Learning offerings can be viewed at http://www5.njit.edu/online (http://www5.njit.edu/online/).

Online Learning provides students the opportunity to earn college credit through enrollment in online electronic-based courses. These courses are virtual learning communities with instructor-led online classrooms that utilize various technologies such as Moodle (http://moodle.njit.edu) for presenting course material, online quizzes, asynchronous and synchronous communication. Online courses are flexible and rigorous educational experiences suited to motivated students.

The program’s reach is worldwide. Course material can be accessed through the Internet via learning management systems utilizing multimedia presentations.

Online Learning furnishes a convenient alternative to graduate distance learners and students who have scheduling conflicts. For more information, contact the Office of Graduate Studies at 973-596-3462 or email online@njit.edu.
Course Codes

NJIT Courses

The courses listed here have been approved in accordance with the policies of NJIT. Department or university needs may necessitate changes in this list, and courses may be cancelled because of insufficient registration. A list of scheduled courses will be issued by the registrar before each semester begins. Information found in the Degree Programs section of this catalog serves as a guide for program planning in consultation with departmental or program advisors.

Alphabetical Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>Accounting</td>
</tr>
<tr>
<td>ARCH</td>
<td>Architecture</td>
</tr>
<tr>
<td>BDS</td>
<td>Business Data Science</td>
</tr>
<tr>
<td>BINF</td>
<td>Biomedical Informatics</td>
</tr>
<tr>
<td>BME</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>CE</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>CHE</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemistry</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>DS</td>
<td>Data Science</td>
</tr>
<tr>
<td>ECE</td>
<td>Electrical and Computer Engineering (formerly CoE, EE)</td>
</tr>
<tr>
<td>ECON</td>
<td>Economics</td>
</tr>
<tr>
<td>EM</td>
<td>Engineering Management</td>
</tr>
<tr>
<td>ENE</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>EPS</td>
<td>Environmental Policy Studies</td>
</tr>
<tr>
<td>EVSC</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>FIN</td>
<td>Financial Management</td>
</tr>
<tr>
<td>HIST</td>
<td>History</td>
</tr>
<tr>
<td>HRM</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>IE</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>MARC</td>
<td>Masters of Architecture</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>MECH</td>
<td>Mechanics</td>
</tr>
<tr>
<td>MGMT</td>
<td>Management</td>
</tr>
<tr>
<td>MIP</td>
<td>Infrastructure Planning</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information Systems (formerly Information Systems Management)</td>
</tr>
<tr>
<td>MRKT</td>
<td>Marketing Management</td>
</tr>
<tr>
<td>MTEN</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>MTSE</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>PHEN</td>
<td>Pharmaceutical Engineering</td>
</tr>
<tr>
<td>PHYS</td>
<td>Physics</td>
</tr>
<tr>
<td>TRAN</td>
<td>Transportation</td>
</tr>
</tbody>
</table>

Numerical Code

Numbers from 500 to 599 (500G to 599G for Architecture) indicate entry-level graduate courses normally offered for students who require additional background for admission to 600- or 700-level courses.

Numbers from 600 to 699 indicate regular-level graduate courses normally associated with master's-level study.

Numbers from 700 to 799 indicate advanced-level graduate courses normally associated with research and/or doctoral-level study.
Rutgers-Newark Courses

The current Rutgers-Newark Schedule of Classes (https://sis.rutgers.edu/soc/) can be viewed for cross-registration along with the Rutgers catalog when planning for cross-registration.

Student Rights and Responsibilities

Rights and Responsibilities

Code of Student Conduct

NJIT requires students to conduct themselves with decorum and to adhere to standards of ethical and professional behavior. NJIT has adopted, and requires all students to comply with, the Code of Student Conduct. The policies and procedures governing this code are contained in a separate publication, the Code of Student Conduct, and are deemed incorporated into this catalog. A copy of the Code may be obtained from the Office of the Dean of Students or online at www.njit.edu/dos/policies/conductcode/index.php (http://www.njit.edu/dos/policies/conductcode/)

Identification Card

All students must carry an NJIT identification card while on campus. An ID card must be presented at the request of a university administrator, faculty member or public safety officer. Facilities, parking, building access, and services of the university require presentation of a valid university ID.

Students should obtain an ID card as soon as possible after registration is completed. Photographs for ID cards are taken throughout the semester in the Department of Public Safety, located in the parking facility. Dates and times to obtain an ID are posted at the Campus Center Information Desk. Proof of registration in the form of a tuition receipt or registrar's receipt is required to obtain an ID card. These receipts also will be accepted as NJIT identification until the ID card is issued. ID validation stickers are issued each semester and are available at the Department of Public Safety or the Campus Center Information Desk.

Lost or stolen IDs should be reported as soon as possible to the Department of Public Safety. A replacement for a lost card is obtained by paying a $25 charge at the Bursar's Office cashier's window in the Student Services Mall and presenting the receipt at the Department of Public Safety where the card will be re-issued.

NJIT cards are not transferable. Cards are not to be loaned to anyone for any reason. ID cards are the property of NJIT and must be returned upon request.

Family Educational Rights and Privacy Act

(Effective Fall 2014, this policy supersedes all previous policies)

The Family Educational Rights and Privacy Act (FERPA) affords eligible students certain rights with respect to their education records. (An “eligible student” under FERPA is a student who is 18 years of age or older or who attends a postsecondary institution.) These rights include:

1. The right to inspect and review the student's education records within 45 days after the day New Jersey Institute of Technology receives a request for access. A student should submit to the registrar a written request that identifies the record(s) the student wishes to inspect. The registrar will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the registrar, the registrar shall coordinate access to inspect those records.

2. The right to request the amendment of the student’s education records that the student believes is inaccurate, misleading, or otherwise in violation of the student’s privacy rights under FERPA.

A student who wishes to ask New Jersey Institute of Technology to amend a record should write the registrar, clearly identify the part of the record the student wants changed, and specify why it should be changed.

If New Jersey Institute of Technology decides not to amend the record as requested, New Jersey Institute of Technology will notify the student in writing of the decision and the student’s right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

3. The right to provide written consent before New Jersey Institute of Technology discloses personally identifiable information (PII) from the student's education records, except to the extent that FERPA authorizes disclosure without consent. See “Additional Disclosure Information” below.

4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by the New Jersey Institute of Technology to comply with the requirements of FERPA. The name and address of the Office that administers FERPA is:

Family Policy Compliance Office

U.S. Department of Education

400 Maryland Avenue, SW
Disclosure of Directory Information

New Jersey Institute of Technology, at its discretion, may provide directory information, in accordance with the provisions of the law including a student’s name, address, telephone listing, date and place of birth, major field of study, participation in officially recognized activities and sports, weight and height of members of athletic teams, dates of attendance, degrees and awards received, and the most recent previous educational agency or institution attended by the student.

Students may request to withhold disclosure of directory information. To ensure that a request is properly processed, it must be submitted on the official ‘Request to Prevent Disclosure of Directory Information Form’, which is available in the Office of the Registrar. Request for non-disclosure will be honored by New Jersey Institute of Technology for one academic year and must be filed again at the beginning of the next academic year. New Jersey Institute of Technology assumes that failure on the part of any student to specifically request on the official form preventing the disclosure of directory information indicates individual approval of disclosure.

Additional Disclosure Information

FERPA permits the disclosure of PII from students’ education records, without consent of the student, if the disclosure meets certain conditions found in §99.31 of the FERPA regulations. Except for disclosures to school officials, disclosures related to some judicial orders or lawfully issued subpoenas, disclosures of directory information, and disclosures to the student, §99.32 of FERPA regulations requires the institution to record the disclosure. Eligible students have a right to inspect and review the record of disclosures. A postsecondary institution may disclose PII from the education records without obtaining prior written consent of the student –

- To other school officials within New Jersey Institute of Technology whom New Jersey Institute of Technology has determined to have legitimate educational interests. A school official is a person employed by New Jersey Institute of Technology in an administrative, supervisory, academic, research, or support staff position (including law enforcement unit personnel and health staff); a person serving on the board of trustees; or a student serving on an official committee, such as a disciplinary or grievance committee. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibilities for New Jersey Institute of Technology. This includes contractors, consultants, volunteers, or other parties to whom the school has outsourced institutional services or functions, provided that the conditions listed in §99.31(a)(1)(i)(B)(1) - (a)(1)(i)(B)(2) are met. (§99.31(a)(1))

- To officials of another school where the student seeks or intends to enroll, or where the student is already enrolled if the disclosure is for purposes related to the student’s enrollment or transfer, subject to the requirements of §99.34. (§99.31(a)(2))

- To authorized representatives of the U. S. Comptroller General, the U. S. Attorney General, the U.S. Secretary of Education, or State and local educational authorities, such as a State postsecondary authority that is responsible for supervising New Jersey Institute of Technology State-supported education programs. Disclosures under this provision may be made, subject to the requirements of §99.35, in connection with an audit or evaluation of Federal- or State-supported education programs, or for the enforcement of or compliance with Federal legal requirements that relate to those programs. These entities may make further disclosures of PII to outside entities that are designated by them as their authorized representatives to conduct any audit, evaluation, or enforcement or compliance activity on their behalf. (§§99.31(a)(3) and 99.35)

- In connection with financial aid for which the student has applied or for which the student has received, if the information is necessary to determine eligibility for the aid, determine the amount of the aid, determine the conditions of the aid, or enforce the terms and conditions of the aid. (§99.31(a)(4))

- To organizations conducting studies for, or on behalf of, the school, in order to: (a) develop, validate, or administer predictive tests; (b) administer student aid programs; or (c) improve instruction. (§99.31(a)(6))

- To accrediting organizations to carry out their accrediting functions. (§§99.31(a)(7))

- To parents of an eligible student if the student is a dependent for IRS tax purposes. (§99.31(a)(8))

- To comply with a judicial order or lawfully issued subpoena. (§99.31(a)(9))

- To appropriate officials in connection with a health or safety emergency, subject to §99.36. (§99.31(a)(10))

- Information the school has designated as “directory information” under §99.37. (§99.31(a)(11))

- To a victim of an alleged perpetrator of a crime of violence or a non-forcible sex offense, subject to the requirements of §99.39. The disclosure may only include the final results of the disciplinary proceeding with respect to that alleged crime or offense, regardless of the finding. (§99.31(a)(13))

- To the general public, the final results of a disciplinary proceeding, subject to the requirements of §99.39, if the school determines the student is an alleged perpetrator of a crime of violence or non-forcible sex offense and the student has committed a violation of the school’s rules or policies with respect to the allegation made against him or her. (§99.31(a)(14))
• To parents of a student regarding the student’s violation of any Federal, State, or local law, or of any rule or policy of the school, governing the use or possession of alcohol or a controlled substance if the school determines the student committed a disciplinary violation and the student is under the age of 21. (§99.31(a)(15))

Anti-Discrimination Policy

New Jersey Institute of Technology reaffirms its commitment to a policy of non-discrimination on the basis of race, sex, sexual orientation, age, religion, ethnic origin, handicap or veterans' status in its employment policies, educational programs and activities under university control.

Assuring a climate of equal opportunity is the direct responsibility of all levels of management. Administrative and supervisory personnel are required to comply with applicable government regulations and the affirmative action goals of the university. Among these are Executive Orders 11246 and 11375 (Affirmative action); the Civil Rights Act of 1964, as amended; Title IX of the Education Amendments of 1972 (Sex Discrimination); Section 504 of the Rehabilitation Act of 1973; Americans with Disabilities Act (Non-discrimination on the Basis of Handicap); The New Jersey Law Against Discrimination, Title 10, Chapter 5, 10:5-1 to 10:5-28, NJ Revised Statutes, as amended; and the New Jersey Governor's Code of Fair Practices, Executive Order No. 21 (1965), as amended and Executive Order No. 39 (1991), "Prohibition in State Government of Discrimination Based on Sexual Orientation."

Any reported act of discriminatory behavior will be investigated through the Office of the Dean of Student Services, the Office of Compliance and Training, or the Office of General Counsel and Employment Policy Relations.

Sexual Harassment Policy

It is the continuing objective of the university to offer a work and study environment to its employees and students that rewards career and educational goals based upon relevant factors such as ability and work performance. Sexual harassment of employees and students is unacceptable. It is a barrier to educational and professional development and contrary to law and university policy.

In accordance with the NJIT’s Title IX Sexual Harassment Policy (https://www.njit.edu/titleix/policies/), persons found to have violated university policy will face investigation, managerial review and possible disciplinary action up to and including employment termination and or dismissal from the university (for students). For a copy of the university's policies prohibiting sexual harassment, please visit the Title IX website (https://www.njit.edu/titleix/) or the Office of the Dean of Students for the Code of Student Conduct. (https://www.njit.edu/dos/policies/conductcode/) for sexual harassment that falls outside the scope of Title IX.

Copyright Ownership

NJIT believes its role as an educational institution is best served by disclosing to the public all academic research, projects, theses and dissertations developed by students during the course of their studies or employment at the university.

Projects, theses and dissertations created by students shall be governed by the following provisions as outlined in NJIT's copyright policy under "Ownership and Disposition of Copyrightable Materials":

A. Copyright ownership of projects, theses and dissertations generated by research that is performed in whole or in part by the student with financial support in the form of wages, salaries, stipend, or grant from funds administered by the University shall be determined in accordance with the terms of the support agreement, or in the absence of such terms, shall become the property of the University.

B. Copyright ownership of projects, theses and dissertations generated by research performed in whole or in part utilizing equipment or facilities provided to the University under conditions that impose copyright restriction shall be determined in accordance with such restrictions.

C. Copyright in projects, theses and dissertations not within the provisions of Categories A and B of this policy shall be the property of the author. However, the student must, as a condition of a degree award, grant royalty-free permission to the University to reproduce and publicly distribute copies of the project, thesis or dissertation.

Requests for permission to publish Category A and B should be addressed to the Office of Intellectual Property.

For further information, call the Office of Intellectual Property, (973) 596-5825.

Ownership of Intellectual Property

In accordance with university policy, NJIT retains all right, title and interest to any and all intellectual property (i.e., inventions, discoveries, creative works, trade secrets and know-how) developed by NJIT students during the course of their studies or employment at the university or while using university facilities.

To protect against premature disclosure of an invention and/or publication of anything that may be of a proprietary nature, students must immediately report their intent to do so to the Office of Technology Development. Students must neither publish nor discuss proprietary information with anyone other than the Office of Technology Development or members of the University's Intellectual Property Committee. When a project, thesis or dissertation covers material that is potentially proprietary, both the student and the advisor must report the existence of such material to the Office of Graduate Studies and the Office of Technology Development; so that the University may expedite its review of such material and determine whether or not it is proprietary and should be protected under the University's guidelines for protecting its Intellectual Property. If necessary, the Office of Graduate Studies and the Office of Technology Development will take steps to sequester patentable material in archival documents such as theses and dissertations. If
the University applies for a patent, the student will sign an appropriate assignment agreement. All income derived from such intellectual property will be shared between NJIT and the student in accordance with the University’s published policy (see http://www.njit.edu/policies/sites/policies/files/cms/pdf/patentpolicy.pdf).

For further information, call the Office of Intellectual Property, (973) 596-5825.

Property Loss and Damage

NJIT is not responsible for loss of property by fire or theft in its buildings or grounds. NJIT is not responsible for property damaged as the result of vandalism in its buildings or grounds.

Drug Abuse Prevention Program

New Jersey Institute of Technology prohibits the use of illegal drugs on its premises including the possession, use, or selling of marijuana in any form on campus and during University activities. University policy concerning possession and consumption of alcoholic beverages on campus subscribes to strict enforcement of the laws of the State of New Jersey, the County of Essex and the City of Newark. In addition, the policy stipulates that any consumption must occur within a responsible social framework wherein beverages are not the focus of the event.

Students with concerns about their own or someone else's use of drugs and/or alcohol should be aware that they can receive information, counseling and referral assistance from the Office of the Dean of Students (https://www.njit.edu/dos/), the NJIT CARE Team (https://www.njit.edu/care/), the Center for Counseling & Psychological Services (https://www.njit.edu/counseling/), or Campus Health Services (https://www.njit.edu/healthservices/). The professional staff of the Counseling Center can provide substance abuse counseling and assessment in some situations and will refer more serious problems to off-campus facilities and services.

In addition, the university, through the Division of Student Affairs (https://www.njit.edu/studentaffairs/), offers a series of educational programs focused on the areas of drug and alcohol information and substance abuse prevention.

Drug-Free Workplace Policy

Student employees are subject to university policies regarding employment. New Jersey Institute of Technology is committed to maintaining a drug-free workplace in compliance with applicable laws. The university is further committed both to rigorous enforcement of applicable laws and policies and to support for those trying to cope with drug-related problems. The unlawful possession, use, distribution, dispensation, sale, or manufacture of controlled substances is prohibited on university premises. Any NJIT employee determined to have violated this policy or engaged in drug-related problems that have an impact upon the workplace may be subject to disciplinary action up to and including termination. At the discretion of the university, any employee convicted of a drug offense involving the workplace shall be subject to employee discipline (up to and including termination) and/or required to satisfactorily complete a drug rehabilitation program as a condition of continued employment.

The professional staff of the Counseling Center can provide substance abuse counseling and assessment in some situations and will refer more serious problems to off-campus facilities and services. The illegal use of controlled substances can seriously injure the health of employees, adversely affect the performance of their responsibilities, and endanger the safety and well-being of fellow employees, students, and members of the general public. Therefore, the university urges employees engaged in the illegal use of controlled substances to seek professional advice and treatment. Anyone who is employed at NJIT who has a drug problem is encouraged to contact the Director of the Employee Assistance Program (EAP), who will assist in obtaining available treatment. Employees engaged in contracts with the U.S. Department of Defense are additionally subject to Department of Defense requirements and may be required to submit to tests for the illegal use of controlled substances.

As a condition of employment, an employee of NJIT will notify his/her supervisor if he or she is convicted of a criminal drug offense involving the workplace within five days of the conviction. In the event any such conviction involves an employee working on a federal contract or grant, the university will notify the granting or contracting federal agency within 10 days of receiving notice of a conviction. A copy of this statement shall be given to all employees.

This statement and its requirements are promulgated in accordance with the requirements of the Drug-Free Workplace Act of 1988 enacted by the United States Congress. The university will continue its efforts to maintain a drug-free environment by adhering to the above policy and by providing through the EAP and the offices of Human Resources, and Compliance and Training, ongoing drug awareness programs.

Instructional Delivery

Modes of Instructional Delivery

6 Modes of Instructional Delivery at NJIT

1) **Face-to-Face**: Delivery of instruction is structured around in-person classroom meeting times. Instruction is delivered in person and students are expected to attend class. (sometimes referred to as traditional classroom courses)

2) **Converged Learning**: Delivery of instruction is independent of place, merging the physical and virtual classrooms. There is an attendance expectation and students can choose to attend class face-to-face or using real-time synchronous video conferencing technology. Some instructors may require occasional proctored exams. (sometimes referred to as a synchronous distributed course).
Notes:

• F-1 and J-1 Students: Students must attend the class face-to-face.

 • Please refer to the Office of Global Initiatives (https://www.njit.edu/global/) for more information.

3) Synchronous online: delivery of instruction takes place during the day and time noted, independent of location. All course activity can be completed online through the learning management system. There are no face-to-face sessions, but remote attendance is expected.

4) Online: Delivery of instruction in which all course activity can be completed online through the learning management system. There are no required face-to-face sessions but students are expected to follow a week-by-week schedule as outlined in the syllabus. Work is typically done in an asynchronous mode and students can complete the coursework without coming to campus. Note: some instructors may require occasional synchronous online meetings or proctored exams.3 (sometimes referred to as eLearning).

Notes:

• Fully online programs: NJIT offers several master’s degrees and Graduate Certificates that can be completed entirely online (https://www.njit.edu/online/programs/).

 • eTuition: Online courses count towards eTuition status.

 • F-1 and J-1 Students: Students may only count three credits of Hyflex or Online courses toward a full course of study per academic term:

 #A full course of study for undergraduate students is 12 credits.

 #A full course of study for graduate students is 9 credits.

 #There are no restrictions during the summer unless it is an F-1 and J-1 student’s last term.

 #In their last term F-1 and J-1 students must take at least one Face-to-Face or Hybrid or Converged Learning course.

 #Please refer to the Office of Global Initiatives (https://www.njit.edu/global/) for more information.

5) Hybrid: Delivery of instruction in which some traditional face-to-face contact hours are replaced with required synchronous or asynchronous online instruction (frequently through the learning management system). The amount of online activity is set by the instructor and varies by course. Students should refer to the course syllabi for the course meeting schedule, however no Hybrid course should be more than 50% online. (sometimes referred to as blended learning)

Notes:

• F-1 and J-1 Students: Hybrid courses count towards a full course of study. There are no restrictions to how many hybrid courses F-1 and J-1 students can register for.

 #A full course of study for undergraduate students is 12 credits.

 #A full course of study for graduate students is 9 credits.

 #There are no restrictions during the summer unless it is an F-1 and J-1 student’s last term.

 #In their last term F-1 and J-1 students must take at least one Face-to-Face or Hybrid or Converged Learning course.

 #Please refer to the Office of Global Initiatives (https://www.njit.edu/global/) for more information.

6) HyFlex: Delivery of instruction is independent of time and place, allowing for students to choose to attend class in any of three modes:

• Face-to-Face – the traditional classroom model;

 • Synchronous Online – delivery of instruction takes place during the day and time noted, independent of location. All course activity can be completed online through the learning management system. There are no face-to-face sessions, but remote attendance is expected;

 • Asynchronous Online – different time, different place; utilizing multimedia learning objects and lecture capture technologies. Students are expected to follow a week-by-week schedule as outlined in the syllabus.

Students can choose to change which option they use to attend courses weekly. Some instructors may require occasional proctored exams.

Notes:

• eTuition: HyFlex courses count towards eTuition status.

 • F-1 and J-1 Students: Students may only count three credits of Hyflex or Online courses toward a full course of study per academic term:
A full course of study for undergraduate students is 12 credits.

A full course of study for graduate students is 9 credits.

There are no restrictions during the summer unless it is an F-1 and J-1 student’s last term.

In their last term F-1 and J-1 students must take at least one Face-to-Face or Hybrid or Converged Learning course.

Please refer to the Office of Global Initiatives (https://www.njit.edu/global/) for more information.

1 Contact hours are independent of delivery method and defined in the course catalog.

2 Definitions are aligned with OLN’s definitions https://onlinelearningconsortium.org/updated-e-learning-definitions-2/.

3 See http://www.njit.edu/online/current-students/faq/ for more information about proctored exams.

Policy on Administration of Midterm and Final Exams

NJIT policy requires that all midterm and final exams must be proctored, regardless of delivery mode, in order to increase academic integrity. Note that this does not apply to essay or authentic based assessments. Effective beginning Fall 2019 semester, students registered for a fully online course section (e.g., online or Hyflex mode) must be given the option to take their exam in a completely online format, with appropriate proctoring.

Admissions and Financial Support

If you’re looking for an edge, start by enrolling in one of our undergraduate, graduate or continuing education programs and becoming an active participant in the NJIT experience.

Find out what sets NJIT apart (http://www.njit.edu/about/rankings-and-recognition/) from other schools and what’s new on campus and in the classroom. As a public university, our tuition and fees -- combined with a generous financial assistance (http://www5.njit.edu/financialaid/) (undergraduate and graduate) program -- put the edge within your reach.

NJIT awards funding to a select number of qualified full time Ph.D. students in the form of teaching and research assistantships. It also provides fellowships to a limited number of Master's and PhD students. For more information: http://www5.njit.edu/graduatestudies/finaid.php

Admissions

Every application for admission is processed through the Office of University Admissions and is reviewed by the Graduate Admissions Committee. Candidates are notified of their admission status by mail. Admission decisions cannot be communicated by telephone, e-mail, fax, in-person, or to third parties. For admissions information contact:

Office of University Admissions
New Jersey Institute of Technology
University Heights
Newark, NJ 07102-1982
(973) 596-3300, fax (973) 596-3461, e-mail: admissions@njit.edu

For an online application for admission go to www.njit.edu/admissions/apply-online.php (http://www.njit.edu/apply-now/)

Test Requirements

Graduate Record Examinations (GRE)

The GRE (general test) is required of all applicants to doctoral programs, all applicants seeking financial support, and all applicants whose most recent degree was awarded from an institution outside of the United States.

Specific master's programs: applied physics, architecture, biology, infrastructure planning, materials science and full-time applicants to engineering programs require all applicants to submit official GRE scores.

The GRE can be used to fulfill test requirements for the master's programs in information systems and in public health. The GRE is highly recommended for all other programs.

For further information about taking the GRE, contact: Educational Testing Service, P.O. Box 6000, Princeton, NJ, 08541; phone (609) 771-7670, 8 a.m. to 8:45 p.m.; www.gre.org (http://www.gre.org)

Graduate Management Admission Test (GMAT)

The GMAT is required for all applicants for the MBA in Management Technology and the MS in Management programs. Students with significant business experience who are seeking admission into the MS in Management program may apply for a GMAT waiver. For additional information, contact
the graduate admissions office at (973) 596-6378. The GMAT also can be used to fulfill test requirements for the master's programs in information systems and in public health.

For further information about taking the GMAT, contact: Educational Testing Service, P.O. Box 592, Princeton, NJ, 08541; phone (609) 771-7330, 8 a.m. to 8:45 p.m.; or www.gmat.org (http://www.gmat.org)

Law School Admission Test (LSAT)
The LSAT can be used to fulfill test requirements for the master's program in public health.

For further information about taking the LSAT, contact: Law School Admission Council, (215) 968-1001 or www.lsac.org (http://www.lsac.org)

Medical College Admission Test (MCAT)
The MCAT can be used to fulfill test requirements for the master's programs in information systems and in public health.

For further information about taking the MCAT, contact: Association of American Medical Colleges, (202) 828-0600 or https://www.aamc.org/ (https://www.aamc.org/students/) For registration materials, contact: MCAT Program Office, P.O. Box 4056, Iowa City, Iowa, 52243; or phone (319) 337-1357.

Test of English as a Foreign Language (TOEFL)
All international applicants must show a TOEFL score of at least 550 (paper-based); 213 (computer-based); 79 (internet-based).

For further information about taking the TOEFL, contact: TOEFL/TSE Services, P.O. Box 6151, Princeton, NJ 08541; phone (609) 771-7100 Monday-- Friday, between 8 a.m. and 9:45 p.m. and Saturday, between 9 a.m. and 4:45 p.m. New York time, for recorded information or personal assistance; or see www.toefl.org (http://www.toefl.org).

International English Language System (IELTS)
International applicants may submit results from the IELTS exam in lieu of the TOEFL. The minimum score is 6.5 with no sub-score lower than 6.0.

For further information about taking the IELTS, contact IELTS; www.ielts.org (http://www.ielts.org).

Master's Degree Programs
Master's degree programs provide advanced education needed by professionals in an era of rapidly expanding technology and normally require more specialization in the academic discipline of the student's bachelor's degree.

To be considered for a master's program at NJIT, you must have completed a four-year undergraduate program accredited in the United States, or its equivalent, and demonstrate strong academic achievement in an appropriate discipline.

All applicants should submit supplementary evidence of their potential for successful graduate work. Letters of recommendation, GRE or GMAT scores, a publications record, prior research experience, a record of exceptional career development, a statement of the applicant's objectives, interests and professional experience are examples of appropriate supplementary evidence.

Bridge Program
Students who seek a master's degree in an academic discipline different from that of the bachelor's degree may be admitted to a master's degree program but may be required to complete appropriate undergraduate and/or graduate prerequisites in addition to the normal graduate degree requirements of the program. The program of courses will be individually designed in consultation with their graduate advisor. Bridge courses must be completed before 9 credits of graduate degree courses are earned. Bridge courses are not counted as degree credits but do count in graduate GPA calculations if the course is numbered 500 (500G for Architecture) or higher.

Admissions Procedures for Master's Study
Students can access and submit the graduate application online at www.njit.edu/admissions/apply-online.php (http://www.njit.edu/apply-now/). A non-refundable application fee is required. Applications may be deferred for one semester for a delay in admission without incurring another fee. Official transcripts from all colleges and universities previously attended are required. To be accepted as official, transcripts must be sent directly to the Office of University Admissions by the institutions concerned. Applications for fall (September) admission must be received by June 1; for spring (January) admission by November 1. Applications for financial support for fall (September) must be received by December 15. Applications for financial support for spring (January) must be received by October 15. Supporting documents must also reach the Office of University Admissions by the above dates. Incomplete applications or applications received after these dates will normally be processed for the following semester.

Program Transfers
Students who wish to transfer from one master's degree program at NJIT to another at NJIT must complete a change form on the Registrar Forms website. Courses taken in one program are not necessarily transferable to another, nor may credits be applied to more than one degree, except as
provided by the M.S./M.S. program. Students admitted to one degree program are normally required to be in the original program for one full year before admission and enrollment in another degree program.

Joint Master's Degrees with Other Universities

The university cooperates with Rutgers-Newark and with Rutgers Biomedical and Health Sciences in unique offerings of joint master's programs. Specific information about application and admission requirements for each is provided in the degree program descriptions located in the Degree Program section of this catalog. Programs that lead to joint master's degrees are applied physics, biology, computational biology, environmental science, and history with Rutgers-Newark and public health with Rutgers-Newark and RBHS. There is also a dual degree program in which a student may simultaneously earn a masters degree in Infrastructure Planning from NJIT and in City and Regional Planning from Rutgers-New Brunswick.

Doctoral Programs

New Jersey Institute of Technology offers doctoral programs to fill society's need for creative research scientists and engineers.

Admissions Requirements for Doctoral Study

If you are applying for admission to one of NJIT's doctoral degree programs, you are required to have an appropriate academic background as described by the individual degree programs and evidence of a high level of achievement, including GPA, in your prior studies.

GRE scores are required for admission to all doctoral programs.

An applicant who wishes to pursue a doctoral degree in a field different from that of previous study, and who is otherwise qualified, may establish eligibility by satisfactorily completing a program of study recommended by the department in which they seek admission.

Applicants who wish to complete a master's degree while pursuing a doctorate must apply for admission to the master's program. This requires the approval of the doctoral program and dean of graduate studies, and where permitted, generally occurs only at or near the completion of the doctoral program.

Mid-career scientists and engineers interested in part-time study may wish to consider the collaborative doctorate option described in the Graduate Studies section of this catalog.

Admissions Procedures for Doctoral Study

Admissions procedures are the same as for a master's degree. In addition, three letters of recommendation are required from individuals who can best judge the applicant's ability to pursue independent research and complete a doctoral program.

Joint Doctoral Degrees with Other Universities

NJIT cooperates with other universities in Newark in operating and developing doctoral programs of mutual interest.

The university participates in unique offerings of joint doctoral programs with Rutgers-Newark and RBHS. Students may apply and be admitted through either university. Programs that lead to joint degrees are applied physics, biology, environmental science and mathematical sciences with Rutgers-Newark, biomedical engineering with RBHS and urban systems with both Rutgers-Newark and RBHS.

NJIT faculty participate in the doctoral program in management offered by Rutgers-Newark. NJIT faculty supervise Rutgers doctoral students in this program. Admissions to the doctoral program in management is handled by Rutgers-Newark.

Admission Classifications

Degree (Matriculated Students)

Regular Admission

Applicants who meet NJIT standards and have an appropriate undergraduate academic background for the degree program to which they are seeking admission will be offered regular admission as degree-seeking (matriculated) students.

Conditional Admission

NJIT expects applicants to have a superior academic record, but recognizes that interest, creativity, maturity, and motivation are also important. Conditional admission to the university may be granted to applicants who do not have the appropriate academic background required for a particular degree program, but who have an academic record that meets NJIT's scholastic standards.

Once granted conditional admission, students must complete conditional or bridge courses specified by the university within their first two semesters. Such courses may be at either the undergraduate or graduate level and are NOT counted as degree credits although all courses numbered 500 (500G for Architecture) or higher are calculated in the cumulative GPA. Students must attain grades specified by the university and are not permitted to take more than 9 credits that count as graduate degree credits at NJIT before meeting the terms of conditional admission. Failure to meet these conditions may result in dismissal from the university.
Contingent Admission
Students who apply for admission to graduate programs before completing their bachelor's degree, and whose records demonstrate superior academic achievement, may be offered admission to NJIT contingent on their showing proof of receiving a bachelor's degree appropriate for the degree program for which they are seeking admission. Such students must show proof of graduation before being permitted to enroll in a graduate program.

Change of Program
Students are admitted to one graduate degree program and not to the university as a whole. Students who wish to change major on arrival at NJIT must file an application for the new program and must generally remain in the original program for one full year before the application is approved. There is no guarantee or requirement that the new application will be successful. Those on support are liable to loss of support from the original department and cancellation of a current award.

Change of Level
Students who wish to change current degree level must file an application for admission to the new degree level. There is no requirement or guarantee that the application will be successful. Students who wish to drop down to a master's program from a doctoral program should be aware of the impact of this action on current and future financial support. Students who wish to raise their level from a master's to a doctoral program should be aware of any impact on incomplete master's theses or projects.

Non-Degree (Non-Matriculated Students)
Students who wish to take graduate courses without seeking a degree (non-matriculated status) should contact the Office of University Admissions for a Non-Degree Application Form.

Non-matriculated students may be permitted to take a maximum of 9 graduate-level credits accumulated over three registration periods, except students seeking a graduate certificate. These students may take a maximum of 12 graduate-level credits accumulated over four registration periods. Students wishing to take credits beyond these limits must apply and be accepted to a degree program as a matriculated student.

Academically qualified students who do not desire to enter degree programs may enroll in certain individual graduate courses. Such students must present transcripts of previous academic work or other appropriate evidence at each registration in order to indicate adequate preparation for the course work involved. If approved by the Office of University Admissions, registration will be permitted if space is available. Permission to enroll as a non-matriculated student does not imply eventual admission to a degree program.

Graduate Certificate Programs
NJIT offers designated courses in concentrated areas for students wishing to obtain a graduate certificate in specific areas. These require completion of 12 NJIT credits at the graduate level. Students in these programs are generally non-matriculated students for the duration of the certificate program. Graduate certificate programs may also be completed during a matriculated graduate program by making use of degree credits. Students in a matriculated degree program are not permitted to receive a certificate until completion of the degree program. Only one certificate can be earned within the credits applied toward a master's degree.

Students Matriculated at Other Universities
Graduate degree students at other colleges or universities may take courses for credit at NJIT for transfer back to their home institution. In addition to satisfying the course prerequisites, students must furnish a letter of approval from an appropriate administrative officer of their home institution.

NJIT Undergraduates
NJIT undergraduates may register for graduate courses, 500- or 600-level, with written approval from both their undergraduate advisor and from the graduate advisor in the department in which the course is taught. NJIT students in the BS/MS program are required to take 6 graduate-level credits while undergraduates to satisfy BS/MS program requirements.

Rejected Applicants
Students whose application for admission to a degree program is unsuccessful are not permitted to register as non-matriculated students.

International Students
International students on F-1 and J-1 visas are not permitted to register as non-matriculated students. Students on other visas should consult the Office of University Admissions regarding non-matriculated status.

Auditors
Students who wish to attend courses for which they are qualified, but who do not wish to be graded in the course, may be permitted to enroll as auditors. Registration will be approved only after a review of credentials by the Office of University Admissions and only if space is available. A notation signifying that the course was audited will be made on the student's record, but no credit will be granted for the course. Students who wish to audit a course must state their intention at the time of registration. A change to, or from, auditor status is not permitted once a semester has begun. Students who audit
a course are required to pay full tuition and fees. There is no tuition remission allowable for audited courses. Audited courses cannot be counted in determining full-time status.

Transfer Students

Students enrolled in graduate programs at other institutions may apply for transfer to NJIT by completing the normal admission procedure. Transfer students may apply for credit for courses taken at other U.S. educational institutions by following procedures outlined in "Transfer of Credits from Outside NJIT" in the Academic Policies and Procedures section of this catalog. In addition, international students wishing to transfer from other educational institutions in the United States must:

- Demonstrate a cumulative GPA of at least 3.0 in graduate courses taken at other U.S. educational institutions;
- Complete the required immigration procedures for transfer; and
- Be eligible for admission to the NJIT program of their choice.

To transfer to NJIT from another institution in the U.S., international students must already have been placed into SEVIS, The Student and Exchange Visitor Information System. NJIT will ask the "leaving institution" to verify the student's current standing in F-1 or J-1 status under immigration regulations. All financial and academic requirements must be completed before admission will be granted and the I-20 or DS-2019 issued.

International Students and TOEFL

New Jersey Institute of Technology welcomes applications from international students with records of superior academic achievement. In addition to the procedures stated below, international students are required to provide evidence of English language proficiency by submitting either the Test of English as a Foreign Language (TOEFL) or the International English Language System (IELTS) scores

For further information about taking the TOEFL, contact: TOEFL/TSE Services, P.O. Box 6151, Princeton, NJ 08541; (609) 771-7100 Monday-Friday, between 8 a.m. and 8:00 p.m. New York time, for recorded information or personal assistance; or see www.toefl.org (http://www.toefl.org).

For further information about taking the IELTS, contact IELTS; www.ielts.org (http://www.ielts.org).

Students with TOEFL scores of 550 (Paper-based); 213 (Computer-based); 79 (Internet-based); 6.5 (IELTS) or better are not required to take an ESL course but are encouraged to improve their English-language skills by doing so voluntarily.

All ESL courses are graded on an S/U (Satisfactory/Unsatisfactory) basis. The course credits count towards the 9 credits required for full-time status; however, the credits do not count toward degree credits.

International Students Who Seek Financial Support

Those seeking financial support from NJIT at the time of admission will be required to achieve a TOEFL score of at least 550 (Paper-based); 213 (Computer-based); 79 (Internet-based). Students who may be offered Teaching Assistant or similar positions are required to be tested for spoken English proficiency in advance of classroom or laboratory placement. The test is offered at NJIT after admission. New international students offered TA or similar awards must also participate in the teaching assistant training program offered by ESL staff in advance of the first semester (usually in August). All new TAs must register for ENG 599 in their first TA assigned semester.

International Student Financial Statement

In accordance with Department of Homeland Security, Bureau of Citizenship and Immigration Services requirements, international students must also submit to the Office of University Admissions an International Student Financial Statement to demonstrate financial resources sufficient to meet the academic and living costs of their anticipated stay at the university. International students should note that they will be required to pay non-resident tuition rates. Immigration papers (e.g., I-20, DS-2019) will NOT be issued until the International Student Financial Statement is on file with the Office of University Admissions.

Academic Credential Equivalents for International Students

Undergraduate degrees must be equivalent to the typical four-year program in the United States. NJIT is working with a number of countries and universities to provide a transition from two- and three-year degree programs to baccalaureate and later graduate study. To be eligible for admission to graduate study at NJIT, international students must have the following minimum academic qualifications.

<table>
<thead>
<tr>
<th>Country</th>
<th>Equivalent Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Licenciatura</td>
</tr>
<tr>
<td>Bahamas</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Barbados</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Licenciatura</td>
</tr>
<tr>
<td>Brazil</td>
<td>Bacharel or Licenciado</td>
</tr>
<tr>
<td>Canada</td>
<td>Honors bachelor's degree or equivalent</td>
</tr>
<tr>
<td>Chile</td>
<td>Bachillarato, Licenciatura or Titulo of at least four-year duration</td>
</tr>
<tr>
<td>People's Republic of China</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Country</td>
<td>Qualification</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Colombia</td>
<td>Licenciatura or Titulo</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Licenciatura of at least four-year duration</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Licenciatura or Titulo</td>
</tr>
<tr>
<td>Egypt</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Licenciatura</td>
</tr>
<tr>
<td>France</td>
<td>Maîtrise or equivalent</td>
</tr>
<tr>
<td>Germany</td>
<td>Ptychion</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Licenciatura</td>
</tr>
<tr>
<td>Haiti</td>
<td>Diplome d'EtudesSuperieures or Licence of at least four-year duration</td>
</tr>
<tr>
<td>Honduras</td>
<td>Licenciatura of at least four-year duration</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>India</td>
<td>Bachelor's degree (first class) in Engineering or Architecture, master's degree in other</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Sarjana or Insinyur</td>
</tr>
<tr>
<td>Iraq</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Israel</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Italy</td>
<td>Laurea</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Japan</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Jordan</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Korea</td>
<td>Bachelor's degree (Taehak Taehakkyo)</td>
</tr>
<tr>
<td>Kuwait</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Bachelor's degree, Licence of at least four-year duration, or Maîtrise</td>
</tr>
<tr>
<td>Libya</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Mexico</td>
<td>Licenciatura of at least four-year duration</td>
</tr>
<tr>
<td>Morocco</td>
<td>Licence or Ingenieur d'Etat</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Doctorandus, Ingenieur or Meester</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Licenciatura</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Norway</td>
<td>Cand. Mag</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Bachelor's degree in engineering or other four-year bachelor's degree or master's degree</td>
</tr>
<tr>
<td>Panama</td>
<td>Licenciatura</td>
</tr>
<tr>
<td>Paraguay</td>
<td>Licenciatura of at least four-year duration</td>
</tr>
<tr>
<td>Peru</td>
<td>Bachillerato, Licenciatura or Professor from four-year university program</td>
</tr>
<tr>
<td>Philippines</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Singapore</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Sweden</td>
<td>Filosofie Kandidatexamen or Ekonoexamen</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Licence or Diplom of at least a four-year duration</td>
</tr>
<tr>
<td>Syria</td>
<td>Lisentiate or bachelor's degree</td>
</tr>
<tr>
<td>Rep. of China</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Thailand</td>
<td>Bachelor's degree</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Turkey</td>
<td>Lisans or Bachelor's degree</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Honors bachelor's degree</td>
</tr>
<tr>
<td>Uruguay</td>
<td>Licenciatura of at least four-year duration</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Licenciatura or equivalent</td>
</tr>
</tbody>
</table>

Students from countries whose universities do not provide transcripts, or who experience exceptional difficulty in obtaining transcripts, should contact the Office of University Admissions for special instructions. Students whose credentials cannot be evaluated by the Graduate Admissions Committee will be
required to submit a Credential Evaluation Report from an approved agency. For further information, contact World Education Service, Inc., Old Chelsea Station, P.O. Box 745, New York, NY 10113-0745, (212) 966-6311; e-mail: info@wes.org

Financial Support

Financial Support and Graduate Awards

Various financial support and graduate award options are available to NJIT graduate students. Financial support comes from either NJIT internal funds or from external sources. Information on need-based support is detailed on Student Financial Aid Services website. Eligibility and selection criteria are summarized in the following table for both need-based and merit-based support. Funds for these are not guaranteed.

<table>
<thead>
<tr>
<th>Type of Support</th>
<th>Contact</th>
<th>Who is Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Loans</td>
<td>Financial Aid 973-596-3479</td>
<td>US citizens, permanent residents; students enrolled at least half time, based on financial need; must file the Free Application for Federal Student Aid.</td>
</tr>
<tr>
<td>Private Loans</td>
<td>Financial Aid 973-596-3479</td>
<td>US citizens, permanent and non-resident students enrolled at 3 credits; need is not a factor and filing a Free Application for Federal Student Aid (FAFSA) is not a requirement.</td>
</tr>
<tr>
<td>Industry Co-op</td>
<td>Career Development Services 973-596-3100</td>
<td>Full-time students, based on position availability; master's students; doctoral students only by exception with approval by the vice provost of graduate studies</td>
</tr>
<tr>
<td>Work-study</td>
<td>Financial Aid 973-596-3479</td>
<td>US citizens, permanent residents, international students, full-time and part-time students, based on position availability.</td>
</tr>
<tr>
<td>Scholarships, Fellowships, Grants</td>
<td>Academic Department and Graduate Studies 973-596-3462</td>
<td>Based on funding source, full-time students, often supporting under-represented groups.</td>
</tr>
<tr>
<td>PhD Assistantships</td>
<td>Academic Department (for Teaching Assistantships) or Individual Faculty (for Research Assistantships)</td>
<td>Full-time, based on academic merit and available</td>
</tr>
</tbody>
</table>

NJIT Awards

Close to 400 teaching and, research assistantships, based on academic merit, are awarded to qualified full-time, graduate students. Teaching and research assistantships are normally available to PhD applicants, but the final decision also depends on the academic college/school.

Prospective students seeking financial support should indicate their interest on the admissions application form. Prospective PhD students seeking financial support are urged to apply no later than December 15th for the fall semester of the following academic year, and October 15th for the spring semester of the current academic year. Students seeking need-based support should contact the Student Financial Aid Services. Continuing students seeking merit-based financial support should contact their academic department. GRE or GMAT scores are required of all applicants to most of the doctoral programs, all applicants seeking special types of financial support, and all applicants whose most recent degree was awarded from an institution outside of the United States. Most of the master’s degree programs require them as well. Check the University Admissions web site for updated information.

Competition for financial support is strong and only successful applicants are notified. Teaching and research assistantship offers may include full or partial tuition, a stipend or both. Additional funds for the summer may be awarded.

Assistantships

Each year close to 400 teaching and research assistantships are available using internal and external funds. Teaching assistants conduct recitation, grading, discussion, laboratory, or provide other type of course support under the supervision of faculty. Research assistants conduct research under the supervision of faculty. These duties of teaching and research assistants are considered part-time work equivalent to twenty hours per week. Non-academic departments also sometimes employ students as graduate assistants. Duties range from academic support to day-to-day operation of administrative offices.

Grader

A grader is appointed for part-time service and grades course work under the direction and supervision of faculty. Graders are normally hired on an hourly basis. Compensation is based on hourly rates established for this position.
Non-Service Fellowships or Scholarships

The student’s academic department or the Office of Graduate Studies may be contacted for the availability of private, state, federal or foundation awards that do not require service to NJIT.

Unemployed or Displaced Workers

Students receiving tuition support because of an unemployed or displaced worker’s program are alerted to potential loss of this form of support because of any salary or stipend that may be received for any form of on-campus or off-campus employment.

Stipend Support Levels for Teaching and Research Assistants (PhD students)

These awards are available to doctoral students. Stipend support levels are re-evaluated each year and the levels reported below are minimum values for 20 hours per week of service for 9 months, over the fall and spring semesters. The current stipend is

Teaching or Research Assistant

Doctoral students $25,500 9 months (additional summer support may be available)

Partial awards may be available for research assistants based on grant availability

Maximum Annual Support

While NJIT does allow multiple sources of support for individual students, there is an annual limit established each year for the maximum amount of support that an individual student may receive from all sources. The limit is established at a reasonably high and competitive level in comparison to reported maxima provided by a number of federal support programs. Students who are receiving support from outside NJIT must report this to their graduate program advisor, Graduate Studies Office and Financial Aid Office to assure they are not exceeding NJIT limits. Total support that would be in excess of the NJIT limit may require an adjustment in the support provided by NJIT sources. Excess support can also negatively impact need-based support arrangements. Students are not allowed to work for more than twenty hours per week during the fall and spring semesters.

Summer Support

Depending on the availability of funds, students may receive stipend and tuition support in the summer. NJIT has two summer award periods, the first covering late May and June, the second covering July and most of August. The split of summer award periods is based on the combination of the semester-based academic calendar used at NJIT and the changeover to a new fiscal year on July 1. Interested students should consult their faculty advisors in March or April.

International Students

Private loans are available through Student Financial Aid Services. These loans require a cosigner who is a U.S. citizen or permanent resident alien. To learn more, go to: http://www.njit.edu/financialaid/typesofaid/educationloans/privateloans.php

International students may not receive NJIT support or be employed on-campus during periods of practical training. International students must be in status with the United States Citizenship and Immigration Services (USCIS). International students are eligible only for merit-based NJIT financial support and not for need-based state or federal funds. USCIS regulations require that international students attest to having funds sufficient to cover the expense of the entire course of study before they will grant a visa. Students are expected to demonstrate the availability of funds (including any NJIT support) for the duration of studies at NJIT as a requirement for admission to the university.

Government-Funded Support for Graduate Studies

The National Science Foundation (NSF) and the National Research Council (NRC), among other funding agencies, support domestic graduate students based on qualifications. Application deadlines for these programs are one year in advance of anticipated study, usually in early fall. Visit the websites of federal agencies to identify relevant opportunities. A website of the Graduate Studies Office (https://www5.njit.edu/graduatetestudies/financialaid.php) also has relevant information.

Federal Direct and Work-Study Programs

US citizens and Permanent Residents are eligible to apply for federal loans from the William D. Ford Federal Direct Loan Program and for Federal Work-Study (FWS). To obtain a Federal Direct Loan, eligible applicants must file the Free Application for Federal Student Aid (FAFSA) with the Federal Student Aid Programs Processing Center. To be considered for FWS, eligible students must file the FAFSA no later than the February 15th priority deadline. The amount of graduate tuition remission a student receives is considered when determining eligibility for loans and work-study. Before loans are disbursed, students must sign a promissory note and complete entrance counseling at studentloans.gov (https://studentloans.gov/myDirectLoan/index.action/). The FAFSA is available at www.fafsa.gov (https://fafsa.gov/). For further information, contact Student Financial Aid Services at finaid@njit.edu or (973) 596-3479.
Terms and Conditions of Awards

Award Selection

NJIT awards are merit-based and are offered only to academically superior students who meet all selection requirements. Many things are considered in evaluating applications and nominations for NJIT awards. Among these are GPAs, GRE or GMAT scores, undergraduate and graduate academic performance, educational preparation, TOEFL scores for international students, skill and talent required for available positions, institutional priorities, availability of funds, special skills, and prior experience.

Students must normally take the GRE or GMAT and arrange to have official score reports to be sent to NJIT before they may become eligible to receive awards. Although there is no minimum eligibility score for the GRE or GMAT, NJIT may establish them for certain awards.

Graduate students who have not already received awards or had not been offered an award on admission must attain a minimum GPA of 3.5 for first-time support from internal funds and 3.0 for first-time support from external funds. Any graduate or undergraduate course taken by a student in graduate studies at NJIT is counted in the GPA (as calculated by Student Financial Aid Services) for evaluating selection criteria, including courses that were repeated or excluded. Students must earn at least a 3.0 GPA each semester, as well as maintain a cumulative GPA of 3.0 to keep receiving their awards. GPAs are checked at the beginning of each support period to verify that awards are warranted. GPAs only establish eligibility and neither guarantee nor entitle students to receive financial support.

The Office of Graduate Studies evaluates criteria for support from internal funds each year. The criteria reflect both average grade point performance levels and availability of funds. A student who has received support from NJIT funds for one degree cannot receive NJIT support for another degree of the same or lower level or type. Criteria and full details of terms and conditions of awards are available from the Office of Graduate Studies.

Need-based support programs administered by Student Financial Aid Services have different criteria for selection; contact Student Financial Aid Services for further information. Funds distributed for hourly employment are not considered awards.

Service-Based Awards

A service-based award is one in which the student is required to perform a service in return for a stipend. The following awards are service-based: graduate assistants, teaching assistants, research assistants, provost teaching assistants, graders, and others as noted.

Terms and Conditions

By accepting an award, students agree to comply with the following terms and conditions unless exceptions are indicated in their award offer letter:

- Students are required to work, up to a maximum of 20 hours per week, for Fall and Spring semester awards.
- Students not receiving the maximum award for their award category and degree status are required to work a prorated number of hours (less than 20) based on a comparison of their award to the stipend level allowed for that award. A maximum of 35 hours per week, with appropriate increase in support level, may be permitted for service during the two summer award periods.
- Full-time registration in one of NJIT’s graduate degree programs must be maintained at all times throughout the period of an award. Full-time status is accorded to those who complete at least 9 credits per semester, or to those who are certified by the Office of Graduate Studies as full-time students. Students should review “Refunds for Withdrawal” and “Enrollment Status” in the Tuition and Fees section and the Academic Policies and Procedures section respectively in this catalog to be assured that they are following full-time certification requirements.
- Students who initially register for a full-time load but withdraw during a semester and thus become part-time cannot receive tuition remission for that semester and may have their tuition award terminated and stipend award curtailed or cancelled.
- No other work for compensation, whether on- or off-campus, may be undertaken during the period of the award unless approved by Graduate Studies. Students who do not comply with this requirement may be prohibited from receiving future support and have their current award terminated.
- Unsatisfactory performance, inadequate academic progress, or violation of any of the terms and conditions shall constitute grounds for the immediate cancellation of an award.
- Award offers must be accepted online as per the instructions on the offer letter.
- Students who resign, or are dismissed from an appointment during a semester, must repay any tuition remitted for that semester.
- Students must report to their supervisor no later than the first day of each semester. Students who fail to do so will be deemed to have resigned and will have their award cancelled.
- Appointments are made for the period specified in the award offer. Neither renewal nor summer support can be guaranteed.
- Support based on external grant, contract, scholarship or fellowship awards are subject to the limitations established by the external agency.
- Students who change to a master's degree program from a doctoral program will have the current award cancelled and no future awards will be permitted. Students who register in courses inappropriate to their program of record or unapproved by their advisor will have the award immediately terminated.

Tuition Remission Awards

Tuition support has no service condition associated with it. Students accepting this support must not leave the program for which the support is offered without the approval of the support sponsor and the Vice Provost for Graduate Studies. Approval will be granted only for sound academic or other
compelling reasons. Departure to accept employment is not considered a valid reason. All tuition support provided will be re-billed to the student if this condition is violated.

Cancellation of Tuition Remission

NJIT reserves the right to cancel tuition remission awards when students do not meet requirements or violate the conditions of an award. NJIT also reserves the right to cancel tuition remission for ineligible courses or courses for which the grades of F, U, W, or I are received. Audited courses, courses outside the approved courses for the program, and excess courses not needed for program completion are ineligible for tuition remission. If tuition remission is cancelled, students are re-billed accordingly and are responsible for payment in full.

Unsatisfactory Performance for Service Awards

A student's performance is considered unsatisfactory if it does not meet the criteria set by the award supervisor. The award may then be cancelled.

Criteria for Maintaining Award

Students must earn at least a 3.0 GPA each semester, as well as maintain a cumulative GPA of 3.0 to keep receiving their awards. A 3.0 GPA will also maintain awards that initially required higher GPAs to receive them. Any graduate or undergraduate course taken by a graduate student is counted in the GPA for evaluating maintenance of awards and even includes courses that were repeated or excluded. Except for the specified period of the award offer, these criteria neither guarantee nor entitle students to receive continued financial support. Departments may set higher but reasonable standards (typically 3.5 or above cumulative GPA) for continuation of awards.

Effect of Incomplete Grades and Grade Changes

Students whose transcripts show incomplete (I) grades in the semester before being selected or becoming eligible for an award must resolve them within the four weeks after grades are posted. This also applies to changes in grades that would affect eligibility. Extension of the deadline to beyond the fourth week of the semester will be considered if the student and the instructor provide written justification. Otherwise, any award offer for that semester will be withdrawn and tuition remission cancelled. Students will be billed for tuition accordingly and will be responsible for payment in full.

Award Duration and Renewal

Student eligibility for awards is evaluated each semester. Student performance is evaluated at least once a year for renewal of award offers. However, each award may have unique eligibility, funding, duration and renewal circumstances. Students are responsible for understanding and following the terms and conditions of the particular award offer made to them. The Office of Graduate Studies should be consulted to determine individual terms and conditions. Award duration is based on calendar time, not on whether awards are full or partial.

- Students enrolled in master of science or masters of arts programs may not receive NJIT-funded, full or partial, assistantship or fellowship support for more than one academic year except in the cases listed below for B.S./M.S. students, and for U.S. nationals and permanent residents who are members of underrepresented groups. The academic year is defined as two semesters and one summer. The summer includes two award periods.
- Students enrolled in doctoral degree programs may not receive NJIT-funded, full or partial, assistantship or fellowship support for more than four academic years. This is defined as eight semesters and four summers.
- Students enrolled in the Master of Architecture program may not receive NJIT-funded, full or partial assistantship or fellowship support for more than three academic years. Three academic years are defined as six semesters and three summers.
- Students enrolled in the Master in Infrastructure Planning program are considered as Master of Science students for award duration.
- Full-time master’s students in a B.S./M.S. program are eligible to receive three semesters and one summer of financial support from internal funds.
- U.S. nationals and permanent residents enrolled in Master of Science programs who are members of underrepresented groups are eligible for three semesters and one summer of financial support from internal funds.
- Doctoral students who fail their qualifying examinations may not receive further awards from NJIT funds until they pass. Departments may request a review and continuation of their financial support status if they pass some but not all parts of qualifying examinations.
- When eligibility for NJIT-funded awards is completed, students may receive additional support from external sources. Students should check with their academic departments to obtain further details.
- Master’s students are eligible to receive awards for a maximum of four semesters and two summers from all sources. This does not apply to students in the Master of Architecture program. Doctoral students are eligible to receive awards for a maximum of 10 semesters and 5 summers from all sources.
- No student may receive support for more than 12 semesters and 6 summers from any combination of sources or for any number of degrees.
- The university expects that doctoral students receiving NJIT-funded support (e.g., teaching assistantship) move off that type of support to external source support (e.g., research assistantship) no later than two years after the initiation of NJIT-funded support.

Resignations

Students who wish to resign from an award should inform their advisor and the Vice Provost for Graduate Studies at least one calendar month before the resignation is to take effect.
Students who resign during a semester will not be eligible for tuition remission for that semester. The semester in which the resignation is received is counted as a supported semester when determining award renewals.

Taxation of Stipends and Awards

The Internal Revenue Service requires that stipends and awards be taxed at the source, even if students are eligible for a tax refund. All students are exempt from Social Security taxes. Tuition and fee remissions are not normally subject to tax withholding.

Students should contact the Payroll Office for tax information and information about exemption from Social Security taxes. International students should contact the Payroll Office and the Global Initiatives Office for information on tax treaties.

Tuition Remission

Tuition Remission Processing

All students receive bills for tuition. The bill statements for students receiving tuition remission and fees, if applicable, are marked “Possible Tuition Remission.” After expiration of the official withdrawal period, a credit for the tuition and fees should appear on the statement.

Students who pay tuition bills in full and then receive tuition remission can expect to receive a refund after expiration of the withdrawal period. Students receiving only partial tuition and fee awards are responsible for payment of the remaining tuition and fees and should pay these promptly. In particular, full-time students should ensure that they have continuous health insurance coverage by payment of appropriate fees. For full award recipients, awards should only cover tuition and eligible fees, and will not exceed the cost of tuition and fees with some exceptions for students on certain fellowships. Eligible fees do not include parking fees or matriculation fee.

Students who fail to pay their bills by the due date specified by the Bursar will be assessed a late penalty fee. For more information, go to njit.edu/bursar (http://www5.njit.edu/bursar/).

Credit Limitation

Awards do not cover tuition for courses that are not part of a student's degree program or courses not approved by their advisor. Students are responsible for payment for these courses.

Tuition remission is allowed for courses taken at other institutions in which there is a cross-registration agreement with NJIT. These courses must be part of the student's degree program and approved by the student's advisor.

A flat rate exists for a range of credits representative of full-time registration. Any credits over that range will not be included in tuition remission awards. Students will be billed for credits in excess of their awards.

Graduate Cooperative Education

Graduate students have the opportunity to work off-campus while studying full-time through the cooperative education program administered by the Office of Career Development Services (CDS). Policies on eligibility, application for participation, procedures, and required regular and co-op course registrations are defined in a detailed statement developed by CDS, the Graduate Studies Office (GSO), and the Office of Global Initiatives. CDS should be contacted by students interested in this option. Each year, a large number of international graduate students are involved in cooperative education under Curricular Practical Training. Students pursuing this option are required to be registered in specifically numbered graduate courses for co-op as defined in each program’s course listing.

Tuition and Fees

2022-2023 Graduate Tuition & Fees

Tuition and Fees Assessed (per Semester)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition</th>
<th>Fees</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,193.00</td>
<td>194.00</td>
<td>1,387.00</td>
</tr>
<tr>
<td>1.5</td>
<td>1,789.50</td>
<td>291.00</td>
<td>2,080.50</td>
</tr>
<tr>
<td>2</td>
<td>2,386.00</td>
<td>388.00</td>
<td>2,774.00</td>
</tr>
<tr>
<td>3</td>
<td>3,579.00</td>
<td>582.00</td>
<td>4,161.00</td>
</tr>
<tr>
<td>4</td>
<td>4,772.00</td>
<td>776.00</td>
<td>5,548.00</td>
</tr>
<tr>
<td>5</td>
<td>5,965.00</td>
<td>970.00</td>
<td>6,935.00</td>
</tr>
<tr>
<td>6</td>
<td>7,158.00</td>
<td>1,164.00</td>
<td>8,322.00</td>
</tr>
<tr>
<td>7</td>
<td>8,351.00</td>
<td>1,358.00</td>
<td>9,709.00</td>
</tr>
<tr>
<td>8</td>
<td>9,544.00</td>
<td>1,552.00</td>
<td>11,096.00</td>
</tr>
</tbody>
</table>
2022-2023 Graduate Catalog

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition</th>
<th>Fees</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10,737</td>
<td>1,746.00</td>
<td>12,483.00</td>
</tr>
<tr>
<td>10</td>
<td>11,930.00</td>
<td>1,940.00</td>
<td>13,870.00</td>
</tr>
<tr>
<td>11</td>
<td>13,123.00</td>
<td>2,134.00</td>
<td>15,257.00</td>
</tr>
<tr>
<td>12-19</td>
<td>10,966.00</td>
<td>1,646.00</td>
<td>12,612.00</td>
</tr>
</tbody>
</table>

Out-of-State Tuition & Fees

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition</th>
<th>Fees</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,713.00</td>
<td>194.00</td>
<td>1,907.00</td>
</tr>
<tr>
<td>1.5</td>
<td>2,569.00</td>
<td>291.00</td>
<td>2,860.00</td>
</tr>
<tr>
<td>2</td>
<td>3,426.00</td>
<td>388.00</td>
<td>3,814.00</td>
</tr>
<tr>
<td>3</td>
<td>5,139.00</td>
<td>582.00</td>
<td>5,721.00</td>
</tr>
<tr>
<td>4</td>
<td>6,852.00</td>
<td>776.00</td>
<td>7,628.00</td>
</tr>
<tr>
<td>5</td>
<td>8,565.00</td>
<td>970.00</td>
<td>9,535.00</td>
</tr>
<tr>
<td>6</td>
<td>10,278.00</td>
<td>1,164.00</td>
<td>11,442.00</td>
</tr>
<tr>
<td>7</td>
<td>11,991.00</td>
<td>1,358.00</td>
<td>13,349.00</td>
</tr>
<tr>
<td>8</td>
<td>13,704.00</td>
<td>1,552.00</td>
<td>15,256.00</td>
</tr>
<tr>
<td>9</td>
<td>15,417.00</td>
<td>1,746.00</td>
<td>17,163.00</td>
</tr>
<tr>
<td>10</td>
<td>17,130.00</td>
<td>1,940.00</td>
<td>19,070.00</td>
</tr>
<tr>
<td>11</td>
<td>18,843.00</td>
<td>2,134.00</td>
<td>20,977.00</td>
</tr>
<tr>
<td>12-19</td>
<td>16,213.00</td>
<td>1,646.00</td>
<td>17,859.00</td>
</tr>
</tbody>
</table>

2022-2023 Doctorate Tuition & Fees

In-State Tuition & Fees

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition</th>
<th>Fees</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,382.00</td>
<td>5.00</td>
<td>1,387.00</td>
</tr>
<tr>
<td>1.5</td>
<td>2,073.00</td>
<td>7.50</td>
<td>2,080.00</td>
</tr>
<tr>
<td>2</td>
<td>2,764.00</td>
<td>10.00</td>
<td>2,774.00</td>
</tr>
<tr>
<td>3</td>
<td>4,146.00</td>
<td>15.00</td>
<td>4,161.00</td>
</tr>
<tr>
<td>4</td>
<td>5,528.00</td>
<td>20.00</td>
<td>5,548.00</td>
</tr>
<tr>
<td>5</td>
<td>6,910.00</td>
<td>25.00</td>
<td>6,935.00</td>
</tr>
<tr>
<td>6</td>
<td>8,292.00</td>
<td>30.00</td>
<td>8,322.00</td>
</tr>
<tr>
<td>7</td>
<td>9,674.00</td>
<td>35.00</td>
<td>9,709.00</td>
</tr>
<tr>
<td>8</td>
<td>11,056.00</td>
<td>40.00</td>
<td>11,096.00</td>
</tr>
<tr>
<td>9</td>
<td>12,438.00</td>
<td>45.00</td>
<td>12,483.00</td>
</tr>
<tr>
<td>10</td>
<td>13,820.00</td>
<td>50.00</td>
<td>13,870.00</td>
</tr>
<tr>
<td>11</td>
<td>15,202.00</td>
<td>55.00</td>
<td>15,257.00</td>
</tr>
<tr>
<td>12-19</td>
<td>12,567.00</td>
<td>44.00</td>
<td>12,611.00</td>
</tr>
</tbody>
</table>

Out-of-State Tuition & Fees

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition</th>
<th>Fees</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,902.00</td>
<td>5.00</td>
<td>1,907.00</td>
</tr>
<tr>
<td>1.5</td>
<td>2,853.00</td>
<td>7.50</td>
<td>2,860.50</td>
</tr>
<tr>
<td>2</td>
<td>3,804.00</td>
<td>10.00</td>
<td>3,814.00</td>
</tr>
<tr>
<td>3</td>
<td>5,706.00</td>
<td>15.00</td>
<td>5,721.00</td>
</tr>
<tr>
<td>4</td>
<td>7,608.00</td>
<td>20.00</td>
<td>7,628.00</td>
</tr>
<tr>
<td>5</td>
<td>9,510.00</td>
<td>25.00</td>
<td>9,535.00</td>
</tr>
<tr>
<td>6</td>
<td>11,412.00</td>
<td>30.00</td>
<td>11,442.00</td>
</tr>
<tr>
<td>7</td>
<td>13,314.00</td>
<td>35.00</td>
<td>13,349.00</td>
</tr>
<tr>
<td>8</td>
<td>15,216.00</td>
<td>40.00</td>
<td>15,256.00</td>
</tr>
<tr>
<td>9</td>
<td>17,118.00</td>
<td>45.00</td>
<td>17,163.00</td>
</tr>
<tr>
<td>10</td>
<td>19,020.00</td>
<td>50.00</td>
<td>19,070.00</td>
</tr>
</tbody>
</table>
Other Programs

Fully Online Graduate Programs (in-state and out-of-state, no flat rate): **$1,112.00 per credit rate**

Jersey City (in-state and out-of-state, no flat rate, plus fees): **$956.00 per credit**

Additional Information

- Students must take all online courses and be enrolled in a fully online graduate program to qualify for the $1,112 per credit rate.
- Full-time students (9 credits or more) will be assessed a Student Health Insurance fee in the Fall at a cost of $2,152.00. Students may waive this cost by filling out a health insurance waiver by the posted deadlines. F1/J1 Visa holders are required to have the NJIT Student Health Insurance plan and are not permitted to waive the coverage. For more information on student health insurance, please visit the Bursar’s Office website.
- Student who are registered full-time (12-19 credits) and register for additional credits above 19 will be assessed the appropriate per credit rate for every additional credit.
- For Graduate and Doctorate students, full-time status varies depending on purpose: 12 credits for billing purposes, 9 credits for academic and financial aid purposes.
- The Schedule of Tuition and Fees has been carefully reviewed and has been subject of a public hearing as required by law prior to the approval by NJIT’s Board of Trustees. All fees are mandatory for full-time and part-time students and are considered non-negotiable.
- During the Summer & Winter sessions there is a flat University Fee for Graduate ($194.00) and Undergraduate ($195.00) programs in lieu of the fees noted above. The flat rate for tuition (12-19 credits) does not apply during the summer/winter sessions.

Additional Fees

<table>
<thead>
<tr>
<th>Fee Amount</th>
<th>Fee Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.00</td>
<td>U/G Application/Readmit/N-Matric</td>
</tr>
<tr>
<td>120.00</td>
<td>Commencement Fee</td>
</tr>
<tr>
<td>160.00</td>
<td>Matriculation Fee</td>
</tr>
<tr>
<td>500.00</td>
<td>Late Payment Penalty</td>
</tr>
<tr>
<td>100.00</td>
<td>Late Registration Fee</td>
</tr>
<tr>
<td>25.00</td>
<td>Maintaining Registration Fee Undergraduate</td>
</tr>
<tr>
<td>50.00</td>
<td>Maintaining Registration Fee Graduate</td>
</tr>
<tr>
<td>75.00</td>
<td>Master's Thesis</td>
</tr>
<tr>
<td>100.00</td>
<td>Dissertation Fee</td>
</tr>
<tr>
<td>125.00</td>
<td>International Student Fee</td>
</tr>
<tr>
<td>100.00</td>
<td>Payment Plan Fee</td>
</tr>
<tr>
<td>346.53</td>
<td>Parking Full-time (per semester) - includes tax</td>
</tr>
<tr>
<td>194.06</td>
<td>Parking Part-time (per semester) - includes tax</td>
</tr>
<tr>
<td>490.00</td>
<td>On-Campus Resident Parking (per semester)</td>
</tr>
<tr>
<td>6.625%</td>
<td>Commuter Parking Tax</td>
</tr>
<tr>
<td>200.00</td>
<td>Optional Practical Training Application Fee</td>
</tr>
<tr>
<td>7.00</td>
<td>E-Transcript Fee</td>
</tr>
<tr>
<td>2152.00</td>
<td>Fall Health Insurance</td>
</tr>
<tr>
<td>230.00</td>
<td>First Year Student Fee</td>
</tr>
<tr>
<td>100.00</td>
<td>Payment Plan Late Fee</td>
</tr>
<tr>
<td>30.00</td>
<td>Transfer Student Orientation Fee</td>
</tr>
<tr>
<td>25.00</td>
<td>ID Replacement Fee</td>
</tr>
<tr>
<td>50.00</td>
<td>Credit by Examination</td>
</tr>
</tbody>
</table>

Campus Life and Student Services

The Campus Center is the hub of cultural, educational, and social activities for the NJIT community. The Campus Center staff provides students, faculty and staff with a relaxing environment where they can enjoy a meal, attend a meeting, study, watch a film, play a variety of games, participate in the many cultural, social, and educational activities offered, or just socialize with friends.
Student Services

The Division of Student Affairs (https://www.njit.edu/studentlife/) consists of a variety of offices and departments that offer a wealth of programming, services, and resources to NJIT students. The common thread that runs through Student Affairs is the commitment to enable all students in our community to fully participate in an engaging, healthy, active learning environment during their time at NJIT.

Office of Graduate Studies

The Office of Graduate Studies (http://engineering.njit.edu/) provides assistance to graduate students in academic matters, approves Master’s thesis and Ph.D. dissertation document formats, and processes student support nominations for university-level assistantships, fellowships, and scholarships.

For newly admitted and entering graduate students, we are the best source of information about any aspect of graduate study at NJIT. If you are not sure who to ask or where to go, try us first.

NJIT has many unique characteristics that are attractive to students from New Jersey, the United States, and from around the world. We offer a variety of options for students to pursue programs at the Master’s and Doctoral levels. Our programs provide flexibility and choice of full-time or part-time study. Several academic programs (master's and graduate certificates) are available online (https://www.njit.edu/online/).

NJIT is committed to diversity among its students, faculty, and staff. Research activities of faculty and students focus on cutting-edge technologies and their applications. Exciting opportunities for student research exist in the graduate degree granting departments of NJIT’s five colleges.

- Newark College of Engineering (http://engineering.njit.edu/)
- College of Science and Liberal Arts (http://csla.njit.edu/cslaprograms/graduate.php)
- College of Computing Sciences (http://ccs.njit.edu/ccsprograms/graduate.php)
- School of Management (http://management.njit.edu/academics/graduate/)
- College of Architecture and Design (http://design.njit.edu/coadprograms/graduate-programs/)

NJIT is a community of modest size but with a major impact on technological graduate education. It ranks highly in diversity, research activity, quality of graduate programs, and number of awarded master’s and doctoral degrees as well as graduate certificates. We are conveniently located near New York City, in the busiest transportation hub in the United States. We are the only public technological university in the New York-New Jersey metropolitan area and have many cooperative arrangements with other universities in the region.

For further information, please visit the Graduate Studies Office web site (https://www.njit.edu/graduatestudies/).

Career Services

Career Development Services (http://www.njit.edu/cds/) is a value–added contributor to the career planning and preparation of NJIT students and graduates. We are dedicated to continually improving our client services and to assuming leadership in the profession of career development.

Our Mission is fulfilled through assisting:

- Students in gaining a clear understanding of their career options and workplace requirements, in obtaining experiential learning opportunities in the private and public sectors, in developing job search and interviewing skills, and obtaining employment upon graduation;

- Alumni in refining their job search and interviewing skills, career objectives, gaining a clear understanding of their career options and workplace requirements, and obtaining meaningful employment in a specialty consistent with their education, experience, and personal goals;

- Faculty/staff in understanding the needs of employers and of the academic preparation and associated skills necessary for graduates, and thus influencing curricula content and academic advisement;

- Employers in staffing their organizations with qualified students, graduates, and alumni capable of filling their workforce needs, and in developing closer and more effective relationships with university staff;

- The community in linking students, alumni, faculty, and staff directly to service and civic engagement activities with organizations committed to improving the quality of life for New Jersey residents.

- New Jersey’s economic and workforce development efforts through ready access to a highly skilled workforce, thereby reducing company expenses for new employee recruitment, staffing, and training; facilitating the transfer of technological knowledge to the workplace; and through stimulating the creation of new jobs.
The Digital Campus

Computing has become ubiquitous in 21st century life, changing the way we work and learn, and even the way we interact with each other. The importance and power of information technology are evident in every discipline at NJIT, particularly in the STEM disciplines, where cascading breakthroughs and advances in information technology, have created a new interdependence among engineering, the physical sciences, computer science and math, and the biomedical sciences. NJIT researchers are leveraging the power of computing and information technologies to meet tomorrow's challenges, to create the tools to help the digital world function, and to evaluate the impact of new technologies on society.

NJIT has built a 21st century digital campus to support teaching, learning research, and the administration of the university. At the heart of the digital campus is the NJIT Network, with over 19,000 connections throughout the campus' 38 buildings, supplemented with the NJIT Wireless Network that blankets the campus, connecting over 22,000 devices each semester. Both networks provide access to servers, storage arrays, a large software library (http://ist.njit.edu/software/), and other IT services within the NJIT Cloud, enabling students to immerse themselves in design, discovery, simulation and modeling, and research questions previously inaccessible. Examples include:

- Simulating the interaction of biomolecules and identifying promising leads for drug development;
- Modeling the consequences of various transportation and energy systems;
- Studying global social networks;
- Designing and building the next generation of software and applications;
- Practicing computational science alongside traditional approaches;
- Designing buildings and other artifacts that are environmentally responsible and resource efficient.

Highlander Pipeline (http://my.njit.edu/), the NJIT Portal, is the entry point for many NJIT Cloud services. Students conduct most routine business processes online (e.g. register for classes, accept financial aid, pay bills, etc.) via Highlander Pipeline. The NJIT Library (http://library.njit.edu) provides online access to 27 full-text databases, over 33,500 electronic journals and more than 27,700 electronic books. A centralized “search all” portal delivers a single search experience of all electronic library resources.

Classrooms and other learning spaces at NJIT are all network enabled and equipped with modern projection devices, display panels, and other collaborative technologies to facilitate engagement and collaboration among faculty and groups of students. Many classes leverage video conferencing, lecture archival, learning management, and online discussion systems, allowing faculty and students to participate independent of time and place – converging the physical and virtual classrooms.

Students can BYOD (“bring your own device”) or use any of the hundreds of workstations in public-access computer labs or specialized academic department facilities across the campus. A healthy mix of Windows, Mac, and Linux workstations support the diverse needs of a technological research university.

The Tartan High Performance Computing Initiative provides NJIT researchers the broad range of centralized computational and data storage resources necessary to conduct computationally-intensive research. With over 3,200 CPU cores and 26,000 GPU cores, Tartan provides researchers with local resources capable of supporting leading edge research. A separate Hadoop cluster provides the resources for managing and analyzing very large data sets, commonly referred to as “big data.”

For additional information on IT services available at NJIT, visit the Home page of the Information Services & Technology (IST) Division (http://ist.njit.edu).

Library Services

Library Services

The Robert W. Van Houten Library (https://library.njit.edu/), NJIT's university library, is located in the Central Avenue Building (CAB) and serves as the primary facility for researching, studying, and browsing physical materials and online resources. In 1997, the Van Houten Library created the Information Commons, a computer lab with over 120 computer workstations. Today, it also houses the Information Training Lab, the Leir Data Observatory, and the IST Service Desk (https://ist.njit.edu/ist-service-desk/).

The Barbara and Leonard Littman Architecture & Design Library (https://archlib.njit.edu/), a branch of the university’s library, is located in Weston Hall. It maintains a core collection of materials on architecture, art, and design: books, journals, maps, architectural drawings, various media, and models. The Littman Library also houses the Digital Scholarship Lab, Mostoller Reading Room, and Materials Library, a collection of materials samples.

Collection

The library collection comprises over 592,000+ volumes of print books and electronic books, journals, conference proceedings, reports, media, dissertations, and theses. The library spends over 95% of its materials budget on acquiring electronic resources accessible anytime and anywhere. Online resources include ACM Digital Library, Academic Search Premier, Artstor, ASTM International Standards, Avery Index, Business Source Premier, Factiva, IEEE Xplore, JSTOR, New York Times Online, ProQuest Academic Complete Ebook Central, ScienceDirect, SciFinder, Scopus, SPIE Digital Library, SpringerLink (includes Lecture Notes in Computer Science), Statista Expert, Wiley Online Library, and many more (https://

Learning Spaces

The library strives to help students do their best work by offering a variety of individual and collaborative study spaces throughout the NJIT Library, including designated silent study areas and group study rooms with large display monitors for teamwork. The Leir Data Observatory provides a dedicated high-tech space for students and faculty to mutually study data science. See more about library services (http://library.njit.edu/services/).

Getting Started

Access to print and electronic resources starts at the Van Houten or the Littman Libraries home pages. Subject access to the journal literature in engineering, science, computer science, management, mathematics, architecture, design, and other subject areas is provided by various electronic databases.

Research and Instruction

Professional librarians provide instruction and consultation in all subject areas to enhance the student, faculty, and staff's ability to connect efficiently with needed information. Research help is available in person, by phone/text or via email, and through live chat (https://researchguides.njit.edu/start-research/researchhelp/) during selected hours. Not sure where to begin, the "Starting Your Research (https://researchguides.njit.edu/start-research/)" and other guides will help master the research process.

Resources Beyond NJIT

Students, faculty, and staff may supplement NJIT library resources by borrowing free of charge materials from the New Jersey Academic Library Network (NJALN) via Primo Discovery (https://primo.njit.edu/), Rutgers University – John Cotton Dana Library (https://www.libraries.rutgers.edu/newark/) and the George F. Smith Health Sciences Library (https://www.libraries.rutgers.edu/health-sciences/), the Newark Public Library (https://npl.org/), and the other state colleges and universities in New Jersey.

Interlibrary Loan and Document Delivery Services (https://researchguides.njit.edu/illiad/) can also provide free of charge materials to the students and researchers from anywhere globally, fulfilling article requests within 24-hours.

Special Collections and Archives

Included among NJIT's resources are the university's historical archive of artifacts developed and manufactured by Edward Weston. He was a scientist, a prolific inventor, and a founding member of the university's board of trustees. A collection of Dr. Weston's books, papers, and drawings is housed in the Rare Book room and available to scholars and others interested in the history of science and technology.

Contact Us

Van Houten Library Littman Architecture & Design Library
Central Avenue Building Weston Hall
(973) 596-3210 (973) 596-3083

Residence Life

Almost 2000 students live on campus in five coed residence halls and the Greek Village. More than 50 percent of first-year students live on campus.

First-year students live in Cypress, Honors, and Redwood Halls. Upper-class students live in every building. Rooms are fully furnished (bed, desk, chair, closet, dresser), air-conditioned, wireless, and wired for the Internet and offer Residence Life Cinema (streaming service). Cable services are not provided. Each hall has common areas and facilities including lounges, study areas, kitchens, and laundry rooms. Snack and soda machines, recreational equipment (pool, ping-pong, large screen televisions, etc.), and mail service are also provided.

Cypress Hall is a coed facility that houses approximately 400 first-year, upper-class, and graduate students in single and double rooms. Suites are comprised of two bedrooms and a shared bathroom and foyer.

Greek Village is a coed facility that houses approximately 200 upper-class and graduate students in eight houses. Both fraternity and sorority members and nonmembers live in double rooms. Suites are comprised of two bedrooms and a shared bathroom. Each house has a common kitchen, dining, and living area (parlor space).

Honors Hall is a coed facility housing 360 first-year, upper-class and graduate students in single and double rooms. Suites have a shared bathroom. The building features a dining facility, convenience store, and fitness center. Residents assigned to the Honors Hall must be accepted to the Albert Doman Honors College.
Specifically, Student Life meets the needs of our diverse undergraduate and graduate population by overseeing seven functional areas:

Annual Programs and Services: We empower our students to develop the skills necessary to be leaders in the workforce. Learning, personal and professional growth, and resources that foster an engaged and inclusive campus community. Through advisement, advocacy, and support, we enhance the student experience at NJIT by providing opportunities for student-centered learning, personal and professional growth, and resources that foster an engaged and inclusive campus community.

Food Services: The Dining facilities are located in the Campus Center and the first floor of the Honors Residence. NJIT's private food services vendor, Gourmet Dining, operates all of the dining options on campus. Meal plan options include both Continuous Dining and Flex Dollar options. The Continuous Dining meal plans, A-E, features continuous dining with unlimited returns during all of the posted hours. Flex dollars can be used at Continuous Dining (for those without meal plans or only have flex), Korner Kilt C Store, Tech Café, Taco Bell, The Grill, Highlander Pub, Village Market, and Warren Street Café.

All residential students with less than 60 earned credits are required to select a meal plan from A-E. After one reaches 60 credits, they may drop their meal plan for the next semester or select from any available plan.

For additional information please view our website: http://www.njit.edu/reslife or contact us via email reslife@njit.edu or call 973.596.3039.

Student Life

The Office of Student Life (http://www.njit.edu/studentlife/) enhances the student experience at NJIT by providing opportunities for student-centered learning, personal and professional growth, and resources that foster an engaged and inclusive campus community. Through advisement, advocacy, and support, we empower our students to develop the skills necessary to be leaders in the workforce.

Specifically, Student Life meets the needs of our diverse undergraduate and graduate population by overseeing seven functional areas:

- **Student Organization Advisement**: We provide advisement and support to more than 140+ recognized student organizations (https://njit.campuslabs.com/engage/organizations/?categories=12123) through one-on-one advising, annual training, leadership development, and policy management.

- **Office of Fraternity & Sorority Life**: Provides opportunities for personal and professional development, civic engagement, and academic enhancement, all while developing close lifelong bonds with your peers. Celebrating 100 years of Greek life in 2021, NJIT supports over 25 fraternities and sororities that represent social, professional and service-based Greek-letter organizations.

- **Diversity and Inclusion**: The mission of Diversity and Inclusion is to initiate and support activities that promote cultural competency among students of the NJIT Community. We are committed to raising self-awareness, mutual understanding, knowledge, and respect for others. Our approach is relational in that we believe in growth-fostering relationships, therefore we commit to providing a welcoming place for all. We pledge to offer a safe space and outlet for dialogue; we commit to provide mentorship and support; as well as engage students to become advocates for issues of injustice in our multicultural world.

- **Annual Events**: We enhance campus engagement and school pride through campus wide annual events and traditions such as Welcome Week, Student Appreciation Week, De-Stress Weeks, Winter Celebration, Constitution Day, and the Highlander Awards.
• **Commuter Resources:** We aim to address the needs of commuter students and provide resources and programmatic opportunities for engagement in campus life. One way we do this is by working with the Off-Campus and Commuter Student Association (OCCA), the commuter student union at NJIT.

• **Leadership Development:** Student Leadership Development is integral to a student’s college experience. Under the oversight of the Office of Student Life, we offer a wide variety of leadership development opportunities, such as annual Student Leader Training, the NJIT L.E.A.D.S. Conference each winter, leadership workshops throughout the year, including within First Year Seminars, and a weekly Leadership Tip Tuesday series/social engagement on Instagram.

• **Food Pantry and Game Room:** We manage and promote free services provided in the Campus Center that are available to the student body including the Game Room and Food Pantry (https://www.njit.edu/foodpantry/). The NJIT Food Pantry is open to all NJIT community members who may have trouble affording or accessing a healthy diet.

In addition, Student Life oversees the campus wide management of **Highlander Hub**, NJIT’s online platform for student engagement, student organizational management, and campus-wide events. Highlander Hub provides critical data regarding student involvement, attendance at campus-wide events, satisfaction and learning outcomes, and budget management tools.

Continuing Professional Education

NJIT's Continuing Professional Education provides enriching career-long learning opportunities through extension programs, Online Learning, graduate certificates, and professional development training for individuals and company employees.

Professional development programs include short courses, certificates and license reviews, with some leading to the award of continuing education units (CEUs). The CEU is used nationally to document the type, quality and duration of study. In general, a CEU is defined as being equal to classroom hours. All professional development courses can be adapted to meet a particular organization’s needs and conducted as a custom-designed training program at a company site. For more than 50 years, NJIT has been designing and conducting high-quality professional development programs that meet organizations’ business needs. Since 1990, NJIT has trained over 63,000 professionals as part of over 550 training initiatives for 300 different companies conducting business in New Jersey.

For further information contact cpe@njit.edu.

Online Learning

Online Learning

Online Learning offers numerous graduate degrees, select Graduate Certificates, and graduate courses in many disciplines including communication, computer science, information systems, information technology, humanities, management, and engineering management. Online Learning offerings can be viewed at http://www5.njit.edu/online (http://www5.njit.edu/online/).

Online Learning provides students the opportunity to earn college credit through enrollment in online electronic-based courses. These courses are virtual learning communities with instructor-led online classrooms that utilize various technologies such as Moodle (http://moodle.njit.edu) for presenting course material, online quizzes, asynchronous and synchronous communication. Online courses are flexible and rigorous educational experiences suited to motivated students.

The program's reach is worldwide. Course material can be accessed through the Internet via learning management systems utilizing multimedia presentations.

Online Learning furnishes a convenient alternative to graduate distance learners and students who have scheduling conflicts. For more information, contact the Office of Graduate Studies at 973-596-3462 or email online@njit.edu.

Graduate Programs

Graduate Studies

NJIT offers advanced studies in numerous disciplines leading to master's degrees, doctoral degrees (http://catalog.njit.edu/programs/) and graduate certificates (https://www.njit.edu/graduatestudies/degree-programs/graduatecertificates/). Programs are available to full-time students and to working professionals who may be interested in part-time study. Several master's degree programs and graduate certificates are fully available online (https://www.njit.edu/online/). Some programs are offered jointly or in cooperation with Rutgers-Newark and with RBHS as part of continuing collaborations. Graduate programs at NJIT are overseen by the Office of Graduate Studies (https://www.njit.edu/graduatestudies/), Fenster Hall, Room 140, 973-596-3462.
Graduate students are involved in the university’s extensive research activities through association with renowned faculty, research centers and research laboratories. Financial support (http://www5.njit.edu/graduates/financial-aid.php) is available to eligible Ph.D. students in the form of teaching assistantships and research assistantships. Some opportunities are also available to eligible Master’s students for service-based or fellowship support. For information about these opportunities, students are encouraged to contact their academic departments.

Graduate Degrees

All doctoral programs lead to the Doctor of Philosophy (PhD) degree. Master’s programs lead to the Master of Science (MS), Master of Arts (MA), Master of Arts in Teaching (MAT), Master of Architecture (M.Arch.), Master in Infrastructure Planning (MIP), or the Master of Business Administration (MBA) degree. Numerous accelerated degree options exist that allow dual use of some courses in one degree program toward a second degree program. The Office of Graduate Studies (https://www.njit.edu/graduates/) may be consulted about accelerated degree options such as BS/MS, MS/MS and other similar combinations.

The Collaborative Doctorate

This PhD student option is designed to meet the workforce needs of the knowledge-dependent global economy. The Collaborative Ph.D. program is designed for engineers, executives, scientists, military personnel, state and federal government employees, and educators who want to pursue a Ph.D. degree part-time while continuing full-time employment. The admission and academic requirements are the same as for NJIT’s regular Ph.D. programs but the collaborative nature of the program allows participants to draw on the combined expertise and resources of the university and their employer. The dissertation research of students in the collaborative Ph.D. is expected to produce original contributions to science, engineering, technology or management and satisfy all quality criteria set by the dissertation committee. The student’s main dissertation advisor is an NJIT faculty member while the research may meet the needs of the student and employer in advancing knowledge in the chosen discipline.

To apply to the collaborative Ph.D. program, candidates must have been employed in their specified field for at least a year. NJIT’s standard criteria for admission will be applied but prior work-related research activity, publications, and honors will also be considered in evaluating prospective participants.

Details about this opportunity are available at http://catalog.njit.edu/graduate/academic-policies-procedures/collaborative-doctorate/.

Graduate Certificates

NJIT’s graduate certificates give students the opportunity to:
(a) improve their skills in their current occupation by developing expertise in advanced topics,
(b) acquire knowledge to pursue new careers, or
(c) explore emerging fields before committing to relevant master’s degree programs that require more courses.

Many students pursue a graduate certificate for personal growth or career development.

Each certificate program contains 4 graduate courses (equivalent to a total of 12 graduate credits) that are normally part of the curriculum for a 30-credit Master’s degree program. After successful completion of a graduate certificate, a student may decide to continue studying at NJIT towards the corresponding Master’s degree by taking advantage of rapid matriculated acceptance and eventual acquisition of two credentials (essentially for the price of the Master’s degree).

Hillier College of Architecture and Design

The Hillier College offers undergraduate programs in Digital Design, Industrial Design and Interior Design and two undergraduate programs in architecture -- a four-year pre-professional Bachelor of Science in Architecture (B.S.Arch.) and a NAAB accredited five-year professional Bachelor of Architecture (B.Arch.) degree leading to licensure. The College also offers four graduate degree programs: a NAAB accredited professional Master of Architecture leading to licensure (M.Arch.), a post-professional Master of Science in architecture (MS. Arch.), a Master of Urban Design (M.U.D.) and a Ph.D. in Urban Systems.

Hillier College faculty engage in funded research in a variety of areas ranging from nanomaterials to sustainable and resilient design, the later led by the College’s Center for Building Knowledge. With their emphasis on technological applications to design, both schools build on the strengths of a Carnegie Classification R1 research university while preparing students to succeed as practitioners, scholars and researchers. Students also benefit from our close proximity to New York City with its unparalleled cultural resources and employment possibilities. And our location in Newark provides students with a close-up view of a city that is rapidly transforming to reclaim the luster its citizens enjoyed in Newark’s heyday as a manufacturing powerhouse.

Programs

- Architecture - M.Arch. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/march/)
- Architecture - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/ms/)
- Urban Design - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/infrastructure-planning-masters/)
Double Majors (http://catalog.njit.edu/archive/2022-2023/graduate/academic-policies-procedures/special-programs/)

- Architecture (professional, or post-professional) - M.Arch. and Infrastructure Planning - M.I.P. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/march-mip-ms/)
- Architecture (professional, or post-professional) - M.Arch. and Management - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/march-management-ms/)
- Architecture (professional, or post-professional) - M.Arch. and Civil Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/march-civil-engineering-ms/)

Urban Systems - Ph.D. (p. 173)

- Animation Essentials (p. 159)
- Digital Arts Essentials (p. 160)
- Digitally Augmented Architecture (p. 161)
- Game Design and Interactivity Essentials (p. 162)
- Real Estate Design and Development (p. 175)
- Sustainable Building Design (p. 158)
- Sustainable Cities and Urban Ecologies (p. 176)
- UI/UX Digital Design Essentials (p. 178)

College of Architecture and Design Courses

ARCH 500G. Tools and Techniques II. 3 credits, 3 contact hours.
Introductory computer science with applications in computer graphics for architecture. Emphasizes programming methodology using a high-level language as the vehicle to illustrate concepts. Basic concepts of computer systems, software engineering, algorithm design, programming languages, and data abstraction, with applications.

ARCH 501G. Architecture Studio I. 6 credits, 12 contact hours.
Prerequisite: graduate level standing. Corequisite: ARCH 555G. Core Studio. Fundamentals of architectural design. Sequence of projects explore two- and three-dimensional design. Choice of form and aesthetics is related to spatial resolution of function and context. Design as a representational medium is emphasized. Taken concurrently with ARCH 555G.

ARCH 502G. Architecture Studio II. 6 credits, 12 contact hours.
Prerequisites: ARCH 501G, ARCH 528G, ARCH 541G, ARCH 555G. Core Studio. Extends the knowledge of design, basic concepts and ideas introduced in ARCH 501G. Emphasis is on developing technical drawing, and model-making skills. Also covered are two- and three-dimensional composition. Links to the history and theory sequence are made.

ARCH 503G. Architecture Studio III. 6 credits, 12 contact hours.

ARCH 504G. Architecture Studio IV. 6 credits, 12 contact hours.
Prerequisite: ARCH 503G. Design of buildings and integration of systems, physical and conceptual. Design methodology generates new information on buildings as coherent assemblies of systems. Also covers analysis and synthesis of form and introduction to applications of computer-assisted design (CAD). Preparation of design portfolio will complete core studio sequence.

ARCH 505G. Advanced Architecture Studio I. 6 credits, 12 contact hours.
Prerequisite: ARCH 504G. Required vertical studio; must be taken sequentially. Covers a range of advanced design issues in depth: integration of organizational, social, technical, spatial, and aesthetic issues within consistently articulated applied design solutions.

ARCH 506G. Advanced Architecture Studio II. 6 credits, 12 contact hours.
Prerequisite: ARCH 504G. Required vertical studio electives; must be taken sequentially. Covers a range of advanced design issues in depth: integration of organizational, social, technical, spatial, and aesthetic issues within consistently articulated applied design solutions.

ARCH 528G. History of Architecture I. 3 credits, 3 contact hours.
Restriction: graduate level standing. Introduction to the history of architecture. Emphasis on classical architecture from antiquity to the modern period. Evolution of the various themes and theories that underlie western architecture is presented chronologically.

ARCH 529G. History of Architecture II. 3 credits, 3 contact hours.
Prerequisite: ARCH 528G. Continuation of ARCH 528G. Introduces concepts of modernism and brings the history of western architecture to the contemporary period.
ARCH 541G. Construction I. 3 credits, 3 contact hours.
This course is an introductory survey of the general principles and application of Sustainable Design, Site Systems, Structural Systems, Environmental Systems, Envelope Systems, Materials and Assembly Systems. This course will primarily focus on low-rise wood and steel structures.

ARCH 542G. Construction II. 3 credits, 3 contact hours.
Prerequisite: ARCH 541G This course is an introductory survey of the interrelationship of the principles and applications of Sustainable Design, Site Design, Structural Systems, Environmental Systems, Envelope Systems and Materials and Assembly Systems. This course will primarily focus on low and medium-rise concrete and masonry structures and is coordinated with a studio design/build experience.

ARCH 543G. Environmental Control Systems I. 3 credits, 3 contact hours.
This course covers the basic principles and applications of passive environmental systems utilizing on-site resources to achieve thermal and visual comfort as well as energy and water conservation. The topics include climate analysis, thermal comfort, thermal envelope, solar shading, passive solar heating, passive cooling, visual comfort, daylighting, and renewables. This course is the first of a two-course sequence in building environmental control systems (543G, 544G) focusing on passive (architectural) solutions, yet active (mechanical/electrical) solutions are covered in the second sequence.

ARCH 544G. Environmental Control Systems II. 3 credits, 3 contact hours.
Prerequisites: ARCH 227 or ARCH 543G. This course provides students a deeper understanding of the relationship between architectural design and active building systems. The topics include heating and cooling systems, electric lighting design, electrical energy systems, acoustical systems, building water supply, plumbing systems, and fire protection. This course is the second of a two-course sequence in building environmental control systems (ARCH 543G, ARCH 544G) focusing on active (mechanical/electrical) solutions.

ARCH 545G. Structures I. 3 credits, 3 contact hours.
This is an intermediate course focusing on the principles of structural behavior in withstanding gravity and lateral forces and on the evolution, range, and appropriate application of structural systems and the criteria for selecting various structural systems in contemporary architecture. Specific architectural precedents from the 20th century are used as validating examples.

ARCH 547G. Synthesis Seminar. 3 credits, 3 contact hours.
Prerequisite: ARCH 505G. Corequisite: ARCH 506G. This is a required, advanced design course that uses in-depth, detailed case studies of various construction types, from small scale to large, from simple to complex, to illustrate the totality of building systems integration. In conjunction with site visits, coursework will employ software to examine construction sequences, building components and shop drawings and their relationship to the design processes.

ARCH 548G. Structures II. 3 credits, 3 contact hours.
Prerequisite: ARCH 545G. This is an advanced course dealing with structural computation that will conclude with rigorous case study investigation of hybrid and complex structural systems.

ARCH 549G. Landscape and Urbanism. 3 credits, 3 contact hours.
This course is about Urbanism, Landscape Architecture and the intersection of the two. Students will learn about landscape design in relation to the human condition and develop an understanding of how the design of the constructed urban environment is directly tied into, and affecting of the global climate and our environmental health. Students will learn about access, topography, surrounding buildings, natural systems, adjacent functions and zoning.

ARCH 555G. Tools and Techniques I. 3 credits, 3 contact hours.
Restrictions: graduate level standing. Documentary, descriptive and denotative media are introduced. Also covers methods of representation, delineation and reproduction. Skills are developed in technical drawing, perspective construction, projections, and format design.

ARCH 569G. Professional Practice I. 3 credits, 3 contact hours.
Familiarization with the larger process of building production, of which architecture is one important part. Focus on the role of the architect in the areas of current building development: an examination of how redefinition or change might improve the process. Lectures deal with all factors of the building process and interviews with the various actors involved in designing, approving, financing and making buildings. Students have various assignments including a major term project.

ARCH 579G. Professional Practice II. 3 credits, 3 contact hours.
Restriction: completion of M.Arch. core sequence. Review of the formal, informal, legal, and ethical obligations of the professional architect. Traditional relationships among the architect, clients, engineers and other participants in the design and building industry are studied. Principles of office management and problems of liability are introduced. Also fulfills core requirement of dual degree option for M.Arch./Master of Science in Management.

ARCH 601. Urban Design Studio I. 6 credits, 12 contact hours.
Collaborative work on realistic urban projects by teams of students with different professional backgrounds under the supervision of interdisciplinary faculty. A project manager coordinates and ensures that working conditions in practice are simulated in the studio. Projects include analytical, financial and design components and emphasize planning strategies and the coordinating function of the design process. Studio products are presented orally in reviews and documented in written and illustrated reports.

ARCH 602. Urban Design Studio II. 6 credits, 12 contact hours.
Collaborative work on realistic urban projects by teams of students with different professional backgrounds under the supervision of interdisciplinary faculty. A project manager coordinates and ensures that working conditions in practice are simulated in the studio. Projects include analytical, financial and design components and emphasize planning strategies and the coordinating function of the design process. Studio products are presented orally in reviews and documented in written and illustrated reports.
ARCH 621. Net Zero Building Design. 3 credits, 3 contact hours.
This course explores principles and technologies governing net-zero building design to achieve the outstanding performance that goes beyond minimum green requirements. Case studies of existing high-performance green buildings around the world will be analyzed in terms of their design, system integration, renewables, and environmental performance, which will be accompanied by lectures about the principles and tools applied to the projects. The use of existing net-zero energy standards will be also discussed. Using the techniques and tools learned in this class, students will practice how to design/redesign a net-zero energy building, which will form the final project of the class.

ARCH 622. Life Cycle Assessment and Design. 3 credits, 3 contact hours.
Prerequisites: ARCH 500G and ARCH 555G or equivalent. This course tracks Life Cycle concepts as first applied to inanimate objects and systems by the U.S. military in the mid 20th Century through their development as an important part of the modern global environmental movement. It also provides opportunities for architecture and design students to integrate data driven design decisions through methodologies and tools that translate formal Life Cycle Assessment into their own design workflows.

ARCH 623. Building Energy Modeling for Sustainable Design. 3 credits, 3 contact hours.
This course introduces the students to Building Energy Modeling (BEM) and energy optimization techniques using the EnergyPlus whole-building energy simulation program to develop student competency with whole-building energy simulation. Students will practice whole-building energy simulation, including the hourly modeling of dynamic thermal envelope loads and system simulations; and explore various green and sustainable design strategies and systems to optimize the envelope and system performance of their projects. This will allow them to be better prepared for interdisciplinary collaboration and integrated design practice for energy efficiency.

ARCH 625. Passive House and Beyond. 3 credits, 3 contact hours.
This course explores leading edge green building programs designed for highly efficient buildings and regenerative design, including Passive House, Living Building Challenge, and Enterprise Green Communities Certification Plus. Each program’s requirements and application for single family, multifamily and commercial building typologies will be investigated through in-depth case studies and presentations. A cross-program comparison will analyze overlaps, gaps, strengths and weaknesses of the programs - and challenge students to discern where their own sustainability values lie.

ARCH 626. Building Dynamics. 3 credits, 3 contact hours.
This course focuses on theories and practice of adaptive architectural solutions. It will examine architecture in relation to the latest research in biology, material science, embedded systems and robotics. Students will research technologies, review case studies, and design adaptive proposals for architecture. In general, they will consider the role architecture as a discipline plays in climate challenges we are facing today. This class is interested in the territory where new technological and scientific advances, and architecture meet. It explores the importance of new technologies in contemporary design and their implications on architectural attitudes.

ARCH 630. Critical Theories in Architecture. 3 credits, 3 contact hours.
Prerequisites: ARCH 528G, ARCH 529G. This seminar is structured around notable readings on architectural history, theory and criticism to provide students with a sound basis for critical analysis and assessment. It is recommended for students who select history and theory as their area of concentration.

ARCH 634. Urban Theory and the Contemporary City. 3 credits, 3 contact hours.
Prerequisites: ARCH 528G, ARCH 529G. Survey of the development of building methods and materials. Impact of structural and environmental technology on architectural form and the design process. The role of technology in contemporary architectural theory and practice including the modern movement is emphasized. Recommended for students who select building science as their area of concentration.

ARCH 636. History and Theory of Urban Planning and Design. 3 credits, 3 contact hours.
The course examines methods for conducting historically driven, interdisciplinary research on the built environment (with a focus on cities and suburbs) through the lens of architecture, landscape, geography, and material culture. Methodology is studied to inform the production of urban history and to frame historical perspectives on contemporary urban issues. Historiography and critical theory are key aspects of the study of urban history’s methodologies. In addition to traditional historical methodologies, the course examines emerging digital humanities methodologies.

ARCH 645. Case Studies in Architectural Technology. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Case-study method used for in-depth investigation of the relationship among various technological systems in a building and technology-related problems in architecture and construction.

ARCH 646. Designing and Optimizing the Building Enclosure. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Considers the “building envelope,” the boundary dividing the inside of a structure from the outside environment. Students study and design optimal enclosures considering energy exchange, the relationship between energy and lighting, and life cycle costs.

ARCH 647. Visualizing Urbanism. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Evaluation and use of computer graphics hardware and software for architectural applications. Focus is on computers as tools, operating systems and methods of data manipulation. Two- and three-dimensional modeling software are discussed, and assignments using such software are given to provide understanding of the modeling of built environments.

ARCH 649. Life Safety Issues in Contemporary Buildings. 3 credits, 3 contact hours.
Restriction: completion of core sequence. A variety of life safety and comfort situations are studied in different building types. Topics include building evacuation, compartmentalizing, fire fighting and suppression, evaluation and testing of new building materials and systems, systems control and management. Special attention is placed on multi-use, high-density buildings.
ARCH 650. Economy Of Building. 3 credits, 3 contact hours.
Restriction: completion of core sequence or equivalent. Economic consequences of design decisions. Topics include: relationship among economy, efficiency and quality; life-cycle cost of design; improving the economy of building processes and products through innovation; and environmental concerns. This course is required for the dual degree M.Arch./Master of Science in Management program. It can also be used as an elective in the M.Arch. program.

ARCH 651. Public and Private Development. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Introduction to the economic, financial and political aspects of real estate and their effect on architectural decision-making. Topics include: needs assessment, real estate appraisal, financial instruments, regulations and real estate, design as value-adding, and the effect of tax policies on real estate development. This course is required for the dual degree M.Arch./Master of Science in Management program. It can also be used as an elective in the M.Arch. program.

ARCH 652. Architectural Project Management. 3 credits, 3 contact hours.
Prerequisite: ARCH 579G. Restriction: completion of core sequence. Management of architectural projects: project costs, timing, personnel, documentation, professional ethics and resource management. This course is required for the dual degree M.Arch./Master of Science in Management program. It may be used as an elective in the M.Arch. program.

ARCH 654. Land Remediation and Community Revitalization. 3 credits, 3 contact hours.
This course introduces students to the process of transforming legacy industrial and vacant commercial properties into community assets. Viewing land remediation and redevelopment through the lens of the triple bottom line, the students will explore ways in which transformation of these properties can improve environmental conditions, catalyze economic development, and create more socially equitable and resilient communities. Students will interact with local government officials, real estate developers, environmental consultants, attorneys, and community planners. Course topics will include: environmental laws and regulations, real estate development, cleaning up contaminated properties, community engagement, environmental justice, gentrification, and transformative land uses.

ARCH 655. Land Use Planning. 3 credits, 3 contact hours.
Spatial relations of human behavior patterns to land use: methods of employment and population studies are evaluated; location and spatial requirements are related to land use plans; and concepts of urban renewal and recreational planning are investigated by case studies. Same as TRAN 655 and CE 655.

ARCH 660. Direct Study In Arch II. 3 credits, 3 contact hours.
ARCH 661. Directed Studies of Architecture. 3 credits, 3 contact hours.
Restriction: completion of core, two elective courses, and approval from the graduate advisor. Independent, in-depth research on an analytical, theoretical or technical area of architecture. Student prepares formal research proposal with permission of faculty advisor and approval of graduate advisor. Required as pre-thesis research. See also course description for MARC 701.

ARCH 662. Special Topics in Architecture. 3 credits, 3 contact hours.
Topics vary each semester. Refer to the School of Architecture bulletin during university registration periods for a list of current topics and possible prerequisites.

ARCH 663. Introduction to Sustainable Architecture. 3 credits, 3 contact hours.
Prerequisite: ARCH 543G or ARCH 227. Environment design of buildings. The five characteristics of green buildings: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality. The US Green Building Council's Green Building Rating System, review of several major buildings of exemplary design.

ARCH 672. Architecture and Social Change. 3 credits, 3 contact hours.
Prerequisite: graduate level standing. Analysis of architectural form with respect to political, economic and technological change. The built environment is studied in relation to society and culture. The role of design professions in initiating or supporting change is also considered.

ARCH 677. Geographic Information Systems. 3 credits, 3 contact hours.
Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control, etc. Introduces this emerging technology and its applications.

ARCH 679. Envisioning Newark. 3 credits, 3 contact hours.
This seminar combines classroom discussion based on historical, analytical and literary texts; field visits to Newark's districts and neighborhoods; and meetings with leaders in government, business, art, education, and community-based organizations. The objective is to introduce students to the redevelopment process underway in Newark, and to use the city as a springboard for a broader investigation of the theory and practice of urban development.

ARCH 680. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: completion of core sequence, permission from graduate advisor and Division of Career Development Services. Students gain work experience and reinforcement of their academic programs. An architecture faculty Co-op advisor monitors and evaluates student work and project. Co-op work experiences may be acceptable equivalents for apprenticeships mandated by the New Jersey State Board of Architects and for eligibility to take the architecture licensing examination. This course is required for participation in the Housing Scholars Program. Course does not fulfill degree requirements.
ARCH 681. Co-Op Work Experience II. 1 credit, 1 contact hour.
Restriction: completion of core sequence, permission of graduate advisor and Division of Career Development Services. Used for extended Summer-Fall (ARCH 681) or Spring-Summer (ARCH 682) work experience. Does not fulfill degree requirements.

ARCH 682. Co-Op Work Experience III. 0 credits, 0 contact hours.
Restriction: completion of core sequence, permission of graduate advisor and Division of Career Development Services. Used for extended Summer-Fall (ARCH 681) or Spring-Summer (ARCH 682) work experience. Does not fulfill degree requirements.

ARCH 683. Graduate Coop Work Exper IV. 0 credits, 3 contact hours.

ARCH 684. Topics of Sustainable Urbanism. 3 credits, 3 contact hours.
Cities are growing at an unprecedented speed. Cities currently account for about 70 percent of global carbon emissions and over 60 percent of resource use. We have to develop a vision for more sustainable cities and new protocols and processes to implement more sustainable visions for urban areas. This course will provide an inside into the challenges we face (growing number of slum dwellers, inadequate infrastructure and services); it will provide an overview of goals and existing frameworks and speculate on solutions to address sustainability urban issues.

ARCH 688. The Augmented City. 3 credits, 3 contact hours.
Digital technology disrupted city life. The use of ICTs (Information Communication Technologies) has radically changed the way we inhabit and operate in the urban space. This course provides a history of how information technology is used to influence and support social structures and an inside in how ICTs are used as a catalytic tool for expanding, augmenting and altering social interactions.

ARCH 689. AI / VR in Architecture. 3 credits, 3 contact hours.
The recent progress in data science allows us to understand the correlations between artistic expressions and their implicit qualities in more quantifiable formats and leads us to explore creativity through a symbiotic relationship between human and machine intelligence. This course will introduce various analytical means to assess the performance and quality of spatial designs. Using various computational design tools, students will use environmental to aesthetic parameters to explore the use of Artificial Intelligence (AI) and Virtual Reality (VR).

ARCH 701B. Master’s Thesis. 3.5 credits, 3.5 contact hours.
Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ARCH 701C. Masters Thesis. 6 credits, 0 contact hours.
Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ARCH 770. Development of the American City. 3 credits, 3 contact hours.
Restriction: Enrollment in the Urban Systems PhD program or permission of the instructor.
Introduction to research in urban history, focusing on the American city. Key texts that deal with the development of the American city will be studied in depth, with particular emphasis on the approaches, methodologies, and sources. Each student will conduct bibliographic research on a city or urban sector from a defined perspective.

ARCH 771. Pathology of Urban Systems. 3 credits, 3 contact hours.
Restriction: Enrollment in the Urban System PhD program or permission of the instructor. Definition of pathology of urban systems as large-scale disasters that have resulted in major destruction of the urban fabric and called for radical re-planning projects. Investigation of historic case studies. The aftermath of natural and man-made disasters including war; contemporary case studies.

DD 601. Graphic Design and Color Theory. 3 credits, 4 contact hours.
Introduction to principles of graphic design and 2D composition with additional emphasis on color use and color theory. Introduction to computer graphics as applied to design. Students are introduced to traditional media (watercolor and collage) and digital raster graphics (painting, image processing, and compositing). Applications from the physical and digital worlds (e.g., architecture, interior design, animation/motion pictures, game design, product/industrial design, advertising, web design, and painting) are discussed. Concepts include ordering systems and hierarchy, color models and mixing, color interaction, physical and psychological response to color, typography, printing, etc. Emphasis on synthesizing knowledge and skills through creative projects.

DD 602. 3D Modelling and Composition. 3 credits, 6 contact hours.
The course introduces students to the language and conventions of describing space, shape, form, and order using digital media to represent three-dimensional physical and virtual worlds and objects. Through a series of discrete creative exercises, students will be exposed to a variety of software applications, processes, and concepts utilized in design and design communication. This course will help students develop a critical attitude and analytical language to explore 3D basic design principles in a digital milieu.

DD 603. Video and Animation. 3 credits, 3 contact hours.
Prerequisites: None. The course will introduce students to design and narrative in motion based media. While highly technical in nature, coursework will focus on narrative development and design decision making in four dimensions.

DD 610. History of Art And Design I. 3 credits, 3 contact hours.
This course surveys the major monuments and trends in the history of painting, sculpture, design and architecture from the Italian Renaissance to the beginning of the twentieth century. The focus is on global developments with an emphasis on key artworks and artists examined in relation to the social, economic, and political climates which produced them. Important artistic innovations, techniques and methods are considered. Though arranged according to historical chronology, lecture content is driven by thematic and contextual issues such as humanism, absolutism, colonialism, the Enlightenment, and industrialization.
DD 611. History of Art and Design - Survey II. 3 credits, 3 contact hours.
This foundation history course surveys the principle aesthetic/functional themes and theories of the twentieth century. Students will explore how various individuals have used art and design to develop products that enriched society culturally and/or that resolved particular societal needs. The course will begin with how optics revolutionized painting, sculpture, architecture, film, etc., and explore how the modern movement broke with or reinterpreted the past through a series of flashbacks.

DD 621. Character and Facial Modeling for Animators. 3 credits, 3 contact hours.
Prerequisites: Basic background in in the use and application of digital media in design. The course will introduce students to the language and conventions of manipulating tools and techniques to develop and create 3-dimensional character design.

DD 622. Visual Storytelling and Storyboarding. 3 credits, 3 contact hours.
Prerequisites: DD 601, DD 602. Storyboarding is the preparation of a conceptual and thematic graphic plan to tell a story using animations, video games, interactive media and experiences, advertisements, music videos, or graphic novels. This course will cover the fundamentals of visual storytelling and the various applications possible in a visual narrative. Techniques for art direction are covered including the use of storyboards, concept art, and animatics to communicate. Students will translate a written narrative into a visual experience in this project-based class with the use of camera framing, camera angles, gesture, and expression. Issues of lighting, color, and mood will be included resulting in a student-developed full-story pitch.

DD 623. Acting for Animators. 3 credits, 3 contact hours.
Prerequisites: Basic background in the use and application of digital media in design. Introduction to the historical contexts of acting. Survey of acting techniques and principles and their relationship to successful visual storytelling. Topics covered include movement, empathy and dialogue. Application of acting to two- and three-dimensional animation. Students will study examples from animation as well as film and theater. Required projects include both in-class acting exercises as well as storyboard creation and directed computer graphics character animation.

DD 624. Digital Audio. 3 credits, 3 contact hours.
A studio class that provides a baseline understanding of sound design within an animated video and video game environment. Course includes an introduction to sampling, field recording, sound effects, production techniques, mixing, and general sound design for the purpose of integrating and managing the integration of audio in motion pictures, television, video games, and any other sound-supported media. Analytical and creative projects are required.

DD 625. Environment Design. 3 credits, 3 contact hours.
Prerequisites: Basic background in the use and application of digital media in design. Corequisites: . The course will introduce students to the language and conventions of manipulating tools and techniques to develop and create simulated environments.

DD 631. History of Game Play and Interactivity. 3 credits, 3 contact hours.
A guided exploration through the world of games. Students will experiment, play, and analyze various aspects of games - from early traditional games to current generation electronically-mediated games; from individual games to collaborative online games. Game types will be analyzed with particular attention paid to the virtual environments in which these games take place. The expressive and persuasive aspects of games will also be explored. Students will learn underlying principles behind various game development technologies from traditional to digital format. Assignments will ask students to analyze the structure of various games and prepare them for creative final projects. The latter half of the semester will be focused mainly on individual student research toward a creative final project.

DD 634. Physical Computing for Designers – Interaction Design. 3 credits, 3 contact hours.
Prerequisites: Basic background in the use and application of digital media in design. Design course focusing on two-and three-dimensional visual communication of data, including interactive and scripted/animated communication as well as still-image utilization. Applications may include website creation, information kiosks, exhibit design, educational videos, scientific visualization, and other graphics-intensive projects.

DD 640. User Interface/User Experience in Digital Design. 3 credits, 3 contact hours.
Application of theories, research methods, ethics, and design processes of UI/UX (user interface/user experience) design. Students will research, develop, and test basic UI/UX designs. Design strategies will be discussed as they apply to physical, virtual, and hybrid prototype solutions.

DD 650. Extended Reality Design Studio. 6 credits, 12 contact hours.
Prerequisites: DD 601, DD 602, DD 603. Introduction to XR platforms and techniques as they support UI/UX (user interface/user experience) design, gaming and interactivity, and animation. Students will explore design possibilities and opportunities in XR from a range of Digital Design specializations including, Animation, Gaming and Interactivity, and UI/UX. They will use VR, AR, MR platforms to collaborate and consider complementary digital design specializations.

DD 651. Animation Design Studio I. 6 credits, 12 contact hours.
Prerequisites: DD 650. Core Studio. Extends the knowledge of design, basic concepts and ideas around time, perception and user experience introduced in DD 650. Emphasis is on developing skills and creative content using specialized 2D animation tools and techniques.

DD 652. Animation Design Studio II. 6 credits, 12 contact hours.
Prerequisite: DD 651. Core Studio. Further develops the design ideas introduced in DD 651. Conceptual focus is on representation and simulation of objects, organisms, and physical phenomena in time and space. Emphasis is on developing skills and creative content using specialized 3D animation tools and techniques including the use of motion capture.
DD 653. Game Design and Interactivity Design Studio I. 6 credits, 12 contact hours.
Prerequisite: DD 650. Core Studio. Extends the knowledge of design, basic concepts and ideas around time, perception and user experience introduced in DD 650. Emphasis is on developing skills and creative content using specialized game and interactivity design tools and techniques. The expressive power of games are explored and tested through a series of narrative and analytical exercises. Essential media elements are recombined to produce hybrid participatory forms.

DD 654. Game Design and Interactivity Studio II. 6 credits, 12 contact hours.
Prerequisite: DD 653. Core Studio. Further develops the design ideas introduced in DD 653. Focus is on building, testing and publishing game and interactive content for a broad spectrum of users and applications. Teamwork, planning, and workflow management are essential to bring creative ideas into reality. This studio combines many of the skills and concepts developed in earlier courses and studios.

DD 655. User Interface/User Experience Digital Design Studio I. 6 credits, 12 contact hours.
Prerequisite: DD 650. Core Studio. Extends the knowledge of design, basic concepts and ideas around time, perception and user experience introduced in DD 650. Emphasis is on developing skills and creative content using specialized UI/UX design tools and techniques for use in mediating between digital and physical media.

DD 656. User Interface/User Experience Digital Design Studio II. 6 credits, 12 contact hours.
Prerequisite: DD 655. Core Studio. Focus is on building and evaluating various physical and digital user interface prototypes to meet a broad spectrum of market sensitive users and applications. This studio combines many of the skills and concepts developed in earlier courses and studios with a greater emphasis on individual projects and approaches to improve E-Commerce User Experience.

DD 657. Digital Design Independent Project Studio. 6 credits, 12 contact hours.
Prerequisite: DD 650. Advanced Studio. The Digital Design Independent Project Studio requires students to propose a topic for a final studio project concentrating on topic chosen in conjunction with the studio instructor and any other subject specialist in their digital design concentration.

MARC 701A. Master's Thesis. 1.5 credit, 3 contact hours.
Prerequisites: ARCH 506G, ARCH 661, and approval from graduate advisor. Alternative to ARCH 507G. Under the supervision of a faculty advisor, independent study of issues in the student's area of concentration developed during ARCH 661. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MARC 701B. Master's Thesis. 3 credits, 3 contact hours.
Prerequisites: ARCH 506G, ARCH 661, and approval from graduate advisor. Alternative to ARCH 507G. Under the supervision of a faculty advisor, independent study of issues in the student's area of concentration developed during ARCH 661. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MARC 701C. Master's Thesis. 6 credits, 3 contact hours.
Prerequisites: ARCH 506G, ARCH 661, and approval from graduate advisor. Alternative to ARCH 507G. Under the supervision of a faculty advisor, independent study of issues in the student's area of concentration developed during ARCH 661. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MIP 612. Introduction to Environmental Policy Studies. 3 credits, 3 contact hours.
Introduction to six areas essential to a comprehensive understanding of environmental policy: concepts of environmental policy; tools (law, economics, planning, science, engineering, ethics) for environmental policy; the U.S. perspective (NEPA, clean air and water acts, CERCLA, etc.); the international perspective (Club of Rome models, 1972 UNEP, 1992 Rio, etc.); industrial perspective (pollution prevention/life cycle engineering, privatization, etc.); and the local perspective (New Jersey DEP, NGOs, local industry, shoreline, etc.). Same as EPS 612.

MIP 618. Public and Private Financing of Urban Areas. 3 credits, 3 contact hours.
Ties government's budget, tax, policy, allocation of resources between public and private sectors, with the structure, development, and growth needs of urban metropolitan areas. Focuses on problems of poverty, transportation, land-use, economic base, relation between central cities and suburban areas, and alternative engineering and economic solutions. Same as FIN 618 and TRAN 604.

MIP 631. History and Theory of Infrastructure. 3 credits, 3 contact hours.
The historical role of infrastructure in the formation of cities and the relation of planning theories to urban culture. Case studies are used to develop effective ways of learning urban design; method and substance are equally emphasized. Concentration on the social, economic, political, technological and topographic factors that affect urban form; analysis of urban design schemata and their relation to patterns of use; and the critical appraisal of planning ideologies and strategies. Same as ARCH 631H.

MIP 673. Infrastructure Planning in Practice. 3 credits, 3 contact hours.
Infrastructure planning principles, methods and tools. Through selected examples, acquaintance with infrastructure planning theories and models, quantitative methods of research and analysis, information management, decision making, and implementation techniques. Same as ARCH 673.

MIP 674. Infrastructure and Architecture. 3 credits, 3 contact hours.
Examination of areas of overlap and continuity between architecture, landscape architecture, urban design, building science and infrastructure. Topics include the typology, programming and design of public facilities; the housing fabric; the relation between built form, urban space and infrastructure. Same as ARCH 674.

MIP 675. Elements of Infrastructure Planning. 3 credits, 3 contact hours.
Introductory survey of the basic principles, operation and design of physical infrastructure systems including roads, public transportation, community facilities, public open space, surface drainage, and electric, gas, water, waste disposal, and telecommunications services. Same as ARCH 675.
USYS 702. Evolution American Metropolis. 3 credits, 3 contact hours.
Prerequisites: Doctoral standing, or graduate standing and permission of instructor. This course introduces the morphological and cultural evolution of the global metropolis, from historical and economic, political, geographic, and contemporary perspectives. The emphasis is on the intersection of social and environmental conditions that gave rise to distinct urban areas that have influenced urban populations throughout history. A chronological overview of the settlement, growth, decline and revitalization of global cities is combined with detailed case studies.

USYS 711. The Good City: Env Des & Qual. 3 credits, 3 contact hours.
Prerequisites: Enrolment in Urban Systems Program or by permission of instructor. This course introduces urban systems doctoral students to the various ways in which architects, urban designers, and planners have sought and continue to seek to improve the quality of everyday life in urban and suburban environments through the design of the built environment, both at the scale of neighborhoods and communities and at the scale of buildings. The emphasis is on manipulation of built form, transportation, and public space as responses to perceived problems. Key topic area are housing and neighborhoods, public space, transportation, schools, and hospitals.

USYS 721. Aspects of Urban Form. 3 credits, 3 contact hours.
Prerequisites: Enrolment in Urban Systems PhD Program or by permission of instructor. This seminar course investigates formal aspects of cities, ranging from streets to squares, parks, monuments, residential fabrics, infrastructure, and the overall image. The case studies are drawn from historic and contemporary cities and cover a wide geographical area. The inclusion of ?Western? and ?non-Western? examples allows for a cross-cultural perspective. While the physicality of urban elements constitutes the starting point, they will be examined in reference to the political, social cultural, and economic issues and situated in their historic contexts.

USYS 725. Independent Study I. 3 credits, 3 contact hours.
Prerequisites: Permission of Program Director. This designation covers courses for Urban Systems students prescribed by a supervising faculty member. This special course covers areas of study in which one or more students may be interested, but which isn't of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

USYS 726. Independent Study II. 3 credits, 3 contact hours.
Prerequisites: Permission of Program Director. This designation covers courses for Urban Systems students prescribed by a supervising faculty member. This special course covers areas of study in which one or more students may be interested, but which isn't of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for USYS 726 if they have taken USYS 725 in a prior semester.

USYS 788. Special Topics in Urban Systems. 3 credits, 3 contact hours.
Special-area given when suitable interest develops. Advance notice of forthcoming topics in Urban Systems will be given.

USYS 790. Dissertation Research. 0 credits, 0 contact hours.

USYS 790A. Dissertation Research. 1 credit, 1 contact hour.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790B. Dissertation Research. 3 credits, 3 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790C. Dissertation Research. 6 credits, 6 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790D. Dissertation Research. 9 credits, 9 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790E. Dissertation Research. 12 credits, 12 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 791. Colloquium. 1 credit, 1 contact hour.
Prerequisites: Permission of Program Director. Required of all students admitted to the Doctor of Philosophy Program in Urban Systems. A minimum of 2 credits is required. This course discusses and reviews degree requirements and current research activities in the subject area of Urban Systems.

USYS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Prerequisites: Permission of Program Director. For students admitted to the Doctor of Philosophy Program in Urban Systems who have not yet successfully defended the dissertation proposal. A minimum of 6 credits is required. Research is carried out under the supervision of designed Urban Systems faculty.
Architecture

http://architecture.njit.edu

Accredited by: The National Architectural Accrediting Board.

In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit U.S. professional degree programs in architecture, recognizes three types of degrees: the Bachelor of Architecture, the Master of Architecture, and the Doctor of Architecture.

The New Jersey School of Architecture educates students to assume positions of responsibility and leadership in the architectural profession and in developing areas of opportunity in technology and community design related to the discipline of architecture. An emphasis on studio design in the curriculum is reinforced by required courses in history, building science, professional practice and social concerns. A diverse faculty brings its expertise to bear on issues of architecture, technology and culture and challenges students to prepare for their productive years as practitioners, scholars and researchers. The architecture program builds on the strengths of a top-tier Research University with its long history in computer graphics while emphasizing design directed toward the traditional human-centered values of architecture.

NJIT Faculty

A
Alcala, Jose M., University Lecturer

B
Bess, Mark E., University Lecturer
Brothers, David A., Senior University Lecturer

C
Cays, John M., Associate Dean for Academics, College of Architecture and Design; Interim Director, School of Art and Design

D
Decker, Martina, Associate Professor
Evans, Deane, Associate Dean for Research; Director, Center for Resilient Design

E
Esperdy, Gabrielle, Professor, Interim Dean

G
Garcia Figueroa, Julio C., University Lecturer
Goldman, Glenn, Professor, School of Design

H
Harp, Cleveland J., University Lecturer
Hurtado De Mendoza, Maria, Associate Professor

K
Kelly Hutzell, Associate Professor, Director, School of Architecture
Kim, Hyojin, Associate Professor
Kolarevic, Branko R., Professor,
Kum-Biocca, Hyejin Hannah

N
Narahara, Taro, Associate Professor
Navin, Thomas R., Senior University Lecturer

O
Ogorzalek, Thomas, Senior University Lecturer

P
Prlac, Vera, Associate Professor

R
Riether, Gernot, Associate Professor

S
Schwartz, Mathew L., Assistant Professor
New Jersey School of Architecture Courses

ARCH 500G. Tools and Techniques II. 3 credits, 3 contact hours.
Introductory computer science with applications in computer graphics for architecture. Emphasizes programming methodology using a high-level language as the vehicle to illustrate concepts. Basic concepts of computer systems, software engineering, algorithm design, programming languages, and data abstraction, with applications.

ARCH 501G. Architecture Studio I. 6 credits, 12 contact hours.
Prerequisite: graduate level standing. Corequisite: ARCH 555G. Core Studio. Fundamentals of architectural design. Sequence of projects explore two- and three-dimensional design. Choice of form and aesthetics is related to spatial resolution of function and context. Design as a representational medium is emphasized. Taken concurrently with ARCH 555G.

ARCH 502G. Architecture Studio II. 6 credits, 12 contact hours.
Prerequisites: ARCH 501G, ARCH 528G, ARCH 541G, ARCH 555G. Core Studio. Extends the knowledge of design, basic concepts and ideas introduced in ARCH 501G. Emphasis is on developing technical drawing, and model-making skills. Also covered are two- and three-dimensional composition. Links to the history and theory sequence are made.

ARCH 503G. Architecture Studio III. 6 credits, 12 contact hours.
ARCH 504G. Architecture Studio IV. 6 credits, 12 contact hours.
Prerequisite: ARCH 503G. Design of buildings and integration of systems, physical and conceptual. Design methodology generates new information on buildings as coherent assemblies of systems. Also covers analysis and synthesis of form and introduction to applications of computer-assisted design (CAD). Preparation of design portfolio will complete core studio sequence.

ARCH 505G. Advanced Architecture Studio I. 6 credits, 12 contact hours.
Prerequisite: ARCH 504G. Required vertical studio; must be taken sequentially. Covers a range of advanced design issues in depth: integration of organizational, social, technical, spatial, and aesthetic issues within consistently articulated applied design solutions.

ARCH 506G. Advanced Architecture Studio II. 6 credits, 12 contact hours.
Prerequisite: ARCH 504G. Required vertical studio electives; must be taken sequentially. Covers a range of advanced design issues in depth: integration of organizational, social, technical, spatial, and aesthetic issues within consistently articulated applied design solutions.

ARCH 528G. History of Architecture I. 3 credits, 3 contact hours.
Restriction: graduate level standing. Introduction to the history of architecture. Emphasis on classical architecture from antiquity to the modern period. Evolution of the various themes and theories that underlie western architecture is presented chronologically.

ARCH 529G. History of Architecture II. 3 credits, 3 contact hours.
Prerequisite: ARCH 528G. Continuation of ARCH 528G. Introduces concepts of modernism and brings the history of western architecture to the contemporary period.

ARCH 541G. Construction I. 3 credits, 3 contact hours.
This course is an introductory survey of the general principles and application of Sustainable Design, Site Systems, Structural Systems, Environmental Systems, Envelope Systems, Materials and Assembly Systems. This course will primarily focus on low-rise wood and steel structures.

ARCH 542G. Construction II. 3 credits, 3 contact hours.
Prerequisite: ARCH 541G This course is an introductory survey of the interrelationship of the principles and applications of Sustainable Design, Site Design, Structural Systems, Environmental Systems, Envelope Systems and Materials and Assembly Systems. This course will primarily focus on low and medium-rise concrete and masonry structures and is coordinated with a studio design/build experience.

ARCH 543G. Environmental Control Systems I. 3 credits, 3 contact hours.
This course covers the basic principles and applications of passive environmental systems utilizing on-site resources to achieve thermal and visual comfort as well as energy and water conservation. The topics include climate analysis, thermal comfort, thermal envelope, solar shading, passive solar heating, passive cooling, visual comfort, daylighting, and renewables. This course is the first of a two-course sequence in building environmental control systems (543G, 544G) focusing on passive (architectural) solutions, yet active (mechanical/electrical) solutions are covered in the second sequence.

ARCH 544G. Environmental Control Systems II. 3 credits, 3 contact hours.
Prerequisites: ARCH 227 or ARCH 543G. This course provides students a deeper understanding of the relationship between architectural design and active building systems. The topics include heating and cooling systems, electric lighting design, electrical energy systems, acoustical systems, building water supply, plumbing systems, and fire protection. This course is the second of a two-course sequence in building environmental control systems (ARCH 543G, ARCH 544G) focusing on active (mechanical/electrical) solutions.

ARCH 545G. Structures I. 3 credits, 3 contact hours.
This is an intermediate course focusing on the principles of structural behavior in withstanding gravity and lateral forces and on the evolution, range, and appropriate application of structural systems and the criteria for selecting various structural systems in contemporary architecture. Specific architectural precedents from the 20th century are used as validating examples.

ARCH 547G. Synthesis Seminar. 3 credits, 3 contact hours.
Prerequisite: ARCH 505G. Corequisite: ARCH 506G. This is a required, advanced design course that uses in-depth, detailed case studies of various construction types, from small scale to large, from simple to complex, to illustrate the totality of building systems integration. In conjunction with site visits, coursework will employ software to examine construction sequences, building components and shop drawings and their relationship to the design processes.

ARCH 548G. Structures II. 3 credits, 3 contact hours.
Prerequisite: ARCH 545G. This is an advanced course dealing with structural computation that will conclude with rigorous case study investigation of hybrid and complex structural systems.

ARCH 549G. Landscape and Urbanism. 3 credits, 3 contact hours.
This course is about Urbanism, Landscape Architecture and the intersection of the two. Students will learn about landscape design in relation to the human condition and develop an understanding of how the design of the constructed urban environment is directly tied into, and affecting of the global climate and our environmental health. Students will learn about access, topography, surrounding buildings, natural systems, adjacent functions and zoning.

ARCH 555G. Tools and Techniques I. 3 credits, 3 contact hours.
Restrictions: graduate level standing. Documentary, descriptive and denotative media are introduced. Also covers methods of representation, delineation and reproduction. Skills are developed in technical drawing, perspective construction, projections, and format design.
ARCH 569G. Professional Practice I. 3 credits, 3 contact hours.
Familiarization with the larger process of building production, of which architecture is one important part. Focus on the role of the architect in the areas of current building development: an examination of how redefinition or change might improve the process. Lectures deal with all factors of the building process and interviews with the various actors involved in designing, approving, financing and making buildings. Students have various assignments including a major term project.

ARCH 579G. Professional Practice II. 3 credits, 3 contact hours.
Restriction: completion of M.Arch. core sequence. Review of the formal, informal, legal, and ethical obligations of the professional architect. Traditional relationships among the architect, clients, engineers and other participants in the design and building industry are studied. Principles of office management and problems of liability are introduced. Also fulfills core requirement of dual degree option for M.Arch./Master of Science in Management.

ARCH 601. Urban Design Studio I. 6 credits, 12 contact hours.
Collaborative work on realistic urban projects by teams of students with different professional backgrounds under the supervision of interdisciplinary faculty. A project manager coordinates and ensures that working conditions in practice are simulated in the studio. Projects include analytical, financial and design components and emphasize planning strategies and the coordinating function of the design process. Studio products are presented orally in reviews and documented in written and illustrated reports.

ARCH 602. Urban Design Studio II. 6 credits, 12 contact hours.
Collaborative work on realistic urban projects by teams of students with different professional backgrounds under the supervision of interdisciplinary faculty. A project manager coordinates and ensures that working conditions in practice are simulated in the studio. Projects include analytical, financial and design components and emphasize planning strategies and the coordinating function of the design process. Studio products are presented orally in reviews and documented in written and illustrated reports.

ARCH 621. Net Zero Building Design. 3 credits, 3 contact hours.
This course explores principles and technologies governing net-zero building design to achieve the outstanding performance that goes beyond minimum green requirements. Case studies of existing high-performance green buildings around the world will be analyzed in terms of their design, system integration, renewables, and environmental performance, which will be accompanied by lectures about the principles and tools applied to the projects. The use of existing net-zero energy standards will be also discussed. Using the techniques and tools learned in this class, students will practice how to design/redesign a net-zero energy building, which will form the final project of the class.

ARCH 622. Life Cycle Assessment and Design. 3 credits, 3 contact hours.
Prerequisites: ARCH 500G and ARCH 555G or equivalent. This course tracks Life Cycle concepts as first applied to inanimate objects and systems by the U.S. military in the mid 20th Century through their development as an important part of the modern global environmental movement. It also provides opportunities for architecture and design students to integrate data driven design decisions through methodologies and tools that translate formal Life Cycle Assessment into their own design workflows.

ARCH 623. Building Energy Modeling for Sustainable Design. 3 credits, 3 contact hours.
This course introduces the students to Building Energy Modeling (BEM) and energy optimization techniques using the EnergyPlus whole-building energy simulation program to develop student competency with whole-building energy simulation. Students will practice whole-building energy simulation, including the hourly modeling of dynamic thermal envelope loads and system simulations; and explore various green and sustainable design strategies and systems to optimize the envelope and system performance of their projects. This will allow them to be better prepared for interdisciplinary collaboration and integrated design practice for energy efficiency.

ARCH 625. Passive House and Beyond. 3 credits, 3 contact hours.
This course explores leading edge green building programs designed for highly efficient buildings and regenerative design, including Passive House, Living Building Challenge, and Enterprise Green Communities Certification Plus. Each program’s requirements and application for single family, multifamily and commercial building typologies will be investigated through in-depth case studies and presentations. A cross-program comparison will analyze overlaps, gaps, strengths and weaknesses of the programs - and challenge students to discern where their own sustainability values lie.

ARCH 626. Building Dynamics. 3 credits, 3 contact hours.
This course focuses on theories and practice of adaptive architectural solutions. It will examine architecture in relation to the latest research in biology, material science, embedded systems and robotics. Students will research technologies, review case studies, and design adaptive proposals for architecture. In general, they will consider the role architecture as a discipline plays in climate challenges we are facing today. This class is interested in the territory where new technological and scientific advances, and architecture meet. It explores the importance of new technologies in contemporary design and their implications on architectural attitudes.

ARCH 630. Critical Theories in Architecture. 3 credits, 3 contact hours.
Prerequisites: ARCH 528G, ARCH 529G. This seminar is structured around notable readings on architectural history, theory and criticism to provide students with a sound basis for critical analysis and assessment. It is recommended for students who select history and theory as their area of concentration.

ARCH 634. Urban Theory and the Contemporary City. 3 credits, 3 contact hours.
Prerequisites: ARCH 528G, ARCH 529G. Survey of the development of building methods and materials. Impact of structural and environmental technology on architectural form and the design process. The role of technology in contemporary architectural theory and practice including the modern movement is emphasized. Recommended for students who select building science as their area of concentration.
ARCH 636. History and Theory of Urban Planning and Design. 3 credits, 3 contact hours.
The course examines methods for conducting historically driven, interdisciplinary research on the built environment (with a focus on cities and suburbs) through the lens of architecture, landscape, geography, and material culture. Methodology is studied to inform the production of urban history and to frame historical perspectives on contemporary urban issues. Historiography and critical theory are key aspects of the study of urban history's methodologies. In addition to traditional historical methodologies, the course examines emerging digital humanities methodologies.

ARCH 645. Case Studies in Architectural Technology. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Case-study method used for in-depth investigation of the relationship among various technological systems in a building and technologically-related problems in architecture and construction.

ARCH 646. Designing and Optimizing the Building Enclosure. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Considers the "building envelope," the boundary dividing the inside of a structure from the outside environment. Students study and design optimal enclosures considering energy exchange, the relationship between energy and lighting, and life cycle costs.

ARCH 647. Visualizing Urbanism. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Evaluation and use of computer graphics hardware and software for architectural applications. Focus is on computers as tools, operating systems and methods of data manipulation. Two- and three-dimensional modeling software are discussed, and assignments using such software are given to provide understanding of the modeling of built environments.

ARCH 649. Life Safety Issues in Contemporary Buildings. 3 credits, 3 contact hours.
Restriction: completion of core sequence. A variety of life safety and comfort situations are studied in different building types. Topics include building evacuation, compartmentalizing, fire fighting and suppression, evaluation and testing of new building materials and systems, systems control and management. Special attention is placed on multi-use, high-density buildings.

ARCH 650. Economy Of Building. 3 credits, 3 contact hours.
Restriction: completion of core sequence or equivalent. Economic consequences of design decisions. Topics include: relationship among economy, efficiency and quality; life-cycle cost of design; improving the economy of building processes and products through innovation; and environmental concerns. This course is required for the dual degree M.Arch./Master of Science in Management program. It can also be used as an elective in the M.Arch. program.

ARCH 651. Public and Private Development. 3 credits, 3 contact hours.
Restriction: completion of core sequence. Introduction to the economic, financial and political aspects of real estate and their effect on architectural decision-making. Topics include: needs assessment, real estate appraisal, financial instruments, regulations and real estate, design as value-adding, and the effect of tax policies on real estate development. This course is required for the dual degree M.Arch./Master of Science in Management program. It can also be used as an elective in the M.Arch. program.

ARCH 652. Architectural Project Management. 3 credits, 3 contact hours.
Prerequisite: ARCH 579G. Restriction: completion of core sequence. Management of architectural projects: project costs, timing, personnel, documentation, professional ethics and resource management. This course is required for the dual degree M.Arch./Master of Science in Management program. It may be used as an elective in the M.Arch. program.

ARCH 654. Land Remediation and Community Revitalization. 3 credits, 3 contact hours.
This course introduces students to the process of transforming legacy industrial and vacant commercial properties into community assets. Viewing land remediation and redevelopment through the lens of the triple bottom line, the students will explore ways in which transformation of these properties can improve environmental conditions, catalyze economic development, and create more socially equitable and resilient communities. Students will interact with local government officials, real estate developers, environmental consultants, attorneys, and community planners. Course topics will include: environmental laws and regulations, real estate development, cleaning up contaminated properties, community engagement, environmental justice, gentrification, and transformative land uses.

ARCH 655. Land Use Planning. 3 credits, 3 contact hours.
Spatial relations of human behavior patterns to land use: methods of employment and population studies are evaluated; location and spatial requirements are related to land use plans; and concepts of urban renewal and recreational planning are investigated by case studies. Same as TRAN 655 and CE 655.

ARCH 660. Direct Study In Arch II. 3 credits, 3 contact hours.

ARCH 661. Directed Studies of Architecture. 3 credits, 3 contact hours.
Restriction: completion of core, two elective courses, and approval from the graduate advisor. Independent, in-depth research on an analytical, theoretical or technical area of architecture. Student prepares formal research proposal with permission of faculty advisor and approval of graduate advisor. Required as pre-thesis research. See also course description for MARC 701.

ARCH 662. Special Topics in Architecture. 3 credits, 3 contact hours.
Topics vary each semester. Refer to the School of Architecture bulletin during university registration periods for a list of current topics and possible prerequisites.

ARCH 663. Introduction to Sustainable Architecture. 3 credits, 3 contact hours.
Prerequisite: ARCH 543G or ARCH 227. Environment design of buildings. The five characteristics of green buildings: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality. The US Green Building Council's Green Building Rating System, review of several major buildings of exemplary design.
ARCH 672. Architecture and Social Change. 3 credits, 3 contact hours.
Prerequisite: graduate level standing. Analysis of architectural form with respect to political, economic and technological change. The built environment is studied in relation to society and culture. The role of design professions in initiating or supporting change is also considered.

ARCH 677. Geographic Information Systems. 3 credits, 3 contact hours.
Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control, etc. Introduces this emerging technology and its applications.

ARCH 679. Envisioning Newark. 3 credits, 3 contact hours.
This seminar combines classroom discussion based on historical, analytical and literary texts; field visits to Newark's districts and neighborhoods; and meetings with leaders in government, business, art, education, and community-based organizations. The objective is to introduce students to the redevelopment process underway in Newark, and to use the city as a springboard for a broader investigation of the theory and practice of urban development.

ARCH 680. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: completion of core sequence, permission from graduate advisor and Division of Career Development Services. Students gain work experience and reinforcement of their academic programs. An architecture faculty Co-op advisor monitors and evaluates student work and project. Co-op work experiences may be acceptable equivalents for apprenticeships mandated by the New Jersey State Board of Architects and for eligibility to take the architecture licensing examination. This course is required for participation in the Housing Scholars Program. Course does not fulfill degree requirements.

ARCH 681. Co-Op Work Experience II. 1 credit, 1 contact hour.
Restriction: completion of core sequence, permission of graduate advisor and Division of Career Development Services. Used for extended Summer-Fall (ARCH 681) or Spring-Summer (ARCH 682) work experience. Does not fulfill degree requirements.

ARCH 682. Co-Op Work Experience III. 0 credits, 0 contact hours.
Restriction: completion of core sequence, permission of graduate advisor and Division of Career Development Services. Used for extended Summer-Fall (ARCH 681) or Spring-Summer (ARCH 682) work experience. Does not fulfill degree requirements.

ARCH 683. Graduate Co-op Work Exper IV. 0 credits, 3 contact hours.

ARCH 684. Topics of Sustainable Urbanism. 3 credits, 3 contact hours.
Cities are growing at an unprecedented speed. Cities currently account for about 70 percent of global carbon emissions and over 60 percent of resource use. We have to develop a vision for more sustainable cities and new protocols and processes to implement more sustainable visions for urban areas. This course will provide an overview of how problems and existing frameworks and speculate on solutions to address sustainability urban issues.

ARCH 688. The Augmented City. 3 credits, 3 contact hours.
Digital technology disrupted city life. The use of ICTs (Information Communication Technologies) has radically changed the way we inhabit and operate in the urban space. This course provides a history of how information technology is used to influence and support social structures and an inside in how ICTs are used as a catalytic tool for expanding, augmenting and altering social interactions.

ARCH 689. AI / VR in Architecture. 3 credits, 3 contact hours.
The recent progress in data science allows us to understand the correlations between artistic expressions and their implicit qualities in more quantifiable formats and leads us to explore creativity and a symbiotic relationship between human and machine intelligence. This course will introduce various analytical means to assess the performance and quality of spatial designs. Using various computational design tools, students will use environmental to aesthetic parameters to explore the use of Artificial Intelligence (AI) and Virtual Reality (VR).

ARCH 701B. Master's Thesis. 3.5 credits, 3.5 contact hours.
Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ARCH 701C. Masters Thesis. 6 credits, 0 contact hours.
Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ARCH 770. Development of the American City. 3 credits, 3 contact hours.
Restriction: Enrollment in the Urban Systems PhD program or permission of the instructor. Introduction to research in urban history, focusing on the American city. Key texts that deal with the development of the American city will be studied in depth, with particular emphasis on the approaches, methodologies, and sources. Each student will conduct bibliographic research on a city or urban sector from a defined perspective.

ARCH 771. Pathology of Urban Systems. 3 credits, 3 contact hours.
Restriction: Enrollment in the Urban System PhD program or permission of the instructor. Definition of pathology of urban systems as large-scale disasters that have resulted in major destruction of the urban fabric and called for radical re-planning projects. Investigation of historic case studies. The aftermath of natural and man-made disasters including war; contemporary case studies.

MARC 701A. Master's Thesis. 1.5 credit, 3 contact hours.
Prerequisites: ARCH 506G, ARCH 661, and approval from graduate advisor. Alternative to ARCH 507G. Under the supervision of a faculty advisor, independent study of issues in the student's area of concentration developed during ARCH 661. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.
MARC 701B. Master’s Thesis. 3 credits, 3 contact hours.
Prerequisites: ARCH 506G, ARCH 661, and approval from graduate advisor. Alternative to ARCH 507G. Under the supervision of a faculty advisor, independent study of issues in the student's area of concentration developed during ARCH 661. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MARC 701C. Master’s Thesis. 6 credits, 3 contact hours.
Prerequisites: ARCH 506G, ARCH 661, and approval from graduate advisor. Alternative to ARCH 507G. Under the supervision of a faculty advisor, independent study of issues in the student's area of concentration developed during ARCH 661. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MIP 612. Introduction to Environmental Policy Studies. 3 credits, 3 contact hours.
Introduction to six areas essential to a comprehensive understanding of environmental policy: concepts of environmental policy; tools (law, economics, planning, science, engineering, ethics) for environmental policy; the U.S. perspective (NEPA, clean air and water acts, CERCLA, etc.); the international perspective (Club of Rome models, 1972 UNEP, 1992 Rio, etc.); industrial perspective (pollution prevention/life cycle engineering, privatization, etc.); and the local perspective (New Jersey DEP, NGOs, local industry, shoreline, etc.). Same as EPS 612.

MIP 618. Public and Private Financing of Urban Areas. 3 credits, 3 contact hours.
Ties government's budget, tax, policy, allocation of resources between public and private sectors, with the structure, development, and growth needs of urban metropolitan areas. Focuses on problems of poverty, transportation, land-use, economic base, relation between central cities and suburban areas, and alternative engineering and economic solutions. Same as FIN 618 and TRAN 604.

MIP 631. History and Theory of Infrastructure. 3 credits, 3 contact hours.
The historical role of infrastructure in the formation of cities and the relation of planning theories to urban culture. Case studies are used to develop effective ways of learning urban design; method and substance are equally emphasized. Concentration on the social, economic, political, technological and topographic factors that affect urban form; analysis of urban design schemata and their relation to patterns of use; and the critical appraisal of planning ideologies and strategies. Same as ARCH 631H.

MIP 673. Infrastructure Planning in Practice. 3 credits, 3 contact hours.
Infrastructure planning principles, methods and tools. Through selected examples, acquaintance with infrastructure planning theories and models, quantitative methods of research and analysis, information management, decision making, and implementation techniques. Same as ARCH 673.

MIP 674. Infrastructure and Architecture. 3 credits, 3 contact hours.
Examination of areas of overlap and continuity between architecture, landscape architecture, urban design, building science and infrastructure. Topics include the typology, programming and design of public facilities; the housing fabric; the relation between built form, urban space and infrastructure. Same as ARCH 674.

MIP 675. Elements of Infrastructure Planning. 3 credits, 3 contact hours.
Introductory survey of the basic principles, operation and design of physical infrastructure systems including roads, public transportation, community facilities, public open space, surface drainage, and electric, gas, water, waste disposal, and telecommunications services. Same as ARCH 675.

USYS 702. Evolution American Metropolis. 3 credits, 3 contact hours.
Prerequisites: Doctoral standing, or graduate standing and permission of instructor. This course introduces the morphological and cultural evolution of the global metropolis, from historical and economic, political, geographic, and contemporary perspectives. The emphasis is on the intersection of social and environmental conditions that gave rise to distinct urban areas that have influenced urban populations throughout history. A chronological overview of the settlement, growth, decline and revitalization of global cities is combined with detailed case studies.

USYS 711. The Good City: Env Des& Qual. 3 credits, 3 contact hours.
Prerequisites: Enrollment in Urban Systems Program or by permission of instructor. This course introduces urban systems doctoral students to the various ways in which architects, urban designers, and planners have sought and continue to seek to improve the quality of everyday life in urban and suburban environments through the design of the built environment, both at the scale of neighborhoods and communities and at the scale of buildings. The emphasis is on manipulation of built form, transportation, and public space as responses to perceived problems. Key topic area are housing and neighborhoods, public space, transportation, schools, and hospitals.

USYS 721. Aspects of Urban Form. 3 credits, 3 contact hours.
Prerequisites: Enrollment in Urban Systems PhD Program or by permission of instructor. This seminar course investigates formal aspects of cities, ranging from streets to squares, parks, monuments, residential fabrics, infrastructure, and the overall image. The case studies are drawn from historic and contemporary cities and cover a wide geographical area. The inclusion of Western? and Non-Western? examples allows for a cross-cultural perspective. While the physicality of urban elements constitutes the starting point, they will be examined in reference to the political, social cultural, and economic issues and situated in their historic contexts.

USYS 725. Independent Study I. 3 credits, 3 contact hours.
Prerequisites: Permission of Program Director. This designation covers courses for Urban Systems students prescribed by a supervising faculty member. This special course covers areas of study in which one or more students may be interested, but which isn’t of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.
Sustainable Building Design

USYS 726. Independent Study II. 3 credits, 3 contact hours.
Prerequisites: Permission of Program Director. This designation covers courses for Urban Systems students prescribed by a supervising faculty member. This special course covers areas of study in which one or more students may be interested, but which isn't of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for USYS 726 if they have taken USYS 725 in a prior semester.

USYS 788. Special Topics in Urban Systems. 3 credits, 3 contact hours.
Special-area given when suitable interest develops. Advance notice of forthcoming topics in Urban Systems will be given.

USYS 790. Dissertation Research. 0 credits, 0 contact hours.

USYS 790A. Dissertation Research. 1 credit, 1 contact hour.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790B. Dissertation Research. 3 credits, 3 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790C. Dissertation Research. 6 credits, 6 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790D. Dissertation Research. 9 credits, 9 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 790E. Dissertation Research. 12 credits, 12 contact hours.
For students admitted to the Doctor of Philosophy Program in Urban Systems who have successfully defended the dissertation proposal. A minimum of 10 credits is required in 790. Approval of dissertation advisor is necessary for registration. Students must register for at least 3 credits of dissertation research per semester until 9 credits are reached and then for 1 credit each semester until a written dissertation is approved.

USYS 791. Colloquium. 1 credit, 1 contact hour.
Prerequisites: Permission of Program Director. Required of all students admitted to the Doctor of Philosophy Program in Urban Systems. A minimum of 2 credits is required. This course discusses and reviews degree requirements and current research activities in the subject area of Urban Systems.

USYS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Prerequisites: Permission of Program Director. For students admitted to the Doctor of Philosophy Program in Urban Systems who have not yet successfully defended the dissertation proposal. A minimum of 6 credits is required. Research is carried out under the supervision of designated Urban Systems faculty.

Sustainable Building Design

Into which MS degree will this Graduate Certificate convert?
This certificate can lead into the current MS Arch degree. M Arch students may also take the courses of the certificate as elective courses and apply them for both (the certificate and their M Arch degree).

In what industries might a holder of this Graduate Certificate find employment?
While sustainability standards in the architecture industry is increasing many firms are making large investments in addressing climate change. This certificate will attract professionals in the architecture industry that want to update their skillset with cutting edge tools, techniques to address sustainability goals.

In what job titles might a holder of this Certificate fit?
Architect, Architecture Consultant

Is this certificate fully available online (all courses)?
Yes

Description of certificate program
Advanced technologies allow architects to address climate change by designing a more environmentally friendly built environment. Courses in this certificate provide an understanding of the environmental impact associated with the construction and energy consumption of buildings. You will learn
how to tackle sustainability challenges at the scale of a building and learn about energy efficiency, passive house standards, life cycle assessment, and how design decisions impact the environment. This certificate will help designers to make strategic design responses to lower the environmental footprint of buildings and respond to global warming.

The 12 credit Graduate Certificate in Sustainable Building Design is comprised of 4 courses for those who wish to gain the foundational skills and knowledge to address sustainability in the design of buildings.

What are the Required Courses?

(12 credits) Students have to select 4 courses from the following course offerings:

ARCH 621 Net Zero Building Design; 3 credits, 3 contact hours
This course explores principles and technologies governing net-zero building design to achieve the outstanding performance that goes beyond minimum green requirements. Case studies of existing high-performance green buildings around the world will be analyzed in terms of their design, system integration, renewables, and environmental performance, which will be accompanied by lectures about the principles and tools applied to the projects. The use of existing net-zero energy standards will be also discussed. Using the techniques and tools learned in this class, students will practice how to design/redesign a net-zero energy building, which will form the final project of the class.

Arch 622 Life Cycle Assessment and Design; 3 credits, 3 contact hours
This course tracks Life Cycle concepts as first applied to inanimate objects and systems by the U.S. military in the mid 20th Century through their development as an important part of the modern global environmental movement. It also provides opportunities for design students to integrate data driven design decisions through methodologies and tools that translate formal Life Cycle Assessment into their own design workflows.

ARCH 623 Building Energy Modeling for Sustainable Design ; 3 credits, 3 contact hours
This course introduces the students to Building Energy Modeling (BEM) and energy optimization techniques using the EnergyPlus whole-building energy simulation program to develop student competency with whole-building energy simulation. Students will practice whole-building energy simulation, including the hourly modeling of dynamic thermal envelope loads and system simulations; and explore various green and sustainable design strategies and systems to optimize the envelope and system performance of their projects. This will allow them to be better prepared for interdisciplinary collaboration and integrated design practice for energy efficiency.

ARCH 625 Passive House and Beyond; 3 credits, 3 contact hours
This course explores leading edge green building programs designed for highly efficient buildings and regenerative design, including Passive House, Living Building Challenge, and Enterprise Green Communities Certification Plus. Each program’s requirements and application for single family, multifamily and commercial building typologies will be investigated through in-depth case studies and presentations. A cross-program comparison will analyze overlaps, gaps, strengths and weaknesses of the programs - and challenge students to discern where their own sustainability values lie.

ARCH 626 Building Dynamics; 3 credits, 3 contact hours
This course focuses on theories and practice of adaptive architectural solutions. It will examine architecture in relation to the latest research in biology, material science, embedded systems and robotics. Students will research technologies, review case studies, and design adaptive proposals for architecture. In general, they will consider the role architecture as a discipline plays in climate challenges we are facing today. This class is interested in the territory where new technological and scientific advances, and architecture meet. It explores the importance of new technologies in contemporary design and their implications on architectural attitudes.

ARCH 684 Topics in Sustainable Urbanism; 3 credits, 3 contact hours
Cities are growing at an unprecedented speed. Cities currently account for about 70 percent of global carbon emissions and over 60 per cent of resource use. We have to develop a vision for more sustainable cities and new protocols and processes to implement more sustainable vision for urban areas. This course will provide an inside into challenges we face (growing number of slum dwellers, inadequate infrastructure and services) and on solutions to address them.

Animation Essentials

Into which MS degree will this Graduate Certificate convert?
This is being proposed as a stand-alone certificate, however is planned to stack along with a second graduate certificate in this area, or with relevant coursework, to lead into a forthcoming eventual MS or MFA in Digital Design

In what industries might a holder of this Graduate Certificate find employment?
As digital media continue to proliferate, locally, regionally, nationally, and globally, there is increasing need for qualified professionals* able to fill positions in digital content creation, management, and distribution. This certificate program prepares those with introductory knowledge to fill entry level positions in the NY metro area and beyond.

In what job titles might a holder of this Certificate fit?

Animation, Interactive Technology, Video Graphics and Special Effects; Game and Interactive Media Design; Digital Communication and Media/Multimedia; and Digital Arts.

Is this certificate fully available online (all courses)?

No

Description of certificate program

The 12 credit Introduction to Digital Animation Certificate is comprised of 4 courses for those who wish to gain the foundational skills and knowledge to enter the burgeoning digital arts and design fields. This Digital Arts Certificate is set as a stand-alone credential to gain entry into the Digital Animation industry.

What are the Required Courses? (12 credits)

DD 621 - Character and Facial Modeling for Animation - (new course proposal forthcoming) - (core course) This course will introduce students to the language and conventions of manipulating tools and techniques to develop and create 3-dimensional character design. Provide an exposure to visual character development & storytelling. Develop a creative direction methodology for strong character design. To develop a sense of quality of craft with character development and design. To develop the ability to develop a character from concept stages to final product.

DD 622 - Visual Storytelling and Storyboarding - (new course proposal forthcoming) - (core course) This course will allow students to explore a new medium of interactive storytelling. Virtual reality, also known as, “The Frameless Medium,” is a highly immersive interactive medium. While it has been around for 50 years, virtual reality has developed into a booming industry with all major tech companies investing heavily in hardware and software.

Select 2 from the following:

DD 623 - Acting for Animators - (new course proposal forthcoming) - (elective) - Introduction to the historical contexts of acting. Survey of acting techniques and principles and their relationship to successful visual storytelling. Topics covered include movement, empathy and dialogue. Application of acting to two- and three-dimensional animation. Students will study examples from animation as well as film and theater. Required projects include both in-class acting exercises as well as storyboard creation and directed computer graphics character animation.

DD 624 - Digital Audio - (new course proposal forthcoming) - (elective) - This is an introductory-level course that provides art and design students with a baseline understanding of Sound Design and Scoring. This course is a multi-media class, which includes both visual and audio components.

DD 625 - Environmental Design - (new course proposal forthcoming) - (elective) - The course will introduce students to the language and conventions of manipulating tools and techniques to develop and create simulated environments. Provide an exposure to environment development & simulated aesthetics.

Develop a creative direction methodology for digital world creation. To develop a sense of quality of craft with simulated environment making and design.

Digital Arts Essentials

Into which MS degree will this Graduate Certificate convert?

This is being proposed as a stand-alone bridge certificate, to which coursework may qualify students for further studies into a related MS degree or MFA

In what industries might a holder of this Graduate Certificate find employment?

As digital media continue to proliferate, locally, regionally, nationally, and globally, there is increasing need for qualified professionals able to fill positions in digital content creation, management, and distribution. This certificate program prepares those with introductory knowledge to fill entry level positions in the NY metro area and beyond.

In what job titles might a holder of this Certificate fit?

A review of several 7 to 10 year time horizon market analysis reports covering, Animation, Interactive Technology, Video Graphics and Special Effects; Game and Interactive Media Design; Digital Communication and Media/Multimedia; and Digital Arts shows a large and stable jobs market (approx. 170,000 jobs) for these fields in the New York MSA alone.

Is this certificate fully available online (all courses)?
Description of certificate program

The 15 credit Introduction to Digital Arts Certificate is comprised of 5 preparatory courses for those who wish to gain the foundational skills and knowledge to enter the burgeoning digital arts and design fields. This Digital Arts Certificate is set as a stand-alone credential to gain entry level admission into a range of career or academic paths.

What are the Required Courses? (15 credits)

DD 601 - Color and Composition - (new course proposal forthcoming) - serves as an introduction to basic two-dimensional design with attention paid to the impacts and uses of color in design, and an introduction to (two-dimensional) computer graphics. The multiple-media course combines lectures and videos, in-class laboratory projects, analytic and written work, quizzes, creative and graphic assignments that may span several classes and lasting several weeks, and a final examination. The course addresses issues of organization, composition, geometry, grids, proportion(s), hierarchy, tension, figure-ground relationships, symmetries, open vs. closed forms, visual balance, and other principles of basic design. Also, the course includes color-focused topics such as psychology of color; design for color-deficient vision; interaction of color; color mixing and color palettes; color reproduction; color models; color composition in art, advertising, product design, interior design, architecture; and so on.

DD 610 - History of Art and Design I - (new course proposal forthcoming) - The first in a two-course sequence - This course surveys the major monuments and trends in the history of painting, sculpture, design and architecture from the Italian Renaissance to the beginning of the twentieth century. The focus is on global developments with an emphasis on key artworks and artists examined in relation to the social, economic, and political climates which produced them. Important artistic innovations, techniques and methods are considered. Though arranged according to historical chronology, lecture content is driven by thematic and contextual issues such as humanism, absolutism, colonialism, the Enlightenment, and industrialization.

DD 611 - History of Art and Design II - (new course proposal forthcoming) - The second in a two-course sequence - This course surveys the major works and trends in the history of painting, design, sculpture, and architecture of the twentieth century. The focus is on global developments with an emphasis on key artworks and artists examined in relation to the social, economic, and political climates which produced them. Important artistic innovations, techniques and methods are considered. Though arranged according to historical chronology, lecture content is driven by thematic and contextual issues such as modernity, industrialization, globalization, post-modernity, and information technologies.

DD 602 - 3D Modeling and Composition - (new course proposal forthcoming) - 3D design and composition, introduction to computer modeling applications (e.g. Autodesk Maya, Autodesk 3DS Max)

DD 603 - Video and Animation - (new course proposal forthcoming) - Laboratory course exploring concepts of linear, motion-based two-dimensional media and includes motion graphics, live action filming, particle systems, digital video editing and digital video compression. Particularly for those students who want to matriculate into an animation MFA

Digitally Augmented Architecture

Into which MS degree will this Graduate Certificate convert?

This certificate can lead into the current MS Arch degree. M Arch students may also take the courses of the certificate as elective courses and apply them for both (the certificate and their M Arch degree). We are also in the process to restructure the MIP degree and rename it Master of Urban Design. Once this degree is available this certificate can also lead towards that degree.

In what industries might a holder of this Graduate Certificate find employment?

This certificate will provide an inside in how information technology is used to influence and support social structures and an inside in how ICS are used as a catalytic tool for expanding and augmenting public and private space.

In what job titles might a holder of this Certificate fit?

Architect, Urban Designer, Urban Planner

Is this certificate fully available online (all courses)?

Yes

Description of certificate program

The integration of Information Technology in architecture changed the way we experience the build and natural environment. Interactive maps and other smartphone apps are the beginning of new ways to interact with our physical environment through new interfaces. A rapid development of new augmented reality technologies will define new characteristics of work environments, public and private spaces. This certificate will introduce you to the history and politics and economic forces that are starting to define this new space. You will learn tools, methods and strategies in computational processes ranging from areas of embedded systems and human factors. Courses are offered in machine learning, programming, physical computing,
simulation and motion capture and digital fabrication. The intersection of these areas will allow you to develop new solutions for the Internet of Things and a digital culture.

The 12 credit Graduate Certificate in Digitally Augmented Architecture is comprised of 4 courses for those who wish to gain the foundational skills and knowledge required to design of a digitally augmented spaces for a wide range of programs.

What are the Required Courses?

(12 credits) Students have to select 4 courses from the following course offerings:

ARCH 689 AI / VR in Architecture; 3 credits, 3 contact hours

The recent progress in data science allows us to understand the correlations between artistic expressions and their implicit qualities in more quantifiable formats and leads us to explore creativity through a symbiotic relationship between human and machine intelligence. This course will introduce various analytical means to assess the performance and quality of spatial designs. Using various computational design tools, students will use environmental to aesthetic parameters to explore the use of Artificial Intelligence (AI) and Virtual Reality (VR).

ARCH 688 The Augmented City; 3 credits, 3 contact hours

Digital technology disrupted city life. The use of ICTs (Information Communication Technologies) has radically changed the way we inhabit and operate in the urban space. This course provides a history of how information technology is used to influence and support social structures and an inside in how ICTs are used as a catalytic tool for expanding, augmenting and altering social interactions.

ARCH 677 Geographic Information Systems; 3 credits, 3 contact hours

Prerequisite: course or working knowledge of CADD or permission of instructor. Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control, etc. Introduces this emerging technology and its applications.

DD 634 Physical Computing for Designers; – Interaction Design; 3 credits, 3 contact hours

Design course focusing on two-and three-dimensional visual communication of data, including interactive and scripted/animated communication as well as still-image utilization. Applications may include website creation, information kiosks, exhibit design, educational videos, scientific visualization, and other graphics-intensive projects.

DD 640 User Interface/User Experience in Digital Design; 3 credits, 3 contact hours

Students will research, develop, and test basic UI/UX designs. Design strategies will be discussed as they apply to physical, virtual, and hybrid prototype solutions.

IS 661 User Experience Design; 3 credits, 3 contact hours

This is a foundation course on the design of digital products. User Experience Design (UXD) isn't just about making interfaces usable. It is about designing and building relevant and successful products. Effective UXD requires a mix of Interaction Design (ID) methods and processes. This course takes you through the process of creating compelling interaction designs for digital products from the idea stage into creating a simple and intuitive user experience blueprint. You will 'learn by doing' in a team environment, enabling you to practice the techniques with coaching from instructors. The course will demystify Lean UX; Agile UX; Human Computer Interaction (HCI); Design Audits and Claims analysis; Persona construction; Storyboarding; ID scenarios; ID Frameworks; Role of user-research in UXD; and Design Patterns.

Game Design and Interactivity Essentials

Into which MS degree will this Graduate Certificate convert?

This is being proposed as a stand-alone certificate, however is planned to stack along with a second graduate certificate in this area, or with relevant coursework, to lead into a forthcoming eventual MS or MFA in Digital Design.

In what industries might a holder of this Graduate Certificate find employment?

As digital media continue to proliferate, locally, regionally, nationally, and globally, there is increasing need for qualified professionals able to fill positions in digital content creation, management, and distribution. This certificate program prepares those with introductory knowledge to fill entry level positions in the NY metro area and beyond.

In what job titles might a holder of this Certificate fit?

Animation, Interactive Technology, Video Graphics and Special Effects; Game and Interactive Media Design; Digital Communication and Media/Multimedia; and Digital Arts.
Is this certificate fully available online (all courses)?

No

Description of certificate program

The 12 credit Graduate Certificate in Game Design and Interactivity is comprised of 4 courses for those who wish to gain the foundational skills and knowledge to enter the burgeoning digital arts and design fields.

What are the Required Courses? (12 credits)

DD 631 - History of Games - (new course proposal forthcoming) - A guided exploration through the world of games. Students will experiment, play, and analyze various aspects of games - from early traditional games to current generation electronically-mediated games; from individual games to collaborative online games. Game types will be analyzed with particular attention paid to the virtual environments in which these games take place. The expressive and persuasive aspects of games will also be explored. Students will learn underlying principles behind various game development technologies from traditional to digital format. Assignments will ask students to analyze the structure of various games and prepare them for creative final projects. The latter half of the semester will be focused mainly on individual student research toward a creative final project.

DD 622 - Visual Storytelling and Storyboarding - (new course proposal forthcoming) - The course will introduce students to the language and conventions of manipulating tools and techniques to develop and create simulated environments. Provide an exposure to environment development & simulated aesthetics. Develop a creative direction methodology for digital world creation. To develop a sense of quality of craft with simulated environment making and design.

DD 634 - Physical Computing for Designers - (new course proposal forthcoming) - Design studio focusing on two-and three-dimensional visual communication of data, including interactive and scripted/animated communication as well as still-image utilization. Applications may include website creation, information kiosks, exhibit design, educational videos, scientific visualization, and other graphics-intensive projects.

DD 624 - Digital Audio - (new course proposal forthcoming) - This is an introductory-level course that provides art and design students with a baseline understanding of Sound Design and Scoring. This course is a multimedia class, which includes both visual and audio components.

M.S. in Architecture

The Master of Science in Architecture (M.S. Arch.) at NJIT’s Hillier College is a post-professional STEM-designated program that consists of 30 credits and may be taken either full- or part-time. The program is designed for graduates from architecture schools or architects that wish to specialize in areas such as Sustainability, Urbanism or Computation. Students considering further study at the doctoral level may benefit by completing an additional 6 credit thesis. Students are required to design their programs in consultation with the graduate advisor and lead faculty member in the area of specialization in Sustainability, Urbanism and/or Computation.

To remain in good academic standing, students must maintain a cumulative GPA of 3.0 in graduate courses.

M.S. in Digital Design

The MSDD is a 30-credit to 45-credit intermediate graduate program credential designed to combine the course work of any three graduate certificate programs: Animation Essentials, Game Design and Interactivity Essentials, or UI/UX Design Essentials plus two synthetic graduate level digital design studios. Students with an undergraduate background in Digital Arts and Design can immediately begin taking course work in any of these three specialized concentrations. For those who need it, the Digital Arts Essentials coursework provides a firm preparatory foundation. There is also a non-studio track available for those wishing to focus on a broader selection of 3-credit course content in lieu of two 6-credit design studios.

The 30-credit program consists of 18 credits of coursework from any three Digital Design graduate specializations in Animation, Game Design and Interactivity, or UI/UX (6 courses) plus 12 studio credits (2 studios.) Students are required to design their programs in consultation with the graduate advisor and lead faculty member in the area of specialization. For students without the requisite skills and knowledge to succeed in the specialized Digital Design concentrations, students will need to complete an additional 15 general prerequisite credits in Digital Arts.

To remain in good academic standing, students must maintain a cumulative GPA of 3.0 in graduate courses. Students must repeat any design studio course in which they receive a grade of C. A grade of C+ in any design studio must be followed by a subsequent grade sufficient to raise the annual cumulative design studio GPA to 2.75. Incomplete (I) grades for studio and prerequisite courses must be removed before students will be permitted to register for continuing course work in the program.

30-credit to 45-credit Master of Science in Digital Design (minimum 18 course credits plus 12 studio credits)

(A) Digital Arts Essentials*

*Year 1 Digital Arts graduate certificate “A” preparatory courses
First Year

1st Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 601</td>
<td>Graphic Design and Color Theory</td>
<td>3</td>
</tr>
<tr>
<td>DD 610</td>
<td>History of Art And Design I</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits: 6

2nd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 603</td>
<td>Video and Animation</td>
<td>3</td>
</tr>
<tr>
<td>DD 611</td>
<td>History of Art and Design - Survey II</td>
<td>3</td>
</tr>
<tr>
<td>DD 602</td>
<td>3D Modelling and Composition</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits: 9

Total Credits: 15

Fall course choices by DD graduate certificates B, C, or D (students to typically take 3 per term - 9 credits)

(B) **Game Design and Interactivity Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 622</td>
<td>Visual Storytelling and Storyboarding</td>
<td>3</td>
</tr>
<tr>
<td>DD 631</td>
<td>History of Game Play and Interactivity</td>
<td>3</td>
</tr>
<tr>
<td>DD 625</td>
<td>Environment Design</td>
<td>3</td>
</tr>
</tbody>
</table>

(C) **Animation Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 622</td>
<td>Visual Storytelling and Storyboarding</td>
<td>3</td>
</tr>
<tr>
<td>DD 623</td>
<td>Acting for Animators</td>
<td>3</td>
</tr>
</tbody>
</table>

(D) **UI/UX Digital Design Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 640</td>
<td>User Interface/User Experience in Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring course choices by DD graduate certificates B, C, or D (students to typically take 3 per term - 9 credits)

(B) **Game Design and Interactivity Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 634</td>
<td>Physical Computing for Designers – Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>DD 624</td>
<td>Digital Audio</td>
<td>3</td>
</tr>
</tbody>
</table>

(C) **Animation Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 621</td>
<td>Character and Facial Modeling for Animators</td>
<td>3</td>
</tr>
<tr>
<td>DD 624</td>
<td>Digital Audio</td>
<td>3</td>
</tr>
</tbody>
</table>

(D) **UI/UX Digital Design Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td>3</td>
</tr>
<tr>
<td>DD 634</td>
<td>Physical Computing for Designers – Interaction Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Total required course credits: 18

Graduate Fall Studio (All specializations)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 650</td>
<td>Extended Reality Design Studio</td>
<td>6</td>
</tr>
</tbody>
</table>
Graduate Spring Studio (All specializations)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 657</td>
<td>Digital Design Independent Project Studio</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Studio credits 12

MSDD Credit Total 30

M.S. in Urban Design

Students must complete 30 course credits through full- or part-time study. Up to 6 credits toward the degree may be waived based on previous academic study. Additional elective courses may be taken in disciplines related to urban design, but do not count toward degree credit.

Required Courses

The following courses are required, subject to those waived in individual cases; however, no waivers will be given for studio courses. A typical full-time study plan over two semesters is shown below.

First Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 601 Urban Design Studio</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 636 History and Theory of Urban Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 677 Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>Urban Design Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits 15

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 602 Urban Design Studio</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 684 Topics of Sustainable Urbanism</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 651 Public and Private Development</td>
<td>3</td>
</tr>
<tr>
<td>Urban Design Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits 15

Total Credits 30

1 Or substitute selected with the approval of Graduate Advisor.

Master of Architecture

The Hillier College's Master of Architecture (M.Arch.) at NJIT is a post-baccalaureate professional program, fully accredited by the National Architectural Accrediting Board (NAAB). The newly trimmed 90-credit program is intended for applicants who have earned a Bachelor of Science, Bachelor of Arts, or a graduate degree in a field other than architecture who wish to earn a degree leading toward professional licensure as an architect.

Candidates entering the Professional M. Arch. program complete a required core sequence covering architectural history, integrated building systems, digital design and representation applications as a series of progressive and cumulative co-requisites for the first four design studios. After completion of this mandatory core sequence, students are given a selection of design studios, along with additional elective courses to focus their professional education in a number of specializations including, urban, sustainable, and advanced computational design.

A shortened program is available through advanced placement for applicants who have a pre-professional Bachelor of Science or Bachelor of Arts in Architecture or another field directly related to architecture, or students who have a Bachelor of Architecture from a non-NAAB accredited program. Full-time and part time degree options available. In addition to all coursework required by the agreed upon individual course of study, based on academic transcript and portfolio review, each student must satisfy the minimum credit requirements to earn an NAAB accredited degree program. In most cases these will require more than the minimum of 168 semester credit hours of combined undergraduate and graduate coursework and more than the minimum of 30 semester credits of graduate coursework.

First Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 501G Architecture Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 555G Tools and Techniques I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 528G History of Architecture I</td>
<td>3</td>
</tr>
</tbody>
</table>
Master of Architecture and M.S. in Civil Engineering

This dual degree option is a specific tailoring of the construction engineering and management specialization in the M.S. in Civil Engineering program and is only available to students pursuing the M.Arch. degree.

The dual degree program permits students to obtain both an M.Arch. and a M.S. in Civil Engineering in substantially less time than if each degree was pursued separately. A maximum of 15 credits may be used to satisfy requirements of both degrees.

Students take courses shown below to fulfill requirements for the M.S. in Civil Engineering, or their equivalent. There is no thesis requirement. Students without a bachelor's degree in civil engineering must complete the bridge program; these courses do not count toward degree requirements. See the undergraduate catalog for descriptions of these courses.

All bridge courses are required as prerequisites for admission to the MSCE degree. All students in this dual-degree program must take MATH 112 and 105 or equivalent courses. Equivalency for courses taken at other institutions is determined by NCE Graduate Advisor.

Up to 15 credits of graduate-level coursework may be applied to both the M.Arch. and M.S. Students may take additional courses at the graduate level during their undergraduate career, up to a maximum of 21 credits, but no additional graduate courses beyond the first 15 credits can be counted toward the first masters degree requirements.

<table>
<thead>
<tr>
<th>ARCH 541G</th>
<th>Construction I</th>
<th>3</th>
</tr>
</thead>
</table>

2nd Semester

ARCH 502G	Architecture Studio II	6
ARCH 500G	Tools and Techniques II	3
ARCH 529G	History of Architecture II	3
ARCH 542G	Construction II	3

Term Credits

15

Second Year

1st Semester

ARCH 503G	Architecture Studio III	6
ARCH 545G	Structures I	3
ARCH 543G	Environmental Control Systems I	3
ARCH 549G	Landscape and Urbanism	3

Term Credits

15

ARCH 504G	Architecture Studio IV	6
ARCH 548G	Structures II	3
ARCH 544G	Environmental Control Systems II	3
ARCH XXXG History / Theory or Technology	3	

Term Credits

15

Third Year

1st Semester

ARCH 505G	Advanced Architecture Studio I	6
ARCH 569G	Professional Practice I	3
ARCH XXXG History / Theory or Technology	3	
ARCH XXXG History / Theory or Technology	3	

Term Credits

15

ARCH 506G	Advanced Architecture Studio II	6
ARCH 579G	Professional Practice II	3
ARCH 547G	Synthesis Seminar	3
ARCH XXXG History / Theory or Technology	3	

Term Credits

15

Total Credits

90
All prerequisite courses must be completed prior to taking bridge courses. All bridge courses must be completed prior to taking CoAD graduate courses counting toward both degrees. All CoAD graduate courses counting toward both degrees must be taken before taking any NCE graduate courses counting only toward the MSCE. The M.Arch degree must be completed before formal admission to the MSCE. No more than a total of 21 graduate credits toward the second degree (15 counted toward both degrees, 6 counted only to the second graduate degree) may be taken prior to completion of the first graduate degree. The program requires at least one additional semester of full-time study as a graduate student, following completion of the first graduate degree.

At the time of admission to the dual degree program, the civil engineering graduate advisor will determine if any M.S. in Civil Engineering course requirements can be waived.

Co-op Work Experience in Architecture and the Housing Scholars Program give students an opportunity to gain additive credits and salaried employment.

To become eligible to take the architecture registration examination in New Jersey, professional M.Arch. Graduates must complete three years of practical work experience apprenticeship that meet specific criteria set by the New Jersey State Board of Architects. Co-op internship work experiences in architecture meeting these criteria are acceptable equivalents for such apprenticeships, and are available to NJIT students. Students become eligible after completing the first year of M.Arch core courses.

The Housing Scholars Program provides college students with paid summer internships at non-profit, community-based affordable housing organizations, and is jointly administered by NJIT’s Division of Career Development Services and the New Jersey Department of Community Affairs. Housing Fellows are placed with community-based, non-profit organizations that initiate affordable housing and related projects. Graduate students who have completed at least 28 credits of core courses and who have an overall cumulative GPA of 3.2 or above are eligible to participate. Scholars are selected through a competitive application to the Division of Career Development Services and an interview process throughout February and March, and begin their internship in early June.

Students should consult the School of Architecture co-op advisor for details on work experience and the Housing Scholars program.

The requirements to obtain the M.S. in Civil Engineering degree are:

M.Arch. and M.S. in Civil Engineering (civil engineering bachelor's degree)

M.Arch. Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 500G</td>
<td>Tools and Techniques II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 501G</td>
<td>Architecture Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 502G</td>
<td>Architecture Studio II</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 503G</td>
<td>Architecture Studio III</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 504G</td>
<td>Architecture Studio IV</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 541G</td>
<td>Construction I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 542G</td>
<td>Construction II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 543G</td>
<td>Environmental Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 544G</td>
<td>Environmental Control Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 545G</td>
<td>Structures I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 548G</td>
<td>Structures II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 547G</td>
<td>Synthesis Seminar</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 528G</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 529G</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 555G</td>
<td>Tools and Techniques I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 569G</td>
<td>Professional Practice I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 579G</td>
<td>Professional Practice II</td>
<td>3</td>
</tr>
<tr>
<td>Two courses in architectural history 1,2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>One course in contemporary architectural theory 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Option Sequence

Select two of the following:

- ARCH 505G Advanced Architecture Studio I
- ARCH 506G Advanced Architecture Studio II
- ARCH 507G Advanced Design Options III
Master of Architecture and M.S. in Civil Engineering

MARC 701
ARCH XXX
Electives \(^2\)
9

Electives \(^2\)
9

Total Credits
102

1. Including one course in non-western, regional, or vernacular architecture.
2. To be selected in consultation with the graduate advisor.

With the exception of History/Theory Selectives, ARCH 569G Professional Practice I and ARCH 579G Professional Practice II, all core courses must be completed before proceeding to the options sequence.

M.S. in Civil Engineering Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td>3</td>
</tr>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>CE 616</td>
<td>Construction Cost Estimating</td>
<td>3</td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td>3</td>
</tr>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 650</td>
<td>Economy Of Building</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 652</td>
<td>Architectural Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 675</td>
<td>Elements of Infrastructure Planning</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CE 615</td>
<td>Infrastructure and Facilities Remediation</td>
<td></td>
</tr>
<tr>
<td>CE 631</td>
<td>Advanced Reinforced Concrete Design</td>
<td></td>
</tr>
<tr>
<td>CE 642</td>
<td>Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 702</td>
<td>Special Topics in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 711</td>
<td>Methods Improvement in Construction</td>
<td></td>
</tr>
<tr>
<td>ENE 662</td>
<td>Site Remediation</td>
<td></td>
</tr>
<tr>
<td>ENE 671</td>
<td>Environmental Impact Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits
30

M.Arch. and M.S. in Civil Engineering (no civil engineering bachelor's degree)

M.Arch. Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 500G</td>
<td>Tools and Techniques II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 501G</td>
<td>Architecture Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 502G</td>
<td>Architecture Studio II</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 503G</td>
<td>Architecture Studio III</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 504G</td>
<td>Architecture Studio IV</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 541G</td>
<td>Construction I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 542G</td>
<td>Construction II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 543G</td>
<td>Environmental Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 544G</td>
<td>Environmental Control Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 545G</td>
<td>Structures I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 548G</td>
<td>Structures II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 547G</td>
<td>Synthesis Seminar</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 528G</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 529G</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
</tbody>
</table>
ARCH 555G Tools and Techniques I 3
ARCH 569G Professional Practice I 3
ARCH 579G Professional Practice II 3
Two courses in architectural history 1,2 6
One course in contemporary architectural theory 2 3

Option Sequence
Select two of the following: 12

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 505G</td>
<td>Advanced Architecture Studio I</td>
<td></td>
</tr>
<tr>
<td>ARCH 506G</td>
<td>Advanced Architecture Studio II</td>
<td></td>
</tr>
<tr>
<td>ARCH 507G</td>
<td>Advanced Design Options III</td>
<td></td>
</tr>
<tr>
<td>MARC 701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH XXX</td>
<td>Electives 2</td>
<td>9</td>
</tr>
<tr>
<td>Electives 2</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credits 102

1. Including one course in non-western, regional, or vernacular architecture.
2. To be selected in consultation with the graduate advisor.

With the exception of History/Theory Selectives, ARCH 569G Professional Practice I and ARCH 579G Professional Practice II, all core courses must be completed before proceeding to the options sequence.

M.S. in Civil Engineering Requirements (w/o a BSCE degree)

(30 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Bridge Courses 1

All Bridge Courses Required 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 200</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CE 200A</td>
<td>Surveying Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 341</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 341A</td>
<td>Soil Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits 14

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Courses counted to both Degrees (12 required credits)

Select four courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

MIP 631 History and Theory of Infrastructure
MIP 652 Geographic Information Systems
MIP 655 Land Use Planning
MIP 673 Infrastructure Planning in Practice
MIP 675 Elements of Infrastructure Planning
ARCH 569G Professional Practice I
ARCH 647 Special Topics in Computer Applications
ARCH 649 Life Safety Issues in Contemporary Buildings
ARCH 650 Economy Of Building
ARCH 651 Real Estate Analysis for Architects
ARCH 652 Architectural Project Management
ARCH 663 Introduction to Sustainable Architecture
ARCH 664 Indoor Environmental Quality in Sustainable Design Buildings
ARCH 665 Sustainable Design of Energy Efficient Buildings
ARCH 666 Sustainable Design with Efficient Materials and Resources

Civil and Environmental Engineering Core Courses (12 required credits) 12
Master of Architecture and M.S. in Management

The dual degree option is only available to students pursuing the M.Arch. The dual degree program permits students to obtain both an M.Arch. and a M.S. in Management in substantially less time; in some cases in only one more semester of full-time study. A maximum of 15 credits may be used to satisfy the requirements of both degrees.

Students take additional credits shown below to fulfill requirements for the M.S. in Management. There is no thesis requirement.

At the time of admission to the dual degree program, the School of Management graduate advisor will determine if any M.S. in Management course requirements can be waived.

M.Arch. Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 500G</td>
<td>Tools and Techniques II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 501G</td>
<td>Architecture Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 502G</td>
<td>Architecture Studio II</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 503G</td>
<td>Architecture Studio III</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 504G</td>
<td>Architecture Studio IV</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 541G</td>
<td>Construction I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 542G</td>
<td>Construction II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 543G</td>
<td>Environmental Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 544G</td>
<td>Environmental Control Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 545G</td>
<td>Structures I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 548G</td>
<td>Structures II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 547G</td>
<td>Synthesis Seminar</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 528G</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 529G</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 555G</td>
<td>Tools and Techniques I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 569G</td>
<td>Professional Practice I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 579G</td>
<td>Professional Practice II</td>
<td>3</td>
</tr>
</tbody>
</table>
Two courses in architectural history ¹,²
One course in contemporary architectural theory ²

Option Sequence
Select two of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 505G</td>
<td>Advanced Architecture Studio I</td>
<td></td>
</tr>
<tr>
<td>ARCH 506G</td>
<td>Advanced Architecture Studio II</td>
<td></td>
</tr>
<tr>
<td>ARCH 507G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARC 701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH XXX</td>
<td>Electives</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 102

¹ Including one course in non-western, regional, or vernacular architecture.
² To be selected in consultation with the graduate advisor.

With the exception of History/Theory Selectives, ARCH 569G Professional Practice I and ARCH 579G Professional Practice II, all core courses must be completed before proceeding to the options sequence.

M.S. in Management Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 650</td>
<td>Economy Of Building</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 651</td>
<td>Public and Private Development</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 652</td>
<td>Architectural Project Management</td>
<td>3</td>
</tr>
<tr>
<td>FIN 516</td>
<td>Principles of Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 680</td>
<td>Entrepreneurial Strategy</td>
<td>3</td>
</tr>
<tr>
<td>or MGMT 692</td>
<td>Strategic Management</td>
<td></td>
</tr>
<tr>
<td>Required Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIN 618</td>
<td>Public and Private Financing of Urban Areas</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Select three of the following:
| ACCT 615 | Management Accounting | 9 |
| FIN 624 | Corporate Finance II | |
| MGMT 640 | New Venture Management | |
| MGMT 645 | New Venture Finance | |
| MIS 645 | Information Systems Principles | |
| MRKT 630 | Models Of Consumer Behavior | |
| MRKT 638 | Sales Management for Technical Professionals | |
| Total Credits 30

¹ ARCH 579G Professional Practice II fulfills MGMT 691 Legal and Ethical Issues in a Digital World required for the M.S. in Management.

Master of Fine Arts in Digital Design

The MFADD is a 60-credit to 75-credit terminal graduate program credential designed to combine the course work of any three graduate certificate programs: Animation, Game Design and Interactivity, or UI/UX plus four synthetic graduate level design studios. Students with an undergraduate background in Digital Arts and Design can immediately begin taking course work in any of these three specialized concentrations. For those who need it, the Digital Arts Essentials coursework provides a firm preparatory foundation.

The 60-credit program consists of 36 credits of coursework from any three Digital Design graduate certificate programs: Animation, Game Design and Interactivity, or UI/UX (12 courses) plus 24 studio credits (4 studios.) Students are required to design their programs in consultation with the graduate advisor and lead faculty member in the area of specialization. For students without the requisite skills and knowledge to succeed in the specialized Digital Design concentrations, students will need to complete an additional 15 general prerequisite credits in Digital Arts.
To remain in good academic standing, students must maintain a cumulative GPA of 3.0 in graduate courses. Students must repeat any design studio course in which they receive a grade of C. A grade of C+ in any design studio must be followed by a subsequent grade sufficient to raise the annual cumulative design studio GPA to 2.75. Incomplete (I) grades for studio and prerequisite courses must be removed before students will be permitted to register for continuing course work in the program.

Typical Annual Academic Schedule of 2 year 60-credit to 3 year 75-credit Master of Fine Arts in Digital Design (minimum 36 course credits plus 24 studio credits)

(A) Digital Arts Essentials*

Year 1 Digital Arts graduate certificate "A" preparatory courses

<table>
<thead>
<tr>
<th>First Year</th>
<th>1st Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 601</td>
<td>Graphic Design and Color Theory</td>
<td>3</td>
</tr>
<tr>
<td>DD 610</td>
<td>History of Art And Design I</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Second Year 1st Semester

DD 603	Video and Animation	3
DD 611	History of Art and Design - Survey II	3
DD 602	3D Modelling and Composition	3
Term Credits		**9**
Total Credits		**15**

* Digital Arts Certificate "A" is a 15-credit stand-alone certificate and its courses are preparatory to Grad Certificates "B","C","D" and the MFADD

Fall course choices by DD graduate certificates B, C, or D (students to typically take 2 per term over 2 years)

(B) **Game Design and Interactivity Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 622</td>
<td>Visual Storytelling and Storyboarding</td>
<td>3</td>
</tr>
<tr>
<td>DD 631</td>
<td>History of Game Play and Interactivity</td>
<td>3</td>
</tr>
<tr>
<td>DD 625</td>
<td>Environment Design</td>
<td>3</td>
</tr>
</tbody>
</table>

(C) **Animation Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 622</td>
<td>Visual Storytelling and Storyboarding</td>
<td>3</td>
</tr>
<tr>
<td>DD 623</td>
<td>Acting for Animators</td>
<td>3</td>
</tr>
</tbody>
</table>

(D) **UI/UX Digital Design Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 640</td>
<td>User Interface/User Experience in Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring course choices by DD graduate certificates B, C, or D (students to typically take 2 per term over 2 years)

(B) **Game Design and Interactivity Essentials**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 634</td>
<td>Physical Computing for Designers – Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>DD 624</td>
<td>Digital Audio</td>
<td>3</td>
</tr>
</tbody>
</table>
(C) Animation Essentials

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 621</td>
<td>Character and Facial Modeling for Animators</td>
<td>3</td>
</tr>
<tr>
<td>DD 624</td>
<td>Digital Audio</td>
<td>3</td>
</tr>
</tbody>
</table>

(D) UI/UX Essentials

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td>3</td>
</tr>
<tr>
<td>DD 634</td>
<td>Physical Computing for Designers – Interaction Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Total **required** course credits per term $6 \times 4 = 24$

Graduate Design Elective Courses: 3

Total **elective** course credits per term $3 \times 4 = 12$

MFADD Graduate Fall Focus Studios

First Year

1st Semester

<table>
<thead>
<tr>
<th>Credits</th>
<th>DD 650</th>
<th>Extended Reality Design Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

1st Semester

<table>
<thead>
<tr>
<th>Credits</th>
<th>DD 652</th>
<th>Animation Design Studio II</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DD 654</td>
<td>Game Design and Interactivity Studio II</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DD 656</td>
<td>User Interface/User Experience Digital Design Studio II</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Term Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>18</th>
</tr>
</thead>
</table>

Total Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>24</th>
</tr>
</thead>
</table>

MFADD Graduate Spring Focus Studios

First Year

2nd Semester

<table>
<thead>
<tr>
<th>Credits</th>
<th>DD 651</th>
<th>Animation Design Studio I</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DD 653</td>
<td>Game Design and Interactivity Design Studio I</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DD 655</td>
<td>User Interface/User Experience Digital Design Studio I</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Term Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>18</th>
</tr>
</thead>
</table>

Second Year

1st Semester

<table>
<thead>
<tr>
<th>Credits</th>
<th>DD 657</th>
<th>Digital Design Independent Project Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
</table>

Total Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>24</th>
</tr>
</thead>
</table>

Total **studio course credits per term** $6 \times 4 = 24$

Total Fall

Total degree credits for two Fall terms $(15 \times 2) = 30$

Total Spring

Total degree credits for two Spring terms $(15 \times 2) = 30$

Full 2 year MFADD Credit Total

60

Ph.D. in Urban Systems
The Ph.D. Program in Urban Systems is jointly offered by New Jersey's two senior public research institutions: New Jersey Institute of Technology (NJIT) and Rutgers, The State University of New Jersey at Newark (RU-N). The program consists of three tracks: Technology at NJIT, Environment with a possible sub-specialization in Urban History at NJIT, and Global Urban Studies at RU-N. Students admitted to the Technology track or the Environment track must fulfill the requirements as specified in this catalog.

Program Milestones

Each university follows its own timeline for candidacy and final defense. This includes:

- The required coursework for the Ph.D. program and the (major part of the) qualifying exam must be completed successfully by the end of the second year in the program.
- The dissertation proposal must be defended successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier.
- The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

RCR Requirement

In their first year in the program, Ph.D. students must register in the 0-credit online course INTD 799 Responsible Conduct of Research (RCR) and receive a satisfactory grade.

Selection of Dissertation Advisor

Temporary advisors are assigned upon entry into the program. Students must select a dissertation topic and permanent advisor by the fourth semester in the program at the latest. Change of advisor requires the consent of the previous advisor and departmental approval. In cases where more than one advisor is directing the dissertation, the primary advisor must be on the core departmental faculty.

Qualifying Examination

Students are required to take the Qualifying Exam (QE) at the end of their second year upon completion of all core courses. Should they fail the exam, they may take it once more in the fall semester of their third year. Should they fail the exam for the second time, they are dismissed from the program.

Dissertation Committee

A dissertation committee must be formed and approved within one year of passage of the QE but no later than the end of the fifth semester. The committee consists of a minimum of five members, one of whom is external to the Ph.D. program or to NJIT or Rutgers. The majority of the committee members are NJIT/Rutgers Graduate Faculty from the student’s program or department having research experience or developing research interests related to the dissertation research. The dissertation committee chairperson typically is the doctoral candidate's dissertation advisor. This chairperson must be a tenured or tenure-track faculty member in the program. Two committee members, including an external member, may serve as co-advisors. The advisor, or at least one of the co-advisors, must be a tenured or tenure-track faculty member from the program. The other members of the dissertation committee, except for an external member from outside the university, must be members of NJIT/Rutgers Graduate Faculty. Former students of any committee member, who are less than four years beyond doctoral completion, are specifically excluded from membership. The external members should either have appropriate faculty rank elsewhere or have sufficient research expertise.

Dissertation Proposal

Doctoral students must prepare a written research proposal and make an oral presentation for approval by their dissertation committee. The purpose of the dissertation proposal is to present a complete and well-developed outline of the research planned for the dissertation. The dissertation should present original research on a topic related to Urban Systems, which will be organized with a cohesive research theme/ topic outlining the following: research problem, theoretical or conceptual framework, literature review, and methods. Students would work closely with their dissertation advisor to determine the final format for the proposal.

Dissertation Defense

The dissertation must be defended in a publicly announced oral defense. The dissertation defense is scheduled after the dissertation has been completed and approved by the student’s Dissertation Committee. All members of the committee must be present to hear the defense. A successful defense of the dissertation is determined by vote of the dissertation committee. The Office of Graduate Studies policies on deadlines and submission of dissertation and abstracts are also to be followed. Every member of the dissertation committee must sign the approval page of the final dissertation document.

Degree Requirements

To graduate, students in the Technology track or the Environment track must have an approved dissertation and complete a total of 51 credits, which consists of a 14-credit core curriculum, a 21-credit elective component, and a 16-credit dissertation research. Students need to get departmental
approval for the courses they take for their degree requirements. In rare circumstances, highly-qualified students without a master's degree may be admitted and asked to take additional courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Qualitative methods (3 Credits)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Quantitative methods (3 Credits)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Additional research methods or theory course (3 Credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional research methods or theory course (3 Credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colloquium (2 Credits)</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Dissertation Research</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>USYS 792</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>USYS 790</td>
<td>10</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>

1. Students pursuing a sub-specialization in Urban History within the Environment Track take research methods in architectural and urban history in place of the two core methods courses (i.e., qualitative methods and quantitative methods). Which courses would fulfill this requirement would be determined by the student's dissertation advisor.
2. Ph.D. Students must register two semesters for 1 credit of colloquium (i.e., total 2 credits).
3. Electives are chosen in consultation with the program director and, eventually, the student's dissertation advisor. No more than 6 credits may be USYS 725 Independent Study I or USYS 726 Independent Study II.
4. Ph.D. students must register for 3 credits of pre-doctoral research (USYS 792) until they defend successfully the dissertation proposal.

Real Estate Design and Development

Into which MS degree will this Graduate Certificate convert?
This certificate can lead into the current MS Arch degree. M Arch students may also take the courses of the certificate as elective courses and apply them for both (the certificate and their M Arch degree). We are also in the process to restructure the MIP degree and rename it Master of Urban Design. Once this degree is available this certificate can also lead towards that degree.

In what industries might a holder of this Graduate Certificate find employment?
This certificate will be for architects that would like to expand into real estate development. This certificate will provide an essential understanding of real estate development combined with cutting edge technologies to be competitive in this field.

In what job titles might a holder of this Certificate fit?
Architect, Real Estate Developer

Is this certificate fully available online (all courses)?
Yes

Description of certificate program
Data driven technologies provide a new depth of understanding of the needs of individual citizens and communities. At the same time a deep knowledge of history and culture of a place and a productive relationship with communities, local leaders and government officials is necessary to act responsibly to benefit society and the environment. This certificate will introduce you to the terms, concepts, strategies and theories on real estate. Courses will provide an overview of commercial real estate and the private property market. You will also learn data driven tools used in analysis, property valuation, financing, investment and management and monitoring the construction and maintenance of buildings.

The 12 credit Graduate Certificate in Real Estate Design and Development is comprised of 4 courses for those who wish to gain the skills necessary to be competitive as a real estate developer.

What are the Required Courses?
(12 credits) Students have to select 4 courses from the following course offerings:

ARCH 651 Public and Private Development; 3 credits, 3 contact hours

Introduction to the economic, financial and political aspects of real estate and their effect on architectural decision-making. Topics include: needs assessment, real estate appraisal, financial instruments, regulations and real estate, design as value-adding, and the effect of tax policies on real
estate development. This course is required for the dual degree M.Arch./MS in Management program. It can also be used as an elective in the M.Arch. program.

ARCH 654 Land Remediation and Community Revitalization; 3 credits, 3 contact hours

This course introduces students to the process of transforming legacy industrial and vacant commercial properties into community assets. Viewing land remediation and redevelopment through the lens of the triple bottom line, the students will explore ways in which transformation of these properties can improve environmental conditions, catalyze economic development, and create more socially equitable and resilient communities. Students will interact with local government officials, real estate developers, environmental consultants, attorneys, and community planners. Course topics will include: environmental laws and regulations, real estate development, cleaning up contaminated properties, community engagement, environmental justice, gentrification, and transformative land uses.

ARCH 677 Geographic Information Systems; 3 credits, 3 contact hours

Prerequisite: course or working knowledge of CADD or permission of instructor. Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control, etc. Introduces this emerging technology and its applications.

ARCH 684 Topics of Sustainable Urbanism; 3 credits, 3 contact hours

Cities are growing at an unprecedented speed. Cities currently account for about 70 percent of global carbon emissions and over 60 per cent of resource use. We have to develop a vision for more sustainable cities and new protocols and processes to implement more sustainable vision for urban areas. This course will provide an inside into challenges we face (growing number of slum dwellers, inadequate infrastructure and services) and on solutions to address them.

FIN 600 Corporate Finance I; 3 credits, 3 contact hours

This course introduces concepts and analytical tools to identify and solve Financial Management problems. After introducing the corporation, the course focuses on how firms invest in real assets (capital budgeting) and how they raise money to pay for assets (financing). Practical problems in valuing bonds, stocks and other investments will be based on the time value of money. The trade-off between risk and return will be introduced with the Capital Asset Pricing Model.

FIN 611 Intro to Topics in Fin Tech; 3 credits, 3 contact hours

The financial services industry is presently undergoing dramatic changes as recent technological advances have enabled the automation of former workflows. This course will survey current trends in the Financial Technology (FinTech) industry. Students will have the opportunity to develop their own software related to FinTech ideas discussed during this course.

Sustainable Cities and Urban Ecologies

Into which MS degree will this Graduate Certificate convert?

This certificate can lead into the current MS Arch degree or M Arch degree. Students may also take the courses of the certificate as elective courses and apply them for both, the certificate and their M Arch degree. We are also in the process to restructure the MIP (Master of Infrastructure Planning) degree and rename it Master of Urban Design. Once this degree is available, this certificate can also lead towards the latter degree.

In what industries might a holder of this Graduate Certificate find employment?

Especially large architecture firms operate at the urban scale. This certificate provides a better understanding of systems that operate at an urban scale that usually falls short in a typical professional architecture education. It also attracts professionals in the architecture and planning industry that want to update their skillset with cutting-edge tools, techniques and methods in the field of urban design.

In what job titles might a holder of this Certificate fit?

Architect, Urban Designer, Urban Planner, Real Estate Developer

Description of certificate program

Cities are ecological systems that are defined by social, economic, cultural and political processes. A better understanding of these ecologies is necessary in order to steer the direction of urban design and development in order to respond to climate change, inequality and a digital lifestyle. This certificate will introduce you to tools such as GIS and other technologies to monitor the environmental impact and methods to operate at the scale of urban ecological systems. You will learn about master planning, community engagement, zoning and land use. You will also gain an insight into a contemporary and historic perspective of public space, housing, development, redevelopment and re-use.
The 12-credit Graduate Certificate in Sustainable Cities and Urban Ecologies is comprised of four courses for those who wish to gain the foundational skills and knowledge to operate as an Architect and Designer at an urban scale.

What are the Required Courses?

Students have to select four courses from the following list:

ARCH 636 History and Theory of Urban Planning and Design

3 credits, 3 contact hours

The course examines methods for conducting historically driven, interdisciplinary research on the built environment (with a focus on cities and suburbs) through the lens of architecture, landscape, geography, and material culture. Methodology is studied to inform the production of urban history and to frame historical perspectives on contemporary urban issues. Historiography and critical theory are key aspects of the study of urban history's methodologies. In addition to traditional historical methodologies, the course examines emerging digital humanities methodologies.

ARCH 647 Visualizing Urbanism

3 credits, 3 contact hours

Evaluation and use of computer graphics hardware and software for architectural applications. Focus is on computers as tools, operating systems and methods of data manipulation. Two- and three-dimensional modeling software are discussed, and assignments using such software are given to provide understanding of the modeling of built environments.

ARCH 651 Public and Private Development

3 credits, 3 contact hours

Introduction to the economic, financial and political aspects of real estate and their effect on architectural decision-making. Topics include: needs assessment, real estate appraisal, financial instruments, regulations and real estate, design as value-adding, and the effect of tax policies on real estate development. This course is required for the dual degree M.Arch./MS in Management program. It can also be used as an elective in the M.Arch. program.

ARCH 655 Land Use Planning

3 credits, 3 contact hours

Planning Spatial relations of human behavior patterns to land use: methods of employment and population studies are evaluated; location and spatial requirements are related to land use plans; and concepts of urban renewal and recreational planning are investigated by case studies. Same as TRAN 655 and CE 655.

ARCH 677 Geographic Information Systems

3 credits, 3 contact hours

Prerequisite: course or working knowledge of CADD or permission of instructor. Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control, etc. Introduces this emerging technology and its applications.

ARCH 684 Topics of Sustainable Urbanism

3 credits, 3 contact hours

Cities are growing at an unprecedented speed. Cities currently account for about 70 percent of global carbon emissions and over 60 per cent of resource use. We have to develop a vision for more sustainable cities and new protocols and processes to implement more sustainable vision for urban areas. This course will provide an inside into challenges we face (growing number of slum dwellers, inadequate infrastructure and services) and on solutions to address them.

ARCH 688 The Augmented City

3 credits, 3 contact hours

Digital technology disrupted city life. The use of ICTs (Information Communication Technologies) has radically changed the way we inhabit and operate in the urban space. This course provides a history of how information technology is used to influence and support social structures and an inside in how ICTs are used as a catalytic tool for expanding, augmenting and altering social interactions.

FIN 600 Corporate Finance I
UI/UX Digital Design Essentials

Who will take this Graduate Certificate?

UI/UX Graduate Bridge Certificate provides a low residency, graduate level certificate for those seeking to gain an understanding of human-centered design, User Experience design and User Interface design. Students will:

• Gain experience and mastery of the User Experience design process such as UX research, UX design ideation, Persona, Prototype stages, and Usability testing & evaluation techniques.
• Design physical and digital interfaces and software products; build interactive prototypes
• Synthesize a creative portfolio to prepare for a career in UI/UX Design.

Into which MS degree will this Graduate Certificate convert?

This is being proposed as a stand-alone bridge certificate, to which coursework may qualify students for further studies into a related MS or MFA degree in Digital Design.

In what industries might a holder of this Graduate Certificate find employment?

As digital media continue to proliferate, locally, regionally, nationally, and globally, there is increasing need for qualified professionals able to fill positions in digital content creation, management, and distribution. This certificate program prepares those with introductory knowledge to fill entry level positions in the NY metro area and beyond.

In what job titles might a holder of this Certificate fit?

A review of several 7 to 10 year time horizon market analysis reports covering, Animation, Interactive Technology, Video Graphics and Special Effects; Game and Interactive Media Design; Digital Communication and Media/Multimedia; and Digital Arts shows a large and stable jobs market (approx. 170,000 jobs) for these fields in the New York MSA alone.

Description of certificate program

The 12 credit UI/UX design Certificate is comprised of 4 preparatory courses for those who wish to gain the foundational skills and knowledge to enter the burgeoning User experience design and Human-Computer Interaction fields. This UX/UI Design Certificate is set as a stand-alone credential to gain entry-level admission into a range of career or academic paths.

COURSE DESCRIPTIONS

DD 634 - Physical Computing for Designers – Interaction Design - Design studio focusing on two-and three-dimensional visual communication of data, including interactive and scripted/animated communication as well as still-image utilization. Applications may include website creation, information kiosks, exhibit design, educational videos, scientific visualization, and other graphics-intensive projects.

DD 640 - User Interface/User Experience in Digital Design - Application of theories, research methods, ethics, and design processes of UX (user experience) design. Students will research, develop, and test UX designs. Design strategies will be discussed as they are applied to student designed physical, virtual, and hybrid prototype interface solutions.

IS 661 - User experience Design - Effective UXD requires a mix of Interaction Design (ID) methods and processes. This course takes you through the process of creating compelling interaction designs for digital products from the idea stage into creating a simple and intuitive user experience blueprint.

IS 664 - Customer Discovery Design - In this course, we take a deep dive into qualitative user experience (UX) research. UX research is the process of understanding why and how people use products and services. This course will teach you a set of research tools to understand user needs, investigate the user experience, and derive design recommendations.
First Semester:

DD 640 UI-UX in Digital Design 3 credits
IS 661 User Experience Design 3 credits

Second Semester:

IS 664 Customer Discovery Design 3 credits
DD 634 Physical Computing - Interaction Design 3 credits

Total: 12 credits

Ying Wu College of Computing

The mission of the Ying Wu College of Computing, which was established in 2001, is to bring education in a broad range of computing disciplines to students on campus and at a distance to carry out cutting-edge research while working closely in the industry. Ying Wu College of Computing offers bachelor's, master's and doctoral degrees in multiple fields of computing science, Web and information systems, and a multidisciplinary undergraduate degree in information technology.

Ying Wu College of Computing resides on one of the most computing-intensive campuses in the world, helping NJIT educate one of the largest groups of information technology students in the nation in the applications of new technologies as learning tools. Not coincidentally, New Jersey is one of the leading states for computing and high technology businesses. Thirty of the nation's fastest-growing technology companies are based in the state, and New Jersey ranks seventh in the nation as a cyberstate and eighth for venture capital investment—$3.5 billion—in information technology and software. Additionally, New Jersey offers the second-highest wages in the nation for technology workers. Ying Wu College of Computing graduates frequently land creatively satisfying and intellectually challenging jobs at major companies like IBM, Mercedes-Benz and Pfizer.

Programs

- Bioinformatics - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/bioinformatics-ms/))
- Business & Information Systems - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/informatics/business-information-systems-ms/))
- Computer Science - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/ms/))
- Computing and Business - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/computing-business-ms/))
- Cyber Security and Privacy - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/cyber-security-privacy-ms/))
- Data Science - M.S. – Computational Track ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/data-science/data-science-ms/))
- Information Systems - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/informatics/ms/))
- Information Technology and Administration Security - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/informatics/administration-security-ms/))
- Software Engineering - M.S. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/software-engineering-ms/))

Programs

- Computer Science - Ph.D. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/phd/))
- Information Systems - Ph.D. ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/informatics/phd/))

Programs

- Artificial Intelligence ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/data-science/artificial-intelligence-cert/))
- Big Data Essentials ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/data-science/big-data-essentials-cert/))
- Business and Information Systems Implementation ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/information-systems/business-information-systems-cert/))
- Computer Science ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/cert/))
- Data Mining ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/data-science/data-mining-cert/))
- Data Visualization ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/data-science/data-visualization-cert/))
- Foundations of Cybersecurity ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/foundations-of-cybersecurity-cert/))
- IT Administration ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/information-technology/it-administration-cert/))
- Information Security ([link](http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/information-systems/information-security-cert/))
• Network Security and Information Assurance (http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/information-systems/network-security-information-systems-cert/)
• Software Engineering, Analysis, and Design (http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/computer-science/software-engr-analysis-design-cert/)
• Web Systems Development (http://catalog.njit.edu/archive/2022-2023/graduate/computing-sciences/information-systems/web-systems-development-cert/)

Ying Wu College of Computing Courses

BNFO 601. Foundations of Bioinformatics I. 3 credits, 3 contact hours.
Introduction to script programming and basic biomolecular sequence analysis. Topics covered include sequence alignment, dynamic programming algorithms, hidden Markov models, and their implementation with a scripting language.

BNFO 602. Foundations of Bioinformatics II. 3 credits, 3 contact hours.
Topics in bioinformatics such as phylogeny reconstruction, genome-wide association study analysis, structure and sequence analysis, and machine learning and statistical approaches. Focus of the course is on a hands-on project on a contemporary bioinformatics problem.

BNFO 615. Data Analysis in Bioinformatics. 3 credits, 3 contact hours.
Students will learn machine learning methods. They will apply the methods to various problems in bioinformatics using the Python scikit machine learning library. Previous programming experience is required, previous knowledge of Python is a plus.

BNFO 620. Genomic Data Analysis. 3 credits, 3 contact hours.
This course will introduce students to the practice of analyzing large-scale genomic data generated by recent high throughput bio-techniques. It will cover microarray data and short-read sequencing data. It presents widely used analytical methods and software. The course includes several case studies on real large-scale genomics datasets. Students will gain practical experience in large-scale data analysis, which is highly desirable by both industry and academia employers.

BNFO 644. Data Mining and Management in Bioinformatics. 3 credits, 3 contact hours.
Concepts and principles of data management in bioinformatics. Presents methods for indexing, querying, and mining data obtained from molecular and evolutionary biology. Provides hands-on experience in designing a simple information system for querying and mining genomic data using ORACLE or MySQL.

BNFO 698. ST:. 3 credits, 3 contact hours.

BNFO 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in bioinformatics. A written report must be submitted to the project advisor. The student cannot register in BNFO 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

BNFO 701B. Masters Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in bioinformatics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in BNFO 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

BNFO 701C. Masters Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in bioinformatics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (BNFO 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

BNFO 725. Independent Study. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

BNFO 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for BNFO 726 if they have taken BNFO 725 in a prior semester.
CS 505. Programming, Data Structures, and Algorithms. 3 credits, 4 contact hours.
Prerequisite: knowledge of at least one procedure-oriented language such as PASCAL or C. Computer science students cannot use this course for graduate degree credit. Intensive introduction to computer science principles: a procedure-oriented language such as C++; program design techniques; introductory data structures (linked lists, stacks, sets, trees, graphs); and algorithms (sorting, searching, etc.) and their analysis. Programming assignments are included.

CS 506. Foundations of Computer Science. 3 credits, 3 contact hours.
Prerequisite: knowledge of C/PASCAL. Corequisite: CS 505. Cannot be used for graduate credit towards the M.S. in Computer Science. Introduction to the concepts of iteration, asymptotic performance analysis of algorithms, recursion, recurrence relations, graphs, automata and logic, and also surveys the main data models used in computer science including trees, lists, sets, and relations. Programming assignments are given.

CS 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

CS 602. Java Programming. 3 credits, 3 contact hours.
Prerequisite: advanced Web-based programming with an emphasis on the Java language and platform. No prior knowledge of Java is required but students are expected to have a good understanding of object-oriented programming concepts such as encapsulation, inheritance, and polymorphism, experience with C++. Basic constructs and syntax and then the core advanced features. Topics include: networking and sockets, remote method invocation (RMI), database connectivity (JDBC), Java Beans, multi-threading and lightweight components (Swing). Common gateway interface (CGI) languages and browser scripting (JavaScript and VBScript) are discussed when used as a complement to the functionality of the Java language. Emphasis is on the latest version of Java, both deprecated methods and newly introduced features are discussed.

CS 608. Cryptography and Security. 3 credits, 3 contact hours.
This course involves computational methods providing secure Internet communication. Among the topics covered are: Security threats in communication systems; conventional cryptography: substitution and transposition codes; distribution of secret key over the Internet; principles of public-key cryptography; RSA and other public-key cryptographic methods; and digital signature protocol.

CS 610. Data Structures and Algorithms. 3 credits, 3 contact hours.
Prerequisites: CS 114 and CS 241 or equivalents (see undergraduate catalog for description). Intensive study of the fundamentals of data structures and algorithms. Presents the definitions, representations, processing algorithms for data structures, general design and analysis techniques for algorithms. Covers a broad variety of data structures, algorithms and their applications including linked lists, various tree organizations, hash tables, strings, storage allocation, algorithms for searching and sorting, and a selected collection of other algorithms. Programs are assigned to give students experience in algorithms, data structure design and implementation.

CS 611. Introduction to Computability and Complexity. 3 credits, 3 contact hours.
Prerequisite: CS 610. Introduces the theoretical fundamentals of computing, and provides an understanding of both the inherent capabilities and limitations of computation. The main models of computation are deterministic and non-deterministic Turing machines. Auxiliary models include partial and total recursive functions, first order logic, recursive and recursively enumerable sets, and symbol systems. Covers the essentials of computational theory: first order logic, Russell's Paradox, completeness and consistency, Goedel's Theorem, Church's Thesis, countable and uncountable sets, simulation and computation, diagonalization, dovetailing, decidable and undecidable problems, reduction, recursion theory, Rice's Theorem, Recursion Theorem, execution time measures, P and NP, polynomial-time reduction, NP-completeness and NP-hardness and formal correctness semantics of programs.

CS 621. Numerical Analysis I. 3 credits, 3 contact hours.

CS 630. Operating System Design. 3 credits, 3 contact hours.
Prerequisites: CS 332, CS 432 (see undergraduate catalog for descriptions) and CS 505. An intensive study of computer operating system design including multiprogramming, time-sharing, real-time processing, job and task control, synchronization of concurrent processes and processors, resource scheduling, protection, and management of hierarchical storage.

CS 631. Data Management System Design. 3 credits, 3 contact hours.

CS 632. Advanced Database System Design. 3 credits, 3 contact hours.
Prerequisites: CS 631 and good knowledge of a high-level programming language. Covers the rapidly changing concepts and principles of modern database systems and database programming based on SQL. Additional topics may include: advanced data modeling, OOBs, parallel and distributed database systems, XML and NO-SQL databases, Web-database systems, active databases, multimedia and text databases, database security, query optimization, indexing techniques, concurrency control, system performance, and data warehousing.
CS 633. Distributed Systems. 3 credits, 3 contact hours.
Prerequisite: completion of bridge requirements. Fundamental topics concerning the design and implementation of distributed computing systems are covered, including interprocess communication, remote procedure calls, authentication, protection, distributed file systems, distributed transactions, replicated data, reliable broadcast protocols, and specifications for distributed programs. All topics will be illustrated with case studies. Optional topics may include synchronization, deadlocks, virtual time, and load balancing.

CS 634. Data Mining. 3 credits, 3 contact hours.
This course covers the principles of data mining system design and implementation. It presents methods for association and dependency analysis as well as classification, prediction, and clustering. Optional topics may include time series and graph mining, current trends in data mining, and data mining for scientific, medical and engineering applications.

CS 635. Computer Programming Languages. 3 credits, 3 contact hours.
Prerequisites: CS 505 and CS 510. The theory and design of computer language systems; the formal theory of syntax and language classification; a survey of procedure and problem-oriented computer programming languages, their syntax rules, data structures, and operations; control structures and the appropriate environments and methods of their use; a survey of translator types.

CS 636. Data Analytics with R Program. 3 credits, 3 contact hours.
Prerequisites: Entry-level courses in programming, probability and statistics (e.g MATH 333, CS 280), or permission of the instructor. This course teaches data analytics with R programming. The student will learn and gain basic analytic skills via this high-level language. The course covers fundamental knowledge in R programming. Popular R packages for data science will be introduced as working examples. The course also includes case studies on data analytics projects. As a core course in data science, it provides skills that are highly desirable for both industry and academic employers.

CS 639. Elec. Medical Records: Med Terminologies and Comp. Imp.. 3 credits, 3 contact hours.
This course presents a graduate introduction to Medical Informatics for Computer Science students covering (1) the design, use and auditing of medical terminologies, such as the Unified Medical Language System (UMLS) and the Systematized Nomenclature of Medicine (SNOMED); and (2) principles of Electronic Medical Records (EMR), Electronic Health Records (EHR) and Personal Health Records (PHR), including issues of privacy and security.

CS 640. Recursive Function Theory. 3 credits, 3 contact hours.
Prerequisite: CS 540 or equivalent. Review of basic computability theory. Topics include Church's thesis; unsolvability results; creative, productive, and simple sets; computational complexity; P=NP problem; and classification of solvable problems according to their complexity.

CS 643. Cloud Computing. 3 credits, 3 contact hours.
Prerequisites: CS 644 or CS 656 or ECE 637. This course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its main focus is on parallel programming techniques for cloud computing and large scale distributed systems which form the cloud infrastructure. The topics include: overview of cloud computing, cloud systems, parallel processing in the cloud, distributed storage systems, virtualization, secure distributed computing, and multicore programming.

CS 644. Introduction to Big Data. 3 credits, 3 contact hours.
Prerequisite: permission of the instructor. This course provides an in-depth coverage of various topics in big data from data generation, storage, management, transfer, to analytics, with focus on the state-of-the-art technologies, tools, architectures, and systems that constitute big-data computing solutions in high-performance networks. Real-life big-data applications and workflows in various domains (particularly in the sciences) are introduced as use cases to illustrate the development, deployment, and execution of a wide spectrum of emerging big-data solutions.

CS 645. Security and Privacy in Computer Systems. 3 credits, 3 contact hours.
Prerequisites: Students are expected to enter this course with a basic knowledge of operating systems, networking, algorithms, and data structures. Also, students should be able to program in Java and C/C++. The course covers fundamental principles of building secure systems and techniques to ensure data security and privacy. Topics include access control mechanisms, operating systems security, malicious code threats and software security, trusted computing, content protection, and database security. The course will also study existing technical approaches to protecting privacy, including Web anonymizers and anti-censorship tools, as well as policy and legal aspects of privacy.

CS 646. Network Protocols Security. 3 credits, 3 contact hours.
Prerequisites: CS 656 or ECE 637, and ability to program in Java and C/C++. This course covers the security of network protocols currently used on the internet. It seeks to familiarize students with common threats and network attacks, and provides an in-depth study of methods used to secure network communication. The course includes an applied component, which will help students gain practical experience in attacking and defending networked systems. Topics include authentication systems, and routing security, firewalls, intrusion detection, honeypots, wireless network security, malware, propagation and detection, and web security.

CS 647. Counter Hacking Techniques. 3 credits, 3 contact hours.
Prerequisites: CS 645 or CS 646 or CS 696 or ECE 638 or approval of the instructor. This course covers advanced techniques that can be used for offensive or defensive goals in network, computer systems and applications. The course follows a learning by doing? teaching approach through extensive use of virtual machines with vulnerable operating systems and applications. Topics covered include system memory organizations, CPU registers, assembly language fundamentals, GNU and Immunity debuggers, fuzzing based security testing development of local and remote Linux and Windows exploits, shellcode development, stealthy attacks, bypassing memory protection techniques, network and wireless hacking techniques, and ethical and legal implications of cyber-attacks.
CS 648. Cyber Sec Investigations & Law. 3 credits, 3 contact hours.
Prerequisites: CS 656 or IT 640 or permission of the instructor. This course will prepare students for a real-life experience for operating and protecting computer networks, data communication, and data storage systems. The course will provide the student with a methodology to examine and investigate intrusions and security of data storage, data management, and data transmission systems as a part of an integrated network. It will explore the various interfaces of these systems from a technical, human, and investigative perspective, and the potential legal issues. The course will provide the student with various fundamental legal knowledge necessary for a cyber practitioner: (a) basic intellectual property law including trade secrets and patents; (b) foreign viewpoints of intellectual property and compliance to include EU privacy law; (c) U.S. law of electronic surveillance, electronic search, and stored communications; (d) government and workplace consensual search and surveillance and consent banners/agreements.

CS 650. Computer Architecture. 3 credits, 3 contact hours.
Prerequisites: CS 251 (see undergraduate catalog for description) and CS 510. Exploiting instruction level parallelism (ILP) is central to designing modern computers. Presents design techniques used for such computers as IBM Power architectures, DEC Alpha, MIPS R4600, Intel P6, etc. Introduction of Instruction SET Architecture (ISA), various functional units, basic principles of pipelined computers. Modern techniques to ILP including superscalar, super-pipelining, software pipelining, loop unrolling, and VLIW. Memory hierarchy, including instruction cache, data cache, second level cache, and memory interleaving. Advanced computer architectures, including vector, array processors, interconnection technology, and ATM network of workstations. Hands-on experience designing a simple pipelined computer on screen and using CAD tools such as Cadence or ViewLogic.

CS 651. Data Communications. 3 credits, 3 contact hours.
Prerequisite: MATH 333 (see undergraduate catalog for description). Intensive study of the analytic tools required for the analysis and design of data communication systems. Topics include: birth-death queuing systems, Erlang's distribution, bulk-arrival and bulk-service systems, design and analysis of concentrators and multiplexers, elements of Renewal Theory, M/G/1 system, analysis of Time Division Multiplexing, priority queues, analysis of random access systems, time reversibility, open and closed queuing networks, mean value analysis, flow and congestion, control mechanisms, routing algorithms, flow models, and network topological design.

CS 652. Cognitive Cloud Networking - Architectures and Applications. 3 credits, 3 contact hours.
Prerequisite: CS 656. If anything can characterize today's networking environment is its newly found significance in delivering cloud applications at scale. Everything has become a cloud - even the formerly-rigid wireless proprietary nodes, known as base stations, are broken up to independently developed network micro-services running on cloud-native runtimes supported by commodity compute and storage. Networking has become a software business and complete network disaggregation is the end game. In this new world, network operators are increasingly becoming content providers and they abandon R&D-heavy network disaggregation initiatives run by the Linux Foundation and increasingly trust public cloud providers to run their networks and take full advantage of the public cloud completely abstracted set of APIs to build applications faster than they could ever do before. Drawing from these trends, the course aims on one hand to provide a foundation of the so called multi-cloud network environment and on the other, to provide the student with the tools and knowledge required to understand how these multi-cloud networks are operated / managed via a set of data-driven distributed applications, the Cognitive Network Apps, that bring Machine Learning / AI and big network data analytics together. We treat the most important networking architectures and technologies that empower today's cloud provider networks at the core / edge such as CDN and 5G and learn how self-healing, self-optimization and self-configuration applications provide the reliability, resiliency and performance metrics needed by cloud applications such as Netflix, Zoom and many others.

CS 656. Internet and Higher-Layer Protocols. 3 credits, 3 contact hours.
The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

CS 657. Principles of Interactive Computer Graphics. 3 credits, 3 contact hours.
Prerequisites: CS 505 or familiarity with the organization of at least one computer system, and knowledge of a structured programming language such as C. Graduate-level introduction to computer graphics concepts, algorithms, and systems. Includes 2-D raster graphics, algorithms, 2-D and 3-D geometric transformations, 3-D viewing, curves and surfaces. Emphasis on PC-based graphics programming projects. Principles of interactive graphics systems in terms of the hardware, software and mathematics required for interactive image production.

CS 659. Image Processing and Analysis. 3 credits, 3 contact hours.
Prerequisite: CS 505. Fundamentals of image processing, analysis and understanding. Topics include image representation, image data compression, image enhancement and restoration, feature extraction and shape analysis, region analysis, image sequence analysis and computer vision.

CS 660. Digital Watermarking. 3 credits, 3 contact hours.
Digital watermarking and steganography is important to ensure data security because of widely used digital multimedia and rapid growth of the Internet. Digital watermarking is a suitable tool to identify the source, creator, owner, distributor, or authorized consumer of a document or an image. Digital steganography aims at hiding digital information into covert channels, so one can conceal the information and prevent detection. This course intends to provide students an overview on different aspects of mechanisms and techniques for digital watermarking and steganography.

CS 661. Systems Simulation. 3 credits, 3 contact hours.
Prerequisites: an undergraduate or graduate course in probability theory and statistics, and working knowledge of at least one higher-level language. An introduction to the simulation of systems, with emphasis on underlying probabilistic and statistical methodologies for discrete-event simulations. Design of simulation applications, and simulation programming in a high-level language. Algorithms for the generation of pseudorandom numbers. Algorithmic methodologies for the simulation of discrete and continuous probabilistic processes. Use of statistical tools. Simulation of queuing systems. Applications of simulation to a variety of system studies. The special purpose simulation language GPSS is studied in detail.
CS 665. Algorithmic Graph Theory. 3 credits, 3 contact hours.
Prerequisite: CS 610. The elements of the theory of graphs and directed graphs with motivating examples from communication networks, data structures, etc.; shortest paths, depth first search, matching algorithms, parallel algorithms, minimum spanning trees, basic complexity theory, planarity, and other topics. Programming assignments are included.

CS 666. Simulation for Finance. 3 credits, 3 contact hours.
Covers the use of Monte Carlo stochastic simulation for finance applications. Topics include generation of various random variables and stochastic processes (e.g., point processes, Brownian motion, diffusions), simulation methods for estimating quantities of interest (e.g., option prices, probabilities, expected values, quantities), input modeling, and variance-reduction techniques. Students will write computer programs in C++. Students cannot receive credit for both CS 661 and CS 666/MATH 666.

CS 667. Design Techniques for Algorithms. 3 credits, 3 contact hours.
Prerequisite: CS 610. An introduction to the principles of major design techniques in algorithms. Examples from a variety of topics and problems in computer science are used to demonstrate these design techniques and their appropriate application.

CS 668. Parallel Algorithms. 3 credits, 3 contact hours.
Prerequisites: CS 610 and CS 650. This course examines a variety of parallel algorithms and architectures. Shared memory algorithms and algorithms for special architectures (tree processors, grids, systolic arrays, butterflies) are considered. The basic theory of algorithm/architecture performance will be described.

CS 670. Artificial Intelligence. 3 credits, 3 contact hours.
Prerequisite: CS 610. Fundamental concepts and general techniques in artificial intelligence. Main topics include goal tree search, logic and deduction, abduction, uncertainty, fuzzy logic, knowledge representations, machine learning, vision, and action planning. The LISP programming language is used extensively. Students are required to do programming assignments, complete a programming term project, and review case studies.

CS 673. Software Design and Production Methodology. 3 credits, 3 contact hours.
Prerequisite: CS 631. Modern techniques and methods employed in the development of large software systems, including a study of each of the major activities occurring during the lifetime of a software system, from conception to obsolescence and replacement. Topics include cost/performance evaluation, documentation requirements, system design and production techniques, system verification techniques, automated aids to system development, and project organization and management.

CS 675. Machine Learning. 3 credits, 3 contact hours.
Pre-requisites: Basic probability, linear algebra, computer programming, and graduate or undergraduate senior standing, OR approval of instructor. This course is an introduction to machine learning and contains both theory and applications. Students will get exposure to a broad range of machine learning methods and hands on practice on real data. Topics include Bayesian classification, perceptron, neural networks, logistic regression, support vector machines, decision trees, random forests, boosting, dimensionality reduction, unsupervised learning, regression, and learning new feature spaces. There will be several programming assignments, one course project, one mid-term and one final exam.

CS 676. Cognitive Computing. 3 credits, 3 contact hours.
Corequisites: CS 631. Prerequisite: Good knowledge of programming (C/C++/Java), or permission of instructor. This course provides an application oriented overview of Cognitive Computing, aimed at students specializing in data sciences. Cognitive algorithms (e.g. IBM, Stanford) that combine machine learning, data mining, AI and natural language will be used to build systems for finance, telecom and retail. Real world problems and data sets such as financial risk measurement or telecom churn will be introduced, and students will study and build Cognitive models on the IBM and open-source platforms. An important feature of this course is the usage of Harvard HBS case studies to illustrate current business challenges. This course will illustrate the development, deployment, and execution of a wide spectrum of Cognitive solutions.

CS 677. Deep Learning. 3 credits, 3 contact hours.
Prerequisites: CS 675 or approval of the instructor. This course covers current topics in data science. The topics include but are not limited to parallel programming on GPU and CPU multi-cores, deep learning, representation learning, optimization algorithms, and algorithms for big datasets. Students will present recent papers in data science, work on programming assignments, and do a machine learning/deep learning/data science project.

CS 678. Topics in Smartphone Sec & Rel. 3 credits, 3 contact hours.
This course covers current topics in the security and reliability of smartphones, and smartphone platform-based devices. The topics include but are not limited to understanding the software and hardware platforms; static and dynamic analyses for devices and apps; effective testing of devices and apps; formulating and launching attacks against these devices or apps, and understanding the security, privacy, and reliability risks that users expose themselves to when using such devices. The professor and students will present recent papers; discuss and critique papers, draw outlines for potential research explorations in this area; the students will complete a programming assignment designed to familiarize themselves with programming for the platform; the students will spend the rest of the individual work assignment on a project: running a research tool, designed to expose security and reliability issues, on popular platforms/apps/devices and reporting the findings.

CS 680. Linux Kernel Programming. 3 credits, 3 contact hours.
An in-depth study of how the Linux operating system is built from scratch. AS a hands-on course, students will perform intensive programming using Linux Kernel. The contents include machine booting, segmentation and paging memory management, creating and destroying processes, process switching and scheduling, handling exceptions and hardware interrupts, software interrupts, creating system calls, creating file systems, networking with TCP/IP, device driver writing and module programming, etc. At the end of the course, students will be able to modify Linux operating system to create their own.
CS 681. Computer Vision. 3 credits, 3 contact hours.
This course introduces computational models of computer vision and their implementation on computers, and focuses on material that is fundamental and has a broad scope of application. Topics include contemporary developments in all mainstream areas of computer vision e.g., Image Formation, Feature Detection/Representation, Classification and Recognition, Motion Analysis, Camera Calibration, 3D/Stereo Vision, Shape From X (motion, shading, texture, etc.), and typical applications such as Biometrics.

CS 683. Software Project Management. 3 credits, 3 contact hours.
This course gives the student the necessary background to allow her/him to manage software projects; this includes economic, managerial and organizational aspects. The essence of software engineering is not only to introduce a valuable software product, but to do so economically and competitively. Like any engineering discipline, software engineering depends critically on managerial, economic and organizational considerations. Students will learn software management technique, various software costing techniques including COCOMO and ROI, team organization and management, and various methods of software development including Cleanroom and Agile.

CS 684. Software Testing and Quality Assurance. 3 credits, 3 contact hours.
This course discusses software faults and techniques to reduce faults and improve software quality. Software systems are some of the most complex human artifacts ever built and also some of the most critical means to ensure our safety, well being, and prosperity. This course teaches techniques to ensure software systems perform their function correctly. Topics include software specifications, goals of testing, techniques of test data selection, test oracle design, test data analysis, test lifecycle and quality impacts of testing.

CS 685. Software Architecture. 3 credits, 3 contact hours.
The software architecture defines the structure and interactions of software modules. This course provides a working knowledge of the terms, principles and methods of software architecture and module design. It explains the constraints on the design and the properties of capacity, response time, and consistency. The "4+1" architecture model is taught with architectural styles, interface isolation, decoupling, reuse, agile design with software patterns, data structures, queuing effects, design simplification and refactoring. The non-functional requirements of reliability, performance and power consumption, component based design and good industry practices for documenting and managing the architectural process are taught.

CS 690. Software Studio. 3 credits, 3 contact hours.
Prerequisite: CS 673 or approval of the instructor. This course is the first of a two-course sequence (CS 690, CS 700B) that focuses on a team-based industrial scale software project. This two-course sequence is part of the required courses of the Master of Science in Software Engineering (MSSE). This course covers the early phases of the software lifecycle, including requirements analysis, requirements specifications, project planning, software architecture and product level design, along with associated documentation. This sequence is typically taken in the last year of the MSSE, and is intended as an opportunity for MSSE students to apply the material they have learned throughout the program.

CS 696. Network Management and Security. 3 credits, 3 contact hours.
Prerequisites: CS 652 or CS 656 or ECE 637 or ECE 683. Thorough introduction to current network management technology and techniques, and emerging network management standards. In-depth study of the existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and for protecting systems from network-based attacks. SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management. Various types of security attacks (such as intruders, viruses, and worms). Conventional Encryption and Public Key Cryptology. Various security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility). Same as ECE 638.

CS 698. ST:. 3 credits, 3 contact hours.

CS 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. A written report must be submitted to the project advisor. The student cannot register in CS 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CS 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CS 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CS 703. Computational Optimization. 3 credits, 3 contact hours.
Prerequisites: CS 610 and MATH 333, or consent of instructor. This course introduces basic elements of the theory of optimization, with a focus on continuous optimization. Topics include deterministic and stochastic methods and average-case and asymptotic error bounds. Applications to image processing and machine learning will be surveyed.
CS 704. Sequencing and Scheduling. 3 credits, 3 contact hours.
Advanced sequencing and scheduling for job shops, flow lines, and other general manufacturing and production systems are discussed in this course. Both deterministic and stochastic scheduling models are covered in detail. Heuristics and worst case analysis for "unsolvable" hard scheduling problems (NP-C problems) are introduced.

CS 708. Advanced Data Security and Privacy. 3 credits, 3 contact hours.
Prerequisites: CS 608, CS 645, CS 696, or instructor approval. In-depth study of the security and privacy issues associated with the massive amount of data that is collected, stored, shared and distributed in today's society. New paradigms are needed to address the security/privacy challenges when data is outsourced at untrusted servers (such as in cloud computing), when data is anonymized in order to be shared among untrusted parties, or when copyrighted data needs to be protected from unauthorized use.

CS 725. Independent Study in Computer Science I, II. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both CS 725 and CS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CS 726. Independent Study II. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both CS 725 and CS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CS 731. Applications of Database Systems. 3 credits, 3 contact hours.
Prerequisite: CS 631. Restricted to students who are specializing in computer and information systems management. Comparative study of different models of database management systems and their applications. Emphasis on the functions of the database administrator. Includes a survey of physical and logical organization of data, methods of accessing data, characteristics of different models of generalized database management systems, and case studies using these systems from various applications. Students teams design database systems for class projects.

CS 732. Advanced Machine Learning. 3 credits, 3 contact hours.
Prerequisites: CS 634 or CS 670. This course presents advanced topics in the machine learning field, with a focus on recent learning techniques developed for analysis of high dimensional data such as a model selection by regularization and ensemble learning. The course also covers the theory of supervised, semi-supervised, unsupervised, transduction and reinforcement learning, as well as applications of these learning methods.

CS 735. High Performance Analytics Dat. 3 credits, 3 contact hours.
Prerequisites: Knowledge of material from at least four courses in the following list: CS 631 (Data Management Systems Design), CS 634 (Data Mining), CS 643 (Cloud Computing), CS 644 (Introduction to Big Data), CS 675 (Machine Learning). Targeting the latest computing infrastructures and software systems for data analytics, this course introduces students to the design and analysis of scalable data science algorithms, as well as skills to implement high performance data science applications. Specific topics include in-memory data processing, column-oriented data storage and retrieval, cloud-based data intensive systems, as well as classic data analytics algorithms such as causal discovery and network inference and their scalable implementation.

CS 744. Data Mining and Management in Bioinformatics. 3 credits, 3 contact hours.
Prerequisites: CS 610 or permission of the instructor. Concepts and principles of bioinformatic data mining and management with focus on efficiency and scalability. Methods for indexing and querying biological databases, biological data mining, and algorithmic development for bimolecular and phylogenetic data analysis. Trends and advances in areas such as functional genomics and proteomics, genetic engineering, and large-scale gene expression data analysis.

CS 750. High Performance Computing. 3 credits, 3 contact hours.
Prerequisite: CS 650. An in-depth study of the state of the art in high performance computing. Topics parallel computer architectures, programming paradigms, and their applications. Parallel architectures include PC clusters, shared-memory multiprocessors, distributed-memory multiprocessors, and multithreaded architectures. Parallel programming paradigms include message passing interface (MPI), its second-generation MPI-2, and multithreaded programming. Applications include computational science and high performance Web and database servers for Internet-based electronic commerce. Students program a parallel machine in class projects. First-hand experience in stable, scalable, high performance computing for Internet-based electronic commerce.

CS 755. Security and Privacy in Wireless Networks. 3 credits, 3 contact hours.
This course covers selected topics on security and privacy in wireless networks and is intended for graduate students who are interested in network security. This course can help the students learn the state of the art and open challenges in wireless network security and privacy, thus enhancing their potential to perform research or pursue a career in this emerging area.

CS 756. Mobile Computing and Sensor Networks. 3 credits, 3 contact hours.
This course provides an in-depth study of mobile computing and sensor networks, which are becoming major components of the transition from today's world of desktop computers to a world where computing is ubiquitous. The main topics include: techniques to handle mobility in the Internet and ad hoc networks; operating systems, programming languages, and protocols for sensor networks; applications, middleware, programming models, and security ubiquitous computing environments.

CS 759. Advanced Image Processing and Analysis. 3 credits, 3 contact hours.
Prerequisite: CS 659. Advanced study of recent research in image processing, analysis, and understanding. Topics include all image processing techniques, high-level recognition approaches, and automated expert vision systems.
CS 775. Seminar in Software Engineering. 3 credits, 3 contact hours.
Prerequisite: CS 673. A seminar in which students pursue intensive study of specialized topics in the current literature of software engineering. Each topic is supported by an initial reading list on current problems in theory and practice. The results of the studies are discussed in class with students, faculty and invited specialists.

CS 777. Seminar in Software Management and Production. 3 credits, 3 contact hours.
Prerequisites: Ph.D. core courses. A seminar in which students pursue intensive study of specialized topics in the current literature of software management and production. Each topic is supported by an initial reading list covering current problems in theory and practice. The results of the studies are discussed in class with students, faculty, and invited specialists participating. Topics include, but are not limited to, theory of algorithm structure, analysis of algorithms and programs, hardware technology assessment, automated tools for software production, software measurements and quality, peripheral device interfaces, data communications, computer networks, distributed processing, software verification, implementation standards, documentation standards, system security, software copyright, and project control and organization.

CS 782. Pattern Recognition and Applications. 3 credits, 3 contact hours.
Prerequisite: CS 610. Study of recent advances in development of (statistical and syntactic) pattern algorithm, approximation, and estimation techniques. Topics include statistical estimation theory, classifier design, parameter estimation and unsupervised learning, bias vs. variance, nonparametric techniques, linear discriminant functions, tree classifiers, feature extraction, and clustering. Additional topics include Support Vector machines (SVM), Bayesian Learning, Hidden Markov Models (HMM), evolutionary computation, neural networks, with applications to signal interpretation, time-series prediction, and Biometrics.

CS 785. Seminar in Computer and Information Science I. 3 credits, 3 contact hours.
Prerequisite: determined by nature of topic area. Advance notice of the topics to be covered is given. These seminars examine in depth a special interest area of computer and information science. It emphasizes recent work in area selected for the offering of the course. This course is for master's students and cannot apply toward master's degree credit.

CS 786. Special Topics. 3 credits, 3 contact hours.
Prerequisite: as determined by nature of topic area. A continuation of CS 785.

CS 790. Doct Dissertation & Res. 0 credits, 0 contact hours.

CS 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: CS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. For PhD students who have successfully defended their dissertation proposal. The student must register in CS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

CS 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: CS 791. Since the CS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

CS 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: CS 791. Since the CS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

CS 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

CS 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

CS 790G. DOCT DISSERTATION & RES. 18 credits, 3 contact hours.

CS 791. Graduate Seminar. 0 credits, 0 contact hours.
Corequisite (for doctoral students only): CS 790. A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in computer and information systems management. In the course students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.

CS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: CS 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in computer science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.
CS 792C. Pre-Doctoral Research. 6 credits, 0 contact hours.

DS 632. Computing with Advanced Data Representations. 3 credits, 3 contact hours.
Prerequisites: CS 631 or knowledge of SQL, and good knowledge of a high-level programming language. Covers the rapidly changing concepts and principles of modern database systems and database programming. Topics include relational databases, object-oriented databases and object-oriented data modeling, XML data, JSON data, Graph Databases, NO-SQL databases, programming with stored procedures, database security and access control, indexing in SQL and NO-SQL databases, and current trends in databases (e.g., serverless cloud databases). Example systems used include Oracle with PL/SOL, MongoDB, and Neo4j.

DS 636. Data Analytics with R Program. 3 credits, 3 contact hours.
Prerequisites: Entry-level courses in programming, probability and statistics (e.g. MATH 333, CS 280, or equivalent courses with permission of the instructor). This course teaches data analytics with R programming. The student will learn and gain basic analytic skills via this high-level language. The course covers fundamental knowledge in R programming. Popular R packages for data science will be introduced as working examples. The course also includes case studies on data analytics projects. As a core course in data science, it provides skills that are highly desirable for both industry and academic employers.

DS 642. Applications of Parallel Computing. 3 credits, 3 contact hours.
Prerequisites: Proficiency in (non-parallel) programming in a high level procedural language. This course will teach students how to design, analyze, and implement, parallel programs for high performance computational science and engineering applications. The course focuses on advanced computer architectures, parallel algorithms, parallel languages, and performance-oriented computing. Students will develop knowledge and skills to efficiently solve challenging problems in science and engineering, where very fast computers are required either to perform complex simulations or to analyze enormous datasets.

DS 644. Introduction to Big Data. 3 credits, 3 contact hours.
Prerequisites: Permission of the instructor. This course provides an in-depth coverage of various topics in big data from data generation, storage, management, transfer, to analytics, with focus on the state-of-the-art technologies, tools, architectures, and systems that constitute big-data computing solutions in high-performance networks. Real-life big-data applications and workflows in various domains (particularly in the sciences) are introduced as use cases to illustrate the development, deployment, and execution of a wide spectrum of emerging big-data solutions.

DS 650. Data Visualization and Interpretation. 3 credits, 3 contact hours.
The course will focus on training students with the knowledge of data visualization theory, techniques, and tools. Students will learn why and how visualization can be applied in the human-centered data science pipeline and the different uses of visualization, such as in exploratory data analysis, and in the communication of data-driven insights. They will gain practical experience in interpreting, critiquing, and comparing visualization techniques by using real-world data sets and case studies. Students will also develop interactive visualization interfaces as part of the class project. They will gain a broad understanding of how visualization can enhance trust and interpretation of machine learning models. The students will read and learn about recent progress in the areas of information visualization, visual analytics, and human-data interaction.

DS 669. Reinforcement Learning. 3 credits, 3 contact hours.
Prerequisites: Linear algebra, basic probability, basic calculus, computer programming, or approval of instructor. Experience with machine learning, artificial intelligence, or deep learning (e.g., CS 675, CS 670, CS 677) is recommended. This course covers current topics, key concepts, and classic and modern algorithms in reinforcement learning and contains both theory and applications. The topics include but are not limited to, Markov Decision Processes, exploration and exploitation, planning, value-based learning, policy gradient, etc. Students will present recent papers in reinforcement learning, and work on written and programming assignments and do a reinforcement learning project. After completing this course, students will be able to start using reinforcement learning for real world problems that can be specified as Markov Decision Processes.

DS 675. Machine Learning. 3 credits, 3 contact hours.
Prerequisites: Basic probability, linear algebra, computer programming, and graduate or undergraduate senior standing, OR approval of instructor. This course is an introduction to machine learning and contains both theory and applications. Students will get exposure to a broad range of machine learning methods and hands on practice on real data. Topics include Bayesian classification, perceptron, neural networks, logistic regression, support vector machines, decision trees, random forests, boosting, dimensionality reduction, unsupervised learning, regression, and learning new feature spaces. There will be several programming assignments, one course project, one mid-term and one final exam.

DS 677. Deep Learning. 3 credits, 3 contact hours.
Prerequisites: DS 675 or approval of the instructor. Restrictions: None. This course covers current topics in data science. The topics include but are not limited to parallel programming on GPU and CPU multi-cores, deep learning, representation learning, optimization algorithms, and algorithms for big datasets. Students will present recent papers in data science, work on programming assignments, and do a machine learning/deep learning/data science project.

DS 680. Natural Language Processing. 3 credits, 3 contact hours.
Prerequisites: DS 675 or DS 677 and instructor’s approval. This course aims to teach how to process one of the fundamental data sources—natural language—with the help of deep learning techniques. The target of this course is to familiarize students with state-of-the-art language models, wide variety of tasks performed with these models and the fusion of these in deep learning architectures. This course will help students read advanced research papers on complex NLP concepts and theories, while the class project will help them apply NLP techniques to different domains.

DS 725. Independent Study I. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both DS 725 and DS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.
DS 726. Independent Study II. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both DS 725 and CS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

DS 790A. Doctoral Dissertation & Research. 1 credit, 1 contact hour.
Corequisites: DS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in data science. For PhD students who have successfully defended their dissertation proposal. The student must register in DS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members.

DS 791. Graduate Seminar. 0 credits, 1 contact hour.
Corequisite (for doctoral students only): DS 790. A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in data science. In the course, students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.

DS 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Corequisites: DS 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in data science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

IS 513. Programming Foundations for IS. 3 credits, 3 contact hours.
This course is an introduction to the Java programming language teaching the foundations of writing, testing and debugging of programs. The course has three major parts. The first part teaches fundamental programming techniques that use primitive data types, variables, assignments expressions and operators, control statements, arrays and files I/O. The second part covers testing and debugging, and teaches students how to write programs that work reliably. The third part introduces object-oriented programming.

IS 531. Database Fundamentals. 3 credits, 3 contact hours.
This course gives students extensive, pragmatic experience in designing, building, querying, updating, maintaining and managing relational databases, using the Structured Query Language (SQL). We will start our journey by analyzing what database is and why it is superior to other data management methods. We will then conduct logical and physical database design. SQL will be extensively covered, and students will design and implement sophisticated SQL queries invoking self-joins, outer joins, correlated subqueries and related concepts. Hands-on experience will be gained by working with actual databases using industry-standard database management systems such as Oracle.

IS 555. Aspects Of Information Systems. 3 credits, 3 contact hours.
Methods and models of supporting the management process; ethical issues pertaining to the construction, deployment, and impact of information systems on organizations and society; description, analysis, and design of information systems to assist problem solving and decision-making in a business environment.

IS 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisite: students must have the approval of the co-op advisor for the Informatics department. Provides on-the-job reinforcement and application of concepts presented in the graduate IS curriculum. Work assignments are identified by the co-op office and developed and approved by the Informatics department in conjunction with the student and employer. Students must submit, for Informatics department approval, a proposal detailing the nature of the intended work. A report at the conclusion of each semester's work experience is required. Credits for this course may not be applied toward degree requirements for either the bachelor's or master's in IS.

IS 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisite: students must have the approval of the co-op advisor for the IS department. Provides on-the-job reinforcement and application of concepts presented in the graduate IS curriculum. Work assignments are identified by the co-op office and developed and approved by the Informatics department in conjunction with the student and employer. Students must submit, for Informatics department approval, a proposal detailing the nature of the intended work. A report at the conclusion of the semester work experience is required. Credits for this course may not be applied toward degree requirements for either the bachelor's or master's in IS.
IS 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisites: graduate standing, and acceptance by the Informatics department and the Division of Career Development Services. Students must have the approval of the co-op advisor for the Informatics department. Provides on-the-job reinforcement and application of concepts presented in the graduate IS curriculum. Work assignments are identified by the co-op office and developed and approved by the Informatics department in conjunction with the student and employer. Students must submit, for IS department approval, a proposal detailing the nature of the intended work. A report at the conclusion of the semester work experience is required. Credits for this course may not be applied toward degree requirements for either the bachelor's or master's in IS.

IS 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

IS 601. Web Systems Development. 3 credits, 3 contact hours.
Prerequisites: NONE Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 612. Emergency Management Informatics. 3 credits, 3 contact hours.
This course covers core aspects of Emergency Management (EM) as they relate to information systems and usage of associated technologies. EM theory identifies four critical areas: 1) understanding & mitigating risk, 2) planning & preparedness, 3) reaction & response, 4) recovery & normalization. The role of informatics for each critical area will vary and is the basis for discussions and assignments. This course also focuses on innovative information systems approaches to EM in each area. Within the EM domain, business continuity (information processing and sharing during crisis situations), cyberterrorism, and international response are covered.

IS 613. Design of Emergency Management Information Systems. 3 credits, 0 contact hours.
This course is concerned with the development of requirements, the design of the human interaction, and the supporting functionality of any Information System related to the complete preparedness lifecycle for emergency, disaster, and crisis situations for government bodies, non-profit, and/or private organizations that are concerned with business continuity. It also focuses on organizational behavior and its effects on the functionality of the system and the design of the human interface.

IS 614. Command and Control Systems. 3 credits, 3 contact hours.
This course investigates the relevance and applicability of using of Command and Control (C2) models in organizational responses to both normal emergencies and catastrophic events. C2 refers to how leadership, authority, decision-making and coordination are assured within an organization, including distributed and virtual organizations. The course examines the functionality and properties of C2 systems in terms of matching requirements for these systems to the behavior of individuals, groups, and organizations during emergency conditions. It will address integrating systems and technologies within organizational emergency operations functions and processes to include business continuity and disaster response.

IS 616. Learning Methodologies and Training Technologies. 3 credits, 3 contact hours.
This course provides an overview of learning methodologies and training technologies, with an emphasis on emergency management. It reviews theories and develops skills for the planning, evaluation and selection of traditional and new technology-driven learning and training methods. Course participants will review relevant research and learn how to choose the most effective training methodologies, technologies and content resources appropriate to the needs of different audiences.

IS 631. Enterprise Database Management. 3 credits, 3 contact hours.
Prerequisites: IS 601 This course provides an understanding of the issues as well as hands-on experience in managing database systems as an essential organizational resource. Students will obtain a conceptual foundation of database design and explore the implications for organizational database usage. Students also will gain experience with enterprise database management systems, such as Oracle. This course introduces the design and management of enterprise-wide database systems. Topics include: (1) data modeling and database design; (2) database implementation with SQL; (3) database access standards for enterprise database systems; (4) multidimensional databases, online analytic processing (OLAP) and data warehousing, customer relationship management (CRM); and (5) web-based enterprise database systems.

IS 634. Information Retrieval. 3 credits, 3 contact hours.
Prerequisite: IS 601 Modern information retrieval systems, such as web search engines, empower users to easily access information on the web. The course covers the concepts and principles of information retrieval systems design, including web crawling, automatic indexing, vector space modeling, retrieval algorithms, digital libraries, text mining, information extraction, and document warehousing. These techniques are essential for building web systems, text databases, document processing systems, and other advanced information management systems.

IS 650. Data Visualization and Interpretation. 3 credits, 3 contact hours.
The course will focus on training students in data visualization techniques and relevant tools. They will learn theoretical aspects of visualization design, and gain practical experience in interpreting data as well as critiquing and comparing visualization techniques. They will develop interactive visualization interfaces as part of a class project. Students will also gain a broad understanding of how visualization can enhance data interpretation and play a key role in the data science pipeline. Finally, recent advances will be presented in the areas of information visualization, visual analytics, and human-data interaction.
IS 654. Visual Informatics for Social Network and Mobile Flow. 3 credits, 3 contact hours.
Prerequisite: IS 665 or equivalent. Nowadays, computational scientists are using network and flow to explore and analyze relationships among spatial objects. In the meantime, more and more virtual networks, such as Facebook and Twitter, have spatial characteristics which bring researchers opportunity to study spatial pattern of virtual network elements such as information diffusion and human behavior across space. This course will focus on substantive themes within network and flow. Visual informatics will be covered in this course followed by several case studies.

IS 657. Spatiotemporal Urban Analytics. 3 credits, 3 contact hours.
Prerequisite: IS 665 or equivalent. This course teaches essential concepts and skills needed to efficiently develop spatiotemporal thinking, create a spatiotemporal model, and visualize/model the urban spatiotemporal relationships in the open source environment. Students will learn about big data analytic skills that integrate large open source data and traditional data by investigating the relationship between virtual and physical worlds in the built environment.

IS 661. User Experience Design. 3 credits, 3 contact hours.
This is a foundation course on the design of digital products. User eXperience Design (UXD) isn't just about making interfaces usable. It is about designing and building relevant and successful products. Effective UXD requires a mix of Interaction Design (ID) methods and processes. This course takes you through the process of creating compelling interaction designs for digital products from the idea stage into a simple and intuitive user experience blueprint. You will 'learn by doing' in a team environment, enabling you to practice the techniques with coaching from instructors. The course will demystify Lean UX; Agile UX; Human Computer Interaction (HCI); Design Audits and Claims analysis; Persona construction; Storyboarding; ID scenarios; ID Frameworks; Role of user-research in UXD; and Design Patterns.

IS 663. System Analysis and Design. 3 credits, 3 contact hours.
Pre or Corequisite: IS 601 This course develops the skills necessary to analyze, design and manage the development of effective enterprise-scale information systems solutions incorporating contemporary methods and effective organizational and global project management practices. It focuses on technical business systems analysis and design techniques, and covers key software engineering principles, methods and frameworks, including process models, agile and lean principles, project and risk management, estimation, requirements elicitation and analysis, modeling, system and software architecture, design patterns, and quality systems. Students will actively participate in discussions, review selected articles, participate in team exercises and collaborate on projects involving analysis and prototyping of applications addressing real-world problems and integrating current and emerging technologies.

IS 664. Customer Discovery. 3 credits, 3 contact hours.
'Customer Discovery' is the term used by lean startup companies to describe the process of directly engaging with customers to explore potential new markets. Such evidence-based entrepreneurship guides the potential for new product ideas early in the development process. Similarly, high-tech innovators in new media, web, software apps, social networking, wearable computing, and mobile devices need to determine early on if their proposed solutions address real user needs. They do this by understanding potential user's practice, preferences and mental models. As a result, knowledge of a basic set of qualitative customer discovery methods is essential for both the lean startup entrepreneur and those engaged in interaction design innovation. This course teaches these methods through hands-on team projects. Students will design and run interview and diary studies, thinking out-loud protocols and focus groups, and analyze and report on findings. Students will explore over the course of the semester a problem domain and gain understanding of customer needs that will serve as a foundation for high-tech, innovative product design.

IS 665. Data Analytics for Info System. 3 credits, 3 contact hours.
Prerequisite: IS 601 This course gives a graduate level introduction to data analysis, probability and statistics from an information systems perspective, including many of the techniques that are most relevant to the profession of Data Scientist for business, data and web analytics, as well as current data sets. We will learn and conduct Python, MATLAB and R based manipulation of data. Course topics include the rudiments of probability and random variables, estimation, special distribution and sampling, Markov processes, hypothesis testing, graphics and visualization.

IS 676. Requirement Engineering. 3 credits, 3 contact hours.
Prerequisites or Corequisites: IS 663 or CS 673 or equivalent project experience in the field. Requirements engineering is one of the all-important beginning stages of the systems development life cycle. Reveal and understanding the system's requirements is a crucial component of success for developing new computing systems or adjusting existing applications. This course covers the theory, principles, and practical application of the methodologicals and tools for requirements engineering. The focus is development of large software systems and the integration of multiple systems into a comprehensive, domain dependent solution. All aspects of requirements engineering including the knowledge and skills needed to elicit and analyze requirements, translate these requirements into technical specifications, verify that the requirements accurately capture the system requirements, and manage software requirements through the system development cycle will be covered. Students will actively participate in discussions, labs and exercises, and prepare operational requirements and technical specifications for real-world problems. We will spend a considerable amount of time interacting and learning through discussion of assigned readings and other material.

IS 677. Information System Principles. 3 credits, 3 contact hours.
This course introduces the field of Information Systems; the study of how people and organizations should use information technologies effectively. We examine the major areas in the field, analyzing the major issues, trends and problems. We survey the role of information systems in organizations and how these systems support organizational objectives and organizational structure, as well as providing competitive business advantages. We discuss basic concepts such as the systems point of view, the organization of a system, the nature of information and information flows, as well as how people process information and related cognitive concepts. We also examine various types of information system applications such as e-commerce, supply chain, decision support, and enterprise systems. And, finally, we also consider critical ethics issues including privacy, personalization and security.
IS 678. IT Service Management. 3 credits, 3 contact hours.
The course does not have prerequisites but it is not recommended during the first semester of graduate study without prior professional work experience in the computing field. This course introduces IT service management, a set of specialized organizational capabilities for enabling value for customers in the form of IT services. ITIL, a globally recognized framework of best practices for IT service management is covered in some detail, along with other approaches for IT service management. The course presents ITIL key concepts, the ITIL service value system, the service value chain, the four dimensions of service management, ITIL guiding principles and ITIL management practices. ITIL is presented in the context of a specific organizational services domain.

IS 680. Information Systems Auditing. 3 credits, 3 contact hours.
Due to the dynamic nature of information technology, the need arises continually to redefine audit, control and security requirements and processes. Topics include the IS audit process, IT infrastructure and operations, information protection, disaster recovery and business continuity, IT service delivery and support, business application systems, and project management. Students gain practical experience with each by working through a series of sample Certified Information Systems Audit (CISA) exam questions.

IS 681. Computer Security Auditing. 3 credits, 3 contact hours.
This course reflects the current emphasis on information security and security management in Fortune 500 corporations. Students will delve into information protection concepts, privacy impact analysis, computer crime, legal issues, controls and auditing systems, and firewall configuration. Students will have the opportunity to learn and perform evaluations on security infrastructures in a controlled environment in class labs by completing realistic security auditing projects and using vulnerability assessment tools to assess risks and evaluate security controls on networked infrastructures.

IS 682. Forensic Auditing for Computing Security. 3 credits, 3 contact hours.
A computer forensics audit is the proper identification and collection of computer evidence. Computers are involved in security violations through crime or violations of policy, or being targeted by an attack. This course deals with the preservation, identification, extraction, documentation, reporting, acquisition, analysis and interpretation of computer data. Topics covered include evidence handling, chain of custody, collection, preservation, identification and recovery of computer data. In this hands-on course, you will conduct several labs where you will be taught to analyze, review and extract information from computer hard drives, and determine what and how the information could have been compromised. Computer Forensics Audit professionals become experts in e-discovery and preserving sensitive evidential matter.

IS 683. Web Systems Development. 3 credits, 3 contact hours.
Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will delve into Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 684. Business Process Innovation. 3 credits, 3 contact hours.
Prerequisites: IS 663 or CS 673 This course adopts a balanced approach to business process innovation (BPI) that includes both incremental improvement and re-engineering. It specifically examines the concept of a service-oriented architecture (SOA) and the use of web services as a way to enable scalable and adaptive business processes. Students will learn how to develop process maps using the Business Process Modeling Notation (BPMN) and design process improvements to achieve efficiency, effectiveness, compliance and agility objectives. The focus of the course is on ways in which information technology can be used to manage, transform and improve business processes.

IS 685. Enterprise Architecture and Integration. 3 credits, 3 contact hours.
Prerequisites: None, but recommend completion of IS 663 or CS 673. The Enterprise Architecture (EA) describes an organization’s IT strategy and operational structure. IS and IT professionals utilize the EA to analyze, design and integrate the (often heterogeneous) IT infrastructure and applications to most effectively support the enterprise and respond to risks. Students learn to develop an EA analysis which reflects its business strategies, capabilities, processes, and systems, metrics, information resources, and networking infrastructure. This enables students to determine the impact of IT solutions, by learning to deconstruct, analyze and configure IT systems in alignment with enterprise-wide business strategies. The course covers the industry standard The Open Group Architecture Framework (TOGAF) enterprise architecture framework and focuses on Enterprise Application Integration (EAI).

IS 686. Pervasive Computing: An HCI Perspective. 3 credits, 3 contact hours.
This course examines Pervasive/Ubiquitous Computing, the trend toward increasingly ubiquitous connected computing devices in the environment - a trend being brought about by a convergence of advanced electronic, and particularly, wireless technologies and the internet. We do this from a Human Computer Interaction perspective looking at the current and future design of various systems.

IS 687. Transaction Mining and Fraud Detection. 3 credits, 3 contact hours.
Prerequisite: IS 665 Increasingly, all of our transactions are electronic. We use debit and credit cards (electronic transactions) instead of checks and cash at banks, restaurants, stores, and many other businesses. Evaluation of transactions to find risk includes detection of terrorists and money launderers. Every financial institution is legally required to monitor transactions to detect organized crime and terrorism. Mining transaction streams to find good or bad customers is a rapidly growing area of employment for IS graduates. This course will present methods that are being used to analyze and mine transactional data and the business applications of these methods.
IS 688. Web Mining. 3 credits, 3 contact hours.
Prerequisite: IS 665. Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents and usage logs. It has direct applications in e-commerce, Web analytics, information retrieval/filtering, personalization, and recommender systems. Employees knowledgeable about Web mining techniques and their applications are highly sought by major Web companies such as Google, Amazon, Yahoo, MSN and others who need to understand user behavior and utilize discovered patterns from terabytes of user profile data to design more intelligent applications. The primary focus of this course is on Web usage mining and its applications to business intelligence and biomedical domains. We learn techniques from machine learning, data mining, text mining, and databases to extract useful knowledge from the Web and other unstructured/semistructured, hypertextual, distributed information repositories. This data could be used for site management, automatic personalization, recommendation, and user profiling. Topics covered include crawling, indexing, ranking and filtering algorithms using text and link analysis, applications to search, classification, tracking, monitoring, and Web intelligence. Programming assignments give hands-on experience. A group project highlights class topics.

IS 690. Web Services and Middleware. 3 credits, 3 contact hours.
Prerequisite: IS 601 Web services enable integration of web-based applications and feature sets to any other web-based system in a modular way. Middleware is a set of functionality positioned in between and enabling interoperability among different, distributed enterprise and other computing applications. This course provides an introduction to web services and middleware in the context of digital libraries - large scale multimedia information repositories. Students will gain hands on experience in developing their own web services managing a complex distributed computing platform.

IS 698. Special topics in Information Systems. 3 credits, 3 contact hours.
Special area course given when suitable interest develops. Advance notice of forthcoming topics will be given.

IS 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in information systems. A written report must be submitted to the project advisor. The student cannot register in IS 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

IS 700C. Master's Project. 6 credits, 6 contact hours.
An approved project involving design, implementation, and analysis, or theoretical investigation, under the guidance of a faculty member. Students are strongly advised to work with the faculty member to develop a project proposal during the semester prior to conducting the master's project. Approval to register for the project must be obtained from the faculty member advising the project.

IS 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in information systems that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in IS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

IS 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in information systems that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (IS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

IS 725. Independent Study in Information Systems. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

IS 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for IS 726 if they have taken IS 725 in a prior semester.

IS 727. Independent Research III. 3 credits, 1 contact hour.

IS 735. Social Media. 3 credits, 3 contact hours.
Prerequisite: IS 665 or MATH 661, or a graduate course in statistics or course in quantitative research methods. Seminar style course that covers design and impact of computer-based systems for human communication, including email and IM, discussion boards, Computer Supported Cooperative Work (CSCW), Group Decision Support Systems (GDSS), and Social Networking Systems. Topics include alternative design structures, impacts of primarily text-based group communication, and recent empirical studies of virtual teams, online communities, and systems used for social networking, including 3-D worlds such as Second Life and “micro blogging” systems such as Twitter.
IS 764. Research Methods for Human-Centered Computing and Design. 3 credits, 3 contact hours.
Prerequisites: None. This introductory seminar in human centered computing and design provides a survey of the methodological literature on qualitative research methods paired with appropriate article-length exemplars. We cover a variety of different research strategies including design science, action research, case study, qualitative data collection and analysis techniques, and scenario-based design. This course develops skills in designing and evaluating systems using qualitative methods. We also discuss writing and reviewing academic articles and research proposals. The course utilizes information systems as the primary domain but could be extended for students in other disciplines.

IS 765. Quantitative Methods in Information Systems Research. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or equivalent. This course is a practical and project-oriented introduction to quantitative and qualitative methods in information systems (IS) research that use human subjects. The focus of the course is on developing researchers’ capability to select and implement appropriate data collection and statistical analysis procedures for a variety of research questions and to interpret the results of these procedures.

IS 766. Philosophy of Information Science. 3 credits, 3 contact hours.
This seminar explores central issues in contemporary philosophy of science. We consider “scientific” progress in the computing sciences with a focus on information systems and human computer interaction theory. We discuss topics such as confirmation and disconfirmation of theories; falsifiability and pseudo-science; introduction; probability; and statistical inference, prediction, explanation and empirical equivalence. We read key works by philosophers such as Popper and Kuhn. We examine the notion of “design science” and contrast it with “natural science”, and examine whether social science research should strive to emulate natural science methods. Readings will be tied into research within information systems and the computing sciences in general, looking at how scientific theories are tested or confirmed.

IS 776. IS Research Study. 3 credits, 3 contact hours.
Prerequisite: Restricted to students in the doctoral program in Information Systems. The IS Research Study serves as the Information Systems PhD qualifying exam and demonstrates research readiness. Each student works with a faculty member to identify the topic of a research study, and then takes the lead in designing and conducting the study, and analyzing the results.

IS 785. Special Topics. 3 credits, 3 contact hours.
These seminars examine a special interest area of Information Systems in depth. Each seminar emphasizes recent work in the area selected.

IS 786. Special Topics. 3 credits, 3 contact hours.
These seminars examine a special interest area of Information Systems in depth. Each seminar emphasizes recent work in the area selected.

IS 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: IS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in information systems. For PhD students who have successfully defended their dissertation proposal. The student must register in IS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

IS 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: IS 791. Since the IS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in information systems. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

IS 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: IS 791. Since the IS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in information systems. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

IS 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.
IS 790F. Doct Dissertation & Res. 15 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 791. Doctoral Seminar. 0 credits, 0 contact hours.
A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in information systems. In the course students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.

IS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: IS 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in information systems. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

IT 610. Systems Administration. 3 credits, 3 contact hours.
Prerequisite: Completion of the Bridge requirements for the MS in IT Administration and Security (or the equivalent). This course is an introduction to the skills needed for and tasks performed by a System Administrator. The course will cover administration of host and server systems in modern operating system environments. Topics to be covered include: user, configuration, and change management, shell scripting, monitoring and performance analysis, disaster mitigation and recovery, and auditing.

IT 620. Wireless Networks Security and Administration. 3 credits, 3 contact hours.
Prerequisite: Completion of the Bridge requirements for the MS in IT Administration and Security (or the equivalent). This course introduces the fundamentals of wireless network security and administration. Topics include: wireless LAN vulnerabilities, passive and active wireless attacks, enterprise wireless hardware security, secure wireless authentication and communication, wireless intrusion detection and prevention systems, WiFi and cellular network management, location privacy, personal area network administration and security, mobile IP security, GSM, CDMA, 3G and 4G network security. The course provides both a theoretical foundation and hands-on experience in these areas.

IT 635. Database Administration. 3 credits, 3 contact hours.
Prerequisite: IT 610. This course provides a broad overview of the tasks and techniques necessary to function as a Database Administrator (DBA) in a modern relational database environment. Students will learn the duties typically performed by a DBA, which include: user authorization, disaster planning and recovery, monitoring, performance analysis, database tuning, metadata maintenance as well as data modeling, analysis and database design.

IT 640. Network Services Administration. 3 credits, 3 contact hours.
Prerequisite: IT 610. This course provides an introduction to the fundamentals of network services administration. It covers how web-based and domain-services operate, integrate and communicate. Topics include: fundamental technologies that underpin the web services paradigm, key standards necessary for their development, and how other critical domain services should be deployed. This course will enable students to gain skills necessary to plan, install, configure, secure and maintain web servers, DNS servers, email & print servers, resource sharing systems, and domain authentication systems.

IT 725. Independent Study. 3 credits, 3 contact hours.

YWCC 590. Graduate Co-op Work Experience I. 1 credit, 2 contact hours.
Prerequisites: Students must have graduate standing. Restrictions: Students must have the approval of the co-op advisor for the college. This course provides the student an opportunity to reinforce and apply material learned in the classroom. The co-op experience is developed and approved by the co-op office of NJIT's CDS (Career Development Service) in conjunction with the college, student, and employer. Students must submit for approval a proposal detailing the nature and substance of the intended work. A report at the conclusion of each semester's work experience is required. Credit for this course may not be applied toward any degree granted by the college.

YWCC 591. Graduate Co-op Work Experience II. 1 credit, 2 contact hours.
Prerequisites: Students must have graduate standing. Restrictions: Students must have the approval of the co-op advisor for the college. This course provides the student an opportunity to reinforce and apply material learned in the classroom. The co-op experience is developed and approved by the co-op office of NJIT's CDS (Career Development Service) in conjunction with the college, student, and employer. Students must submit for approval a proposal detailing the nature and substance of the intended work. A report at the conclusion of each semester's work experience is required. Credit for this course may not be applied toward any degree granted by the college.

YWCC 592. Graduate Co-op Work Experience III. 1 credit, 2 contact hours.
Prerequisites: Students must have graduate standing. Restrictions: Students must have the approval of the co-op advisor for the college. The co-op experience is developed and approved by the co-op office of NJIT’s CDS (Career Development Service) in conjunction with the college, student, and employer. Students must submit for approval a proposal detailing the nature and substance of the intended work. A report at the conclusion of each semester's work experience is required. Credit for this course may not be applied toward any degree granted by the college.
YWCC 691. Graduate Capstone Project. 3 credits, 3 contact hours.
Prerequisite: Students should have completed 18 credits in the program. The course will focus on providing students experience with industry or faculty sponsored projects involving real situations to apply acquired knowledge including latest in software engineering and programming tools. Projects usually include a broad array of hard-core software engineering applications as well as projects in apps development, web development, game development, virtual reality, multimedia, web and network security and much more. The students will also read, discuss and critique papers, and other recent progress in large software development. If the course is used as an MS project to satisfy a program's requirements, it is the student's responsibility to ensure, in consultation with the Director of the program, that the chosen project meets the requirements of the program.

Computer Science

The Department of Computer Science is distinguished by prominent researchers who are actively investigating new applications in parallel processing and advanced computer architecture, systems integration, real-time computing, neuroscience and robotics, medical imaging, combinatorial computing, bioinformatics, computer vision and image processing, and software engineering.

The department provides an environment that gives students the background and skills necessary for entry into today's workplace. This is achieved through team research in state-of-the-art facilities; a faculty that works steadily in the forefront of many research areas; interaction with industry and experts; and an administration focused on research and student services. As a result, the department attracts the largest student population for computer and information science in the greater New York/New Jersey area.

The computer science department maintains and offers computing facilities for its students, faculty, and staff. The computing facilities include research laboratories housing research in areas of computer science such as: networking, real-time systems, hypermedia, parallel processing, and collaborative systems. Users have access to the state-of-the-art software and hardware including Oracle database, UNIX-based workstations and Microsoft Windows PCs supported by several file and compute servers. Internet access, departmental intranets, and conferencing systems provide an integrated infrastructure for supporting teaching and research.

Master of Science in Computer Science

The Master of Science (MS) in Computer Science (CS) is intended for students who are interested in pursuing advanced studies in computer science.

Admission Requirements

- GPA
 - 3.0 out of 4.0 required for students with a computer science background.
 - 3.0 out of 4.0 required for students without a computer science background who may be required to enroll in bridge courses.
- International students TOEFL score: the Institute requires a minimum score of 213 paper based or 79 online.
- International students: GRE required.
- Students with a US or Canadian degree in computer science or engineering: GRE recommended but not required.
- Students with a US or Canadian degree not in computer science or engineering: GRE required.

Students who lack a comprehensive computer science background may be required to take appropriate bridge courses and attain a minimum cumulative GPA of 3.0 in the bridge courses.

Students are expected to have good programming skills, and a grasp of the fundamentals of computer science (students should have acquired this knowledge in the undergraduate degree Bachelor of Science in Computer Science or equivalent degree). To ensure that students have the background to do well and succeed in doing the MS in Computer Science at NJIT, they will be required to take a short answer exam to demonstrate that they have good programming skills (in C++ or Java) and that they know the basic concepts of operating systems, networking, and databases. Students who do not do well in the exam are offered the opportunity to improve their skills via bridge courses.

Note that credits earned in the bridge program cannot count towards the MS program. However, grades of 500-level bridge courses contribute towards the graduate GPA. Students must maintain a cumulative graduate GPA of 3.0 or better.

If a student satisfies a bridge requirement before matriculation, the student can request a bridge course waiver which must be filed no later than the end of the first semester of studies and accompanied by all relevant documentation as required by University regulations. See Academic Policies and Procedures in the NJIT Graduate Catalog at http://catalog.njit.edu/graduate/academic-policies-procedures/.

PASS/FAIL courses, professional development courses, work experience, or a course with a grade less than B (or equivalent) cannot be used to satisfy a bridge course requirement. Grades in the bridge program (500-level courses or higher) contribute to the cumulative graduate GPA. However, these courses do not count toward the MS program credit requirements. The undergraduate catalog, http://catalog.njit.edu/undergraduate/computing-sciences/computer-science/#courses-text, contains descriptions of undergraduate courses included in the bridge program.
Application Processing
The Computer Science Department reviews only completed applications submitted to the Office of Graduate Admissions. Applicants are advised to request status information on their application directly from the Graduate Admissions Office, not the Computer Science Department. Graduate Admissions can be reached at admissions@njit.edu or www.njit.edu/gadmission (https://www.njit.edu/admissions/graduate-admissions/) or by mail at NJIT, Graduate Admissions Office, University Heights, Newark NJ 07102.

Bridge Courses
Students who intend to pursue an MS degree in Computer Science are expected to have a certain background in Computer Science and Mathematics. A student who does not have this background may need to enroll bridge courses before taking graduate level Computer Science courses. This will help ensure success in the MS program. These students will be notified in their acceptance letter that bridge courses are a condition of their acceptance into the Master’s Program. If a student’s acceptance letter indicates bridge courses are required, they must contact the Graduate Advisor. If the acceptance letter does not indicate bridge courses, none are required and the student may immediately begin taking graduate courses. A student must maintain a cumulative GPA of 3.0 in bridge courses. Bridge courses do not count towards MS degree requirements; however, they count toward the cumulative graduate GPA.

Bioinformatics
Admission Requirements

- BS or BA Degree is Computing, Biology, or related discipline. TOEFL and GRE required for international students.
- Computer courses in programming & data structures equivalent to CS 113 Introduction to Computer Science & CS 114 Introduction to Computer Science II.
- One or more courses in genetics or molecular biology, equivalent to R120 352 Genetics or R120 356 Molecular Biology.
- Mathematics courses in calculus equivalent to MATH 111 Calculus I & MATH 112 Calculus II.

If the prerequisites are not fulfilled, completion of specific bridge courses will be required as a condition of admission.

Computing and Business
Technology and Science are dramatically changing our economy and our society. This is creating new business opportunities and needs, with an increasing push for computing employees to be more involved in business aspects of a company. Computing employees must have a solid understanding of business fundamentals to succeed. Specifically designed to address these issues, the Master of Science (MS) in Computing and Business degree is primarily for people who want to develop, use, and manage software applications and systems in a business environment.

Offered by the College of Computing Sciences, the MS in Computing and Business contains a mix of courses in computer science and business. With one of the most computing intensive campuses in the world, NJIT has pioneered in the applications of new technologies as learning tools. The College of Computing Sciences educates one of the largest groups of information technology students in the nation.

Cyber Security and Privacy
Admission Requirements
To be eligible for admission, a student must have completed an undergraduate degree, preferably in Computer Science, Computer Engineering, Information Systems, Information Technology, or a related field, with a minimum GPA of 3.0 on a 4.0 scale. Students not satisfying these criteria will be considered for conditional admission on a case-by-case basis. This includes students whose bachelor’s degree is in a non-computing field but have professional experience in computing or systems administration. Any such student who is admitted will be required to complete the following bridge courses with a GPA of 3.0 or higher: CS 505 Programming, Data Structures, and Algorithms, CS 506 Foundations of Computer Science. The bridge courses will not be counted toward the MS degree.

Application Processing
The Computer Science Department reviews only completed applications submitted to the Office of Graduate Admissions. Applicants are advised to request status information on their application directly from the Graduate Admissions Office, not the Computer Science Department. Graduate Admissions can be reached at admissions@njit.edu or www.njit.edu/gadmission (https://www.njit.edu/admissions/graduate-admissions/) or by mail at NJIT, Graduate Admissions Office, University Heights, Newark NJ 07102.

Software Engineering
Software engineering is the disciplined application of computer science knowledge to the analysis, design, development, evaluation and evolution of software products. Because software pervades economic and personal activity worldwide and because it is increasingly being used in critical applications, the software industry is under intense pressure to deliver quality software. Because software production remains a labor intensive activity, the demand for large volumes of high quality software translates into high demand for qualified software engineers. MS in Software Engineering consists
of a judicious balance of theoretical computer science foundations that afford graduates the means to remain abreast of developments in software engineering in the long term and practical applications that afford graduates the means to be operational in the short term.

Admission Requirements

Applicants are expected to have completed an undergraduate degree in computer science, information systems, information technology, or another computing related field. Students lacking the appropriate background will be considered for conditional admission on a case-by-case basis and may be required to take bridge courses (bridge courses do not count for credit towards the degree).

NJIT Faculty

B
- Bader, David, Distinguished Professor
- Basu Roy, Senjuti, Assistant Professor
- Borcea, Cristian M., Professor

C
- Calvin, James M., Professor
- Curtmola, Reza, Professor

D
- Dass, Ananya, University Lecturer
- Ding, Xiaoning, Associate Professor

E
- Eljabiri, Osama, Senior University Lecturer

G
- Gehani, Narain, Professor, Emeritus
- Geller, James, Professor
- Gerbessiotis, Alexandros, Associate Professor
- Gotsman, Craig J., Distinguished Professor and Dean

H
- Hung, Daochuan, Associate Professor

I
- Itani, Abdul-Rahman M., Senior University Lecturer

K
- Kapleau, Jonathan, J., University Lecturer
- Karvelas, Dionissios, Senior University Lecturer
- Koutis, Ioannis, Associate Professor
- Kwestel, Morty D., Senior University Lecturer

L
- Li, Jing, Assistant Professor
- Liu, Chengjun, Professor
M
Mani, Kumar, Professor
McHugh, James, Professor
Mili, Ali, Professor

N
Nakayama, Marvin K., Professor
Nassimi, David, Associate Professor
Neamtiu, Iulian, Associate Professor
Nicholson, Theodore L., Senior University Lecturer

O
Oria, Vincent, Professor

P
Perl, Yehoshua, Professor
Polyakov, Yurii S., Associate Research Professor

R
Rohloff, Kurt, Associate Professor
Roshan, Usman W., Associate Professor
Rutkowski, Wallace, Senior University Lecturer
Ryan, Gerard W., Senior University Lecturer

S
Shih, Frank Y., Professor
Sohn, Andrew, Associate Professor
Spirollari, Junilda, Senior University Lecturer

T
Tang, Qiang, Assistant Professor
Theodoratos, Dimitrios, Associate Professor
Thomson, Susan E., Senior University Lecturer

W
Wang, Jason, T., Professor
Wang, Guiling (Grace), Professor
Wei, Zhi, Professor
Wu, Chase Q., Professor

Programs

• Bioinformatics - M.S. (p. 214)
• Computer Science - M.S. (p. 215)
• Computing & Business - M.S. (p. 220)
• Cyber Security & Privacy - M.S. (p. 221)
• Software Engineering - M.S. (p. 227)
• Computing Sciences - Ph.D. (p. 228)

Programs

• Computer Science (p. 207)
• Foundations of Cybersecurity (p. 211)
• Software Engineering, Analysis, and Design (p. 229)

Computer Science Courses

CS 505. Programming, Data Structures, and Algorithms. 3 credits, 4 contact hours.
Prerequisite: knowledge of at least one procedure-oriented language such as PASCAL or C. Computer science students cannot use this course for graduate degree credit. Intensive introduction to computer science principles: a procedure-oriented language such as C++; program design techniques; introductory data structures (linked lists, stacks, sets, trees, graphs); and algorithms (sorting, searching, etc.) and their analysis. Programming assignments are included.

CS 506. Foundations of Computer Science. 3 credits, 3 contact hours.
Prerequisite: knowledge of C/PASCAL. Corequisite: CS 505. Cannot be used for graduate credit towards the M.S. in Computer Science. Introduction to the concepts of iteration, asymptotic performance analysis of algorithms, recursion, recurrence relations, graphs, automata and logic, and also surveys the main data models used in computer science including trees, lists, sets, and relations. Programming assignments are given.

CS 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

CS 602. Java Programming. 3 credits, 3 contact hours.
Prerequisite: advanced Web-based programming with an emphasis on the Java language and platform. No prior knowledge of Java is required but students are expected to have a good understanding of object-oriented programming concepts such as encapsulation, inheritance, and polymorphism, experience with C++. Basic constructs and syntax and then the core advanced features. Topics include: networking and sockets, remote method invocation (RMI), database connectivity (JDBC), Java Beans, multi-threading and lightweight components (Swing). Common gateway interface (CGI) languages and browser scripting (JavaScript and VBScript) are discussed when used as a complement to the functionality of the Java language. Emphasis is on the latest version of Java, both deprecated methods and newly introduced features are discussed.

CS 608. Cryptography and Security. 3 credits, 3 contact hours.
This course involves computational methods providing secure Internet communication. Among the topics covered are: Security threats in communication systems; conventional cryptography: substitution and transposition codes; distribution of secret key over the Internet; principles of public-key cryptography; RSA and other public-key cryptographic methods; and digital signature protocol.

CS 610. Data Structures and Algorithms. 3 credits, 3 contact hours.
Prerequisites: CS 114 and CS 241 or equivalents (see undergraduate catalog for description). Intensive study of the fundamentals of data structures and algorithms. Presents the definitions, representations, processing algorithms for data structures, general design and analysis techniques for algorithms. Covers a broad variety of data structures, algorithms and their applications including linked lists, various tree organizations, hash tables, strings, storage allocation, algorithms for searching and sorting, and a selected collection of other algorithms. Programs are assigned to give students experience in algorithms, data structure design and implementation.

CS 611. Introduction to Computability and Complexity. 3 credits, 3 contact hours.
Prerequisite: CS 610. Introduces the theoretical fundamentals of computing, and provides an understanding of both the inherent capabilities and limitations of computation. The main models of computation are deterministic and non-deterministic Turing machines. Auxiliary models include partial and total recursive functions, first order logic, recursive and recursively enumerable sets, and symbol systems. Covers the essentials of computational theory: first order logic, Russel's Paradox, completeness and consistency, Goedel's Theorem, Church's Thesis, countable and uncountable sets, simulation and computation, diagonalization, dovetailing, decidable and undecidable problems, reduction, recursion theory, Rice's Theorem, Recursion Theorem, execution time measures, P and NP, polynomial-time reduction, NP-completeness and NP-hardness and formal correctness semantics of programs.

CS 621. Numerical Analysis I. 3 credits, 3 contact hours.
CS 630. Operating System Design. 3 credits, 3 contact hours.
Prerequisites: CS 332, CS 432 (see undergraduate catalog for descriptions) and CS 505. An intensive study of computer operating system design including multiprogramming, time-sharing, real-time processing, job and task control, synchronization of concurrent processes and processors, resource scheduling, protection, and management of hierarchical storage.

CS 631. Data Management System Design. 3 credits, 3 contact hours.

CS 632. Advanced Database System Design. 3 credits, 3 contact hours.
Prerequisites: CS 631 and good knowledge of a high-level programming language. Covers the rapidly changing concepts and principles of modern database systems and database programming based on SQL. Additional topics may include: advanced data modeling, OODBs, parallel and distributed database systems, XML and NO-SQL databases, Web-database systems, active databases, multimedia and text databases, database security, query optimization, indexing techniques, concurrency control, system performance, and data warehousing.

CS 633. Distributed Systems. 3 credits, 3 contact hours.
Prerequisites: completion of bridge requirements. Fundamental topics concerning the design and implementation of distributed computing systems are covered, including interprocess communication, remote procedure calls, authentication, protection, distributed file systems, distributed transactions, replicated data, reliable broadcast protocols, and specifications for distributed programs. All topics will be illustrated with case studies. Optional topics may include synchronization, deadlocks, virtual time, and load balancing.

CS 634. Data Mining. 3 credits, 3 contact hours.
This course covers the principles of data mining system design and implementation. It presents methods for association and dependency analysis as well as classification, prediction, and clustering. Optional topics may include time series and graph mining, current trends in data mining, and data mining for scientific, medical and engineering applications.

CS 635. Computer Programming Languages. 3 credits, 3 contact hours.
Prerequisites: CS 505 and CS 510. The theory and design of computer language systems; the formal theory of syntax and language classification; a survey of procedure and problem-oriented computer programming languages, their syntax rules, data structures, and operations; control structures and the appropriate environments and methods of their use; a survey of translator types.

CS 636. Data Analytics with R Program. 3 credits, 3 contact hours.
Prerequisites: Entry-level courses in programming, probability and statistics (e.g MATH 333, CS 280), or permission of the instructor. This course teaches data analytics with R programming. The student will learn and gain basic analytic skills via this high-level language. The course covers fundamental knowledge in R programming. Popular R packages for data science will be introduced as working examples. The course also includes case studies on data analytics projects. As a core course in data science, it provides skills that are highly desirable for both industry and academic employers.

CS 639. Elec. Medical Records: Med Terminologies and Comp. Imp.. 3 credits, 3 contact hours.
This course presents a graduate introduction to Medical Informatics for Computer Science students covering (1) the design, use and auditing of medical terminologies, such as the Unified Medical Language System (UMLS) and the Systematized Nomenclature of Medicine (SNOMED); and (2) principles of Electronic Medical Records (EMR), Electronic Health Records (EHR) and Personal Health Records (PHR), including issues of privacy and security.

CS 640. Recursive Function Theory. 3 credits, 3 contact hours.
Prerequisite: CS 540 or equivalent. Review of basic computability theory. Topics include Church’s thesis; unsolvability results; creative, productive, and simple sets; computational complexity; P=NP problem; and classification of solvable problems according to their complexity.

CS 643. Cloud Computing. 3 credits, 3 contact hours.
Prerequisites: CS 644 or CS 656 or ECE 637. This course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its main focus is on parallel programming techniques for cloud computing and large scale distributed systems which form the cloud infrastructure. The topics include: overview of cloud computing, cloud systems, parallel processing in the cloud, distributed storage systems, virtualization, secure distributed computing, and multicore programming.

CS 644. Introduction to Big Data. 3 credits, 3 contact hours.
Prerequisite: permission of the instructor. This course provides an in-depth coverage of various topics in big data from data generation, storage, management, transfer, to analytics, with focus on the state-of-the-art technologies, tools, architectures, and systems that constitute big-data computing solutions in high-performance networks. Real-life big-data applications and workflows in various domains (particularly in the sciences) are introduced as use cases to illustrate the development, deployment, and execution of a wide spectrum of emerging big-data solutions.

CS 645. Security and Privacy in Computer Systems. 3 credits, 3 contact hours.
Prerequisites: Students are expected to enter this course with a basic knowledge of operating systems, networking, algorithms, and data structures. Also, students should be able to program in Java and C/C++. The course covers fundamental principles of building secure systems and techniques to ensure data security and privacy. Topics include access control mechanisms, operating systems security, malicious code threats and software security, trusted computing, content protection, and database security. The course will also study existing technical approaches to protecting privacy, including Web anonymizers and ant-censorship tools, as well as policy and legal aspects of privacy.
CS 646. Network Protocols Security. 3 credits, 3 contact hours.
Prerequisites: CS 656 or ECE 637, and ability to program in Java and C/C++. This course covers the security of network protocols currently used on the internet. It seeks to familiarize students with common threats and network attacks, and provides an in-depth study of methods used to secure network communication. The course includes an applied component, which will help students gain practical experience in attacking and defending networked systems. Topics include authentication systems, and routing security, firewalls, intrusion detection, honeypots, wireless network security, malware, propagation and detection, and web security.

CS 647. Counter Hacking Techniques. 3 credits, 3 contact hours.
Prerequisites: CS 645 or CS 646 or CS 696 or ECE 638 or approval of the instructor. This course covers advanced techniques that can be used for offensive or defensive goals in network, computer systems and applications. The course follows a learning by doing? teaching approach through extensive use of virtual machines with vulnerable operating systems and applications. Topics covered include system memory organizations, CPU registers, assembly language fundamentals, GNU and Immunity debuggers, fuzzing based security testing development of local and remote Linux and Windows exploits, shellcode development, stealthy attacks, bypassing memory protection techniques, network and wireless hacking techniques, and ethical and legal implications of cyber-attacks.

CS 648. Cyber Sec Investigations & Law. 3 credits, 3 contact hours.
Prerequisites: CS 656 or IT 640 or permission of the instructor. This course will prepare students for a real-life experience for operating and protecting computer networks, data communication, and data storage systems. The course will provide the student with a methodology to examine and investigate intrusions and security of data storage, data management, and data transmission systems as a part of an integrated network. It will explore the various interfaces of these systems from a technical, human, and investigative perspective, and the potential legal issues. The course will provide the student with various fundamental legal knowledge necessary for a cyber practitioner: (a) basic intellectual property law including trade secrets and patents; (b) foreign viewpoints of intellectual property and compliance to include EU privacy law; (c) U.S. law of electronic surveillance, electronic search, and stored communications; (d) government and workplace consensual search and surveillance and consent banners/agreements.

CS 650. Computer Architecture. 3 credits, 3 contact hours.
Prerequisites: CS 251 (see undergraduate catalog for description) and CS 510. Exploiting instruction level parallelism (ILP) is central to designing modern computers. Presents design techniques used for such computers as IBM Power architectures, DEC Alpha, MIPS R4600, Intel P6, etc. Introduction of Instruction SET Architecture (ISA), various functional units, basic principles of pipelined computers. Modern techniques to ILP including superscalar, super-pipelining, software pipelining, loop unrolling, and VLIW. Memory hierarchy, including instruction cache, data cache, second level cache, and memory interleaving. Advanced computer architectures, including vector, array processors, interconnection technology, and ATM network of workstations. Hands-on experience designing a simple pipelined computer on screen and using CAD tools such as Cadence or ViewLogic.

CS 651. Data Communications. 3 credits, 3 contact hours.
Prerequisite: MATH 333 (see undergraduate catalog for description). Intensive study of the analytic tools required for the analysis and design of data communication systems. Topics include: birth-death queuing systems, Erlang's distribution, bulk-arrival and bulk-service systems, design and analysis of concentrators and multiplexers, elements of Renewal Theory, M/G/1 system, analysis of Time Division Multiplexing, priority queues, analysis of random access systems, time reversibility, open and closed queuing networks, mean value analysis, flow and congestion, control mechanisms, routing algorithms, flow models, and network topological design.

CS 652. Cognitive Cloud Networking - Architectures and Applications. 3 credits, 3 contact hours.
Prerequisite: CS 656. If anything can characterize today's networking environment is its newly found significance in delivering cloud applications at scale. Everything has become a cloud - even the formerly-rigid wireless proprietary nodes, known as base stations, are broken up to independently developed network micro-services running on cloud-native runtimes supported by commodity compute and storage. Networking has become a software business and complete network disaggregation is the end game. In this new world, network operators are increasingly becoming content providers and they abandon R&D-heavy network disaggregation initiatives run by the Linux Foundation and increasingly trust public cloud providers to run their networks and take full advantage of the public cloud completely abstracted set of APIs to build applications faster than they could ever do before. Drawing from these trends, the course aims on one hand to provide a foundation of the so called multi-cloud network environment and on the other, to provide the student with the tools and knowledge required to understand how these multi-cloud networks are operated / managed via a set of data-driven distributed applications, the Cognitive Network Apps, that bring Machine Learning / AI and big network data analytics together. We treat the most important networking architectures and technologies that empower today's cloud provider networks at the core / edge such as CDN and 5G and learn how self-healing, self-optimization and self-configuration applications provide the reliability, resiliency and performance metrics needed by cloud applications such as Netflix, Zoom and many others.

CS 656. Internet and Higher-Layer Protocols. 3 credits, 3 contact hours.
The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

CS 657. Principles of Interactive Computer Graphics. 3 credits, 3 contact hours.
Prerequisites: CS 505 or familiarity with the organization of at least one computer system, and knowledge of a structured programming language such as C. Graduate-level introduction to computer graphics concepts, algorithms, and systems. Includes 2-D raster graphics, algorithms, 2-D and 3-D geometric transformations, 3-D viewing, curves and surfaces. Emphasis on PC-based graphics programming projects. Principles of interactive graphics systems in terms of the hardware, software and mathematics required for interactive image production.
CS 659. Image Processing and Analysis. 3 credits, 3 contact hours.
Prerequisite: CS 505. Fundamentals of image processing, analysis and understanding. Topics include image representation, image data compression, image enhancement and restoration, feature extraction and shape analysis, region analysis, image sequence analysis and computer vision.

CS 660. Digital Watermarking. 3 credits, 3 contact hours.
Digital watermarking and steganography is important to ensure data security because of widely used digital multimedia and rapid growth of the Internet. Digital watermarking is a suitable tool to identify the source, creator, owner, distributor, or authorized consumer of a document or an image. Digital steganography aims at hiding digital information into covert channels, so one can conceal the information and prevent detection. This course intends to provide students an overview on different aspects of mechanisms and techniques for digital watermarking and steganography.

CS 661. Systems Simulation. 3 credits, 3 contact hours.
Prerequisites: an undergraduate or graduate course in probability theory and statistics, and working knowledge of at least one higher-level language. An introduction to the simulation of systems, with emphasis on underlying probabilistic and statistical methodologies for discrete-event simulations. Design of simulation applications, and simulation programming in a high-level language. Algorithms for the generation of pseudorandom numbers. Algorithmic methodologies for the simulation of discrete and continuous probabilistic processes. Use of statistical tools. Simulation of queuing systems. Applications of simulation to a variety of system studies. The special purpose simulation language GPSS is studied in detail.

CS 665. Algorithmic Graph Theory. 3 credits, 3 contact hours.
Prerequisite: CS 610. The elements of the theory of graphs and directed graphs with motivating examples from communication networks, data structures, etc: shortest paths, depth first search, matching algorithms, parallel algorithms, minimum spanning trees, basic complexity theory, planarity, and other topics. Programming assignments are included.

CS 666. Simulation for Finance. 3 credits, 3 contact hours.
Covers the use of Monte Carlo stochastic simulation for finance applications. Topics include generation of various random variables and stochastic processes (e.g., point processes, Brownian motion, diffusions), simulation methods for estimating quantities of interest (e.g., option prices, probabilities, expected values, quantiles), input modeling, and variance-reduction techniques. Students will write computer programs in C++. Students cannot receive credit for both CS 661 and CS 666/MATH 666.

CS 667. Design Techniques for Algorithms. 3 credits, 3 contact hours.
Prerequisite: CS 610. An introduction to the principles of major design techniques in algorithms. Examples from a variety of topics and problems in computer science are used to demonstrate these design techniques and their appropriate application.

CS 668. Parallel Algorithms. 3 credits, 3 contact hours.
Prerequisites: CS 610 and CS 650. This course examines a variety of parallel algorithms and architectures. Shared memory algorithms and algorithms for special architectures (tree processors, grids, systolic arrays, butterflies) are considered. The basic theory of algorithm/architecture performance will be described.

CS 670. Artificial Intelligence. 3 credits, 3 contact hours.
Prerequisite: CS 610. Fundamental concepts and general techniques in artificial intelligence. Main topics include goal tree search, logic and deduction, abduction, uncertainty, fuzzy logic, knowledge representations, machine learning, vision, and action planning. The LISP programming language is used extensively. Students are required to do programming assignments, complete a programming term project, and review case studies.

CS 673. Software Design and Production Methodology. 3 credits, 3 contact hours.
Prerequisite: CS 631. Modern techniques and methods employed in the development of large software systems, including a study of each of the major activities occurring during the lifetime of a software system, from conception to obsolescence and replacement. Topics include cost/performance evaluation, documentation requirements, system design and production techniques, system verification techniques, automated aids to system development, and project organization and management.

CS 675. Machine Learning. 3 credits, 3 contact hours.
Pre-requisites: Basic probability, linear algebra, computer programming, and graduate or undergraduate senior standing, OR approval of instructor. This course is an introduction to machine learning and contains both theory and applications. Students will get exposure to a broad range of machine learning methods and hands on practice on real data. Topics include Bayesian classification, perceptron, neural networks, logistic regression, support vector machines, decision trees, random forests, boosting, dimensionality reduction, unsupervised learning, regression, and learning new feature spaces. There will be several programming assignments, one course project, one mid-term and one final exam.

CS 676. Cognitive Computing. 3 credits, 3 contact hours.
Corequisites: CS 631. Prerequisite: Good knowledge of programming (C/C++/Java), or permission of instructor. This course provides an application oriented overview of Cognitive Computing, aimed at students specializing in data sciences. Cognitive algorithms (e.g. IBM, Stanford) that combine machine learning, data mining, AI and natural language will be used to build systems for finance, telecom and retail. Real world problems and data sets such as financial risk measurement or telecom churn will be introduced, and students will study and build Cognitive models on the IBM and open-source platforms. An important feature of this course is the usage of Harvard HBS case studies to illustrate current business challenges. This course will illustrate the development, deployment, and execution of a wide spectrum of Cognitive solutions.

CS 677. Deep Learning. 3 credits, 3 contact hours.
Prerequisites: CS 675 or approval of the instructor. This course covers current topics in data science. The topics include but are not limited to parallel programming on GPU and CPU multi-cores, deep learning, representation learning, optimization algorithms, and algorithms for big datasets. Students will present recent papers in data science, work on programming assignments, and do a machine learning/deep learning/data science project.
CS 678. Topics in Smartphone Sec & Rel. 3 credits, 3 contact hours.
This course covers current topics in the security and reliability of smartphones, and smartphone platform-based devices. The topics include but are not limited to understanding the software and hardware platforms; static and dynamic analyses for devices and apps; effective testing of devices and apps; formulating and launching attacks against these devices or apps, and understanding the security, privacy, and reliability risks that users expose themselves to when using such devices. The professor and students will present recent papers; discuss and critique papers, draw outlines for potential research explorations in this area; the students will complete a programming assignment designed to familiarize themselves with programming for the platform; the students will spend the rest of the individual work assignment on a project: running a research tool, designed to expose security and reliability issues, on popular platforms/apps/devices and reporting the findings.

CS 680. Linux Kernel Programming. 3 credits, 3 contact hours.
An in-depth study of how the Linux operating system is built from scratch. As a hands-on course, students will perform intensive programming using Linux Kernel. The contents include machine booting, segmentation and paging memory management, creating and destroying processes, process switching and scheduling, handling exceptions and hardware interrupts, software interrupts, creating system calls, creating file systems, networking with TCP/IP, device driver writing and module programming, etc. At the end of the course, students will be able to modify Linux operating system to create their own.

CS 681. Computer Vision. 3 credits, 3 contact hours.
This course introduces computational models of computer vision and their implementation on computers, and focuses on material that is fundamental and has a broad scope of application. Topics include contemporary developments in all mainstream areas of computer vision e.g., Image Formation, Feature Detection/Representation, Classification and Recognition, Motion Analysis, Camera Calibration, 3D/Stereo Vision, Shape From X (motion, shading, texture, etc.), and typical applications such as Biometrics.

CS 683. Software Project Management. 3 credits, 3 contact hours.
This course gives the student the necessary background to allow her/him to manage software projects; this includes economic, managerial and organizational aspects. The essence of software engineering is not only to introduce a valuable software product, but to do so economically and competitively. Like any engineering discipline, software engineering depends critically on managerial, economic and organizational considerations. Students will learn software management technique, various software costing techniques including COCOMO and ROI, team organization and management, and various methods of software development including Cleanroom and Agile.

CS 684. Software Testing and Quality Assurance. 3 credits, 3 contact hours.
This course discusses software faults and techniques to reduce faults and improve software quality. Software systems are some of the most complex human artifacts ever built and also some of the most critical means to ensure our safety, well being, and prosperity. This course teaches techniques to ensure software systems perform their function correctly. Topics include software specifications, goals of testing, techniques of test data selection, test oracle design, test data analysis, test lifecycle and quality impacts of testing.

CS 685. Software Architecture. 3 credits, 3 contact hours.
The software architecture defines the structure and interactions of software modules. This course provides a working knowledge of the terms, principles and methods of software architecture and module design. It explains the constraints on the design and the properties of capacity, response time, and consistency. The “4+1” architecture model is taught with architectural styles, interface isolation, decoupling, reuse, agile design with software patterns, data structures, queuing effects, design simplification and refactoring. The non-functional requirements of reliability, performance and power consumption, component based design and good industry practices for documenting and managing the architectural process are taught.

CS 690. Software Studio. 3 credits, 3 contact hours.
Prerequisite: CS 673 or approval of the instructor. This course is the first of a two-course sequence (CS 690, CS 700B) that focuses on a team-based industrial scale software project. This two-course sequence is part of the required courses of the Master of Science in Software Engineering (MSSE). This course covers the early phases of the software lifecycle, including requirements analysis, requirements specifications, project planning, software architecture and product level design, along with associated documentation. This sequence is typically taken in the last year of the MSSE, and is intended as an opportunity for MSSE students to apply the material they have learned throughout the program.

CS 696. Network Management and Security. 3 credits, 3 contact hours.
Prerequisites: CS 652 or CS 656 or ECE 637 or ECE 683 Thorough introduction to current network management technology and techniques, and emerging network management standards. In-depth study of the existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and for protecting systems from network-based attacks. SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management. Various types of security attacks (such as intruders, viruses, and worms). Conventional Encryption and Public Key Cryptology. Various security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility). Same as ECE 638.

CS 698. ST:. 3 credits, 3 contact hours.

CS 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. A written report must be submitted to the project advisor. The student cannot register in CS 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.
CS 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CS 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CS 703. Computational Optimization. 3 credits, 3 contact hours.
Prerequisites: CS 610 and MATH 333, or consent of instructor. This course introduces basic elements of the theory of optimization, with a focus on continuous optimization. Topics include deterministic and stochastic methods and average-case and asymptotic error bounds. Applications to image processing and machine learning will be surveyed.

CS 704. Sequencing and Scheduling. 3 credits, 3 contact hours.
Advanced sequencing and scheduling for job shops, flow lines, and other general manufacturing and production systems are discussed in this course. Both deterministic and stochastic scheduling models are covered in detail. Heuristics and worst case analysis for "unsolvable" hard scheduling problems (NP-C problems) are introduced.

CS 708. Advanced Data Security and Privacy. 3 credits, 3 contact hours.
Prerequisites: CS 608, CS 645, CS 696, or instructor approval. In-depth study of the security and privacy issues associated with the massive amount of data that is collected, stored, shared and distributed in today's society. New paradigms are needed to address the security/privacy challenges when data is outsourced at untrusted servers (such as in cloud computing), when data is anonymized in order to be shared among untrusted parties, or when copyrighted data needs to be protected from unauthorized use.

CS 725. Independent Study in Computer Science I, II. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both CS 725 and CS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CS 726. Independent Study II. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both CS 725 and CS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CS 731. Applications of Database Systems. 3 credits, 3 contact hours.
Prerequisite: CS 631. Restricted to students who are specializing in computer and information systems management. Comparative study of different models of database management systems and their applications. Emphasis on the functions of the database administrator. Includes a survey of physical and logical organization of data, methods of accessing data, characteristics of different models of generalized database management systems, and case studies using these systems from various applications. Student teams design database systems for class projects.

CS 732. Advanced Machine Learning. 3 credits, 3 contact hours.
Prerequisites: CS 634 or CS 670. This course presents advanced topics in the machine learning field, with a focus on recent learning techniques developed for analysis of high dimensional data such as a model selection by regularization and ensemble learning. The course also covers the theory of supervised, semi-supervised, unsupervised, transduction and reinforcement learning, as well as applications of these learning methods.

CS 735. High Performance Analytics Dat. 3 credits, 3 contact hours.
Prerequisites: Knowledge of material from at least four courses in the following list: CS 631 (Data Management Systems Design), CS 634 (Data Mining), CS 643 (Cloud Computing), CS 644 (Introduction to Big Data), CS 675 (Machine Learning). Targeting the latest computing infrastructures and software systems for data analytics, this course introduces students to the design and analysis of scalable data science algorithms, as well as skills to implement high performance data science applications. Specific topics include in-memory data processing, column-oriented data storage and retrieval, cloud-based data intensive systems, as well as classic data analytics algorithms such as causal discovery and network inference and their scalable implementation.

CS 744. Data Mining and Management in Bioinformatics. 3 credits, 3 contact hours.
Prerequisites: CS 610 or permission of the instructor. Concepts and principles of bioinformatic data mining and management with focus on efficiency and scalability. Methods for indexing and querying biological databases, biological data mining, and algorithmic development for bimolecular and phylogenetic data analysis. Trends and advances in areas such as functional genomics and proteomics, genetic engineering, and large-scale gene expression data analysis.
CS 750. High Performance Computing. 3 credits, 3 contact hours.
Prerequisite: CS 650. An in-depth study of the state of the art in high performance computing. Topics parallel computer architectures, programming paradigms, and their applications. Parallel architectures include PC clusters, shared-memory multiprocessors, distributed-memory multiprocessors, and multithreaded architectures. Parallel programming paradigms include message passing interface (MPI), its second-generation MPI-2, and multithreaded programming. Applications include computational science and high performance Web and database servers for Internet-based electronic commerce. Students program a parallel machine in class projects. First-hand experience in stable, scalable, high performance computing for Internet-based electronic commerce.

CS 755. Security and Privacy in Wireless Networks. 3 credits, 3 contact hours.
This course covers selected topics on security and privacy in wireless networks and is intended for graduate students who are interested in network security. This course can help the students learn the state of the art and open challenges in wireless network security and privacy, thus enhancing their potential to perform research or pursue a career in this emerging area.

CS 756. Mobile Computing and Sensor Networks. 3 credits, 3 contact hours.
This course provides an in-depth study of mobile computing and sensor networks, which are becoming major components of the transition from today's world of desktop computers to a world where computing is ubiquitous. The main topics include: techniques to handle mobility in the Internet and ad hoc networks; operating systems, programming languages, and protocols for sensor networks; applications, middleware, programming models, and security ubiquitous computing environments.

CS 759. Advanced Image Processing and Analysis. 3 credits, 3 contact hours.
Prerequisite: CS 659. Advanced study of recent research in image processing, analysis, and understanding. Topics include all image processing techniques, high-level recognition approaches, and automated expert vision systems.

CS 775. Seminar in Software Engineering. 3 credits, 3 contact hours.
Prerequisite: CS 673. A seminar in which students pursue intensive study of specialized topics in the current literature of software engineering. Each topic is supported by an initial reading list on current problems in theory and practice. The results of the studies are discussed in class with students, faculty and invited specialists.

CS 777. Seminar in Software Management and Production. 3 credits, 3 contact hours.
Prerequisites: Ph.D. core courses. A seminar in which students pursue intensive study of specialized topics in the current literature of software management and production. Each topic is supported by an initial reading list covering current problems in theory and practice. The results of the studies are discussed in class with students, faculty, and invited specialists participating. Topics include, but are not limited to, theory of algorithm structure, analysis of algorithms and programs, hardware technology assessment, automated tools for software production, software measurements and quality, peripheral device interfaces, data communications, computer networks, distributed processing, software verification, implementation standards, documentation standards, system security, software copyright, and project control and organization.

CS 782. Pattern Recognition and Applications. 3 credits, 3 contact hours.
Prerequisite: CS 610. Study of recent advances in development of (statistical and syntactic) pattern algorithm, approximation, and estimation techniques. Topics include statistical estimation theory, classifier design, parameter estimation and unsupervised learning, bias vs. variance, nonparametric techniques, linear discriminant functions, tree classifiers, feature extraction, and clustering. Additional topics include Support Vector machines (SVM), Bayesian Learning, Hidden Markov Models (HMM), evolutionary computation, neural networks, with applications to signal interpretation, time-series prediction, and Biometrics.

CS 785. Seminar in Computer and Information Science I. 3 credits, 3 contact hours.
Prerequisite: determined by nature of topic area. Advance notice of the topics to be covered is given. These seminars examine in depth a special interest area of computer and information science. It emphasizes recent work in area selected for the offering of the course. This course is for master's students and cannot apply toward master's degree credit.

CS 786. Special Topics. 3 credits, 3 contact hours.
Prerequisite: as determined by nature of topic area. A continuation of CS 785.

CS 790. Doct Dissertation & Res. 0 credits, 0 contact hours.

CS 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: CS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. For PhD students who have successfully defended their dissertation proposal. The student must register in CS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

CS 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: CS 791. Since the CS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in computer science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).
CS 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: CS 791. Since the CS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in computer science. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

CS 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.
CS 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.
CS 790G. DOCT DISSERTATION & RES. 18 credits, 3 contact hours.
CS 791. Graduate Seminar. 0 credits, 0 contact hours.
Corequisite (for doctoral students only): CS 790. A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in computer and information systems management. In the course students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.

CS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: CS 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in computer science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

CS 792C. Pre-Doctoral Research. 6 credits, 0 contact hours.

Computer Science

Computer Science is an interdisciplinary field with roots in algorithm design and applications in many diverse areas. It ranges from theoretical studies of algorithms to practical problems of system implementation involving both software and hardware. Computer scientists work to solve multifaceted problems. Computer Science provides an excellent training in problem solving and logical thinking, which are important skills for employment and research.

Who would be suited to take this program?

The Computer Science Certificate is designed for professionals seeking to expand their technical skills and competencies for tackling the latest challenges in computer science and related areas. The certificate consists of 12 credits and can be pursued on either a part- or full-time basis. Credits from the Computer Science Certificate can be counted toward the master's degree afterward, assuming your grades are B's or higher. Thus, the Certificate program may be of interest to those who want to use it as an entry point to the master's degree program.

What are the prerequisites?

Applicants should have a bachelor’s degree from an accredited institution in either Computer Science, Information Sciences, Information Technology, Computer Engineering, Mathematics, Physics, or have relevant experience. NJIT’s standard admission requirements apply to this graduate certificate.

What will I learn?

Graduates of the program will have the ability to:

• Analyze a complex computing program and to apply principles of computing and other relevant disciplines to identify solutions.
• Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
• Apply computer science theory and software development fundamentals to produce computing-based solutions.

Why Study Computer Science at NJIT?

NJIT is situated in Newark, minutes from Newark Penn Station. Jersey City and New York City are also a short train ride away, providing easy access to these commercial areas with many companies that employ statisticians and data scientists. NJIT is a top 100 research university, with faculty performing cutting-edge research and publishing in leading conferences and journals. NJIT also consistently ranks highly on added-value and diversity.

Into what industries might holders of this program find employment?

The increased use of technology throughout the business world means that companies in many industries are hiring graduates with experience in computer science. Potential jobs include software development, database administration, and computer networking and security.

Related Degree Programs

All courses in this program are related to the NJIT MS in Computer Science.
COURSE DESCRIPTIONS

CS 505. Programming, Data Structures, and Algorithms. 3 credits
Prerequisite: knowledge of at least one procedure-oriented language such as PASCAL or C. Computer science students cannot use this course for graduate degree credit. Intensive introduction to computer science principles: a procedure-oriented language such as C++; program design techniques; introductory data structures (linked lists, stacks, sets, trees, graphs); and algorithms (sorting, searching, etc.) and their analysis. Programming assignments are included.

CS 506. Foundations of Computer Science. 3 credits
Prerequisite: knowledge of C/PASCAL. Corequisite: CS 505 (https://catalog.njit.edu/search/?P=CS%20505). Cannot be used for graduate credit towards the M.S. in Computer Science. Introduction to the concepts of iteration, asymptotic performance analysis of algorithms, recursion, recurrence relations, graphs, automata and logic, and also surveys the main data models used in computer science including trees, lists, sets, and relations. Programming assignments are given.

CS 602. Java Programming. 3 credits
Prerequisite: advanced Web-based programming with an emphasis on the Java language and platform. No prior knowledge of Java is required but students are expected to have a good understanding of object-oriented programming concepts such as encapsulation, inheritance, and polymorphism, experience with C++. Basic constructs and syntax and then the core advanced features. Topics include: networking and sockets, remote method invocation (RMI), database connectivity (JDBC), Java Beans, multi-threading and lightweight components (Swing). Common gateway interface (CGI) languages and browser scripting (JavaScript and VBScript) are discussed when used as a complement to the functionality of the Java language. Emphasis is on the latest version of Java, both deprecated methods and newly introduced features are discussed.

CS 631. Data Management System Design. 3 credits

CS 632. Advanced Database System Design. 3 credits
Prerequisites: CS 631 (https://catalog.njit.edu/search/?P=CS%20631) and good knowledge of a high-level programming language. Covers the rapidly changing concepts and principles of modern database systems and database programming based on SQL. Additional topics may include: advanced data modeling, OODBs, parallel and distributed database systems, XML and NO-SQL databases, Web-database systems, active databases, multimedia and text databases, database security, query optimization, indexing techniques, concurrency control, system performance, and data warehousing.

CS 634. Data Mining. 3 credits
This course covers the principles of data mining system design and implementation. It presents methods for association and dependency analysis as well as classification, prediction, and clustering. Optional topics may include time series and graph mining, current trends in data mining, and data mining for scientific, medical and engineering applications.

CS 635. Computer Programming Languages. 3 credits
Prerequisites: CS 505 (https://catalog.njit.edu/search/?P=CS%20505) and CS 510. The theory and design of computer language systems; the formal theory of syntax and language classification; a survey of procedure and problem-oriented computer programming languages, their syntax rules, data structures, and operations; control structures and the appropriate environments and methods of their use; a survey of translator types.

CS 644. Introduction to Big Data. 3 credits
Prerequisite: permission of the instructor. This course provides an in-depth coverage of various topics in big data from data generation, storage, management, transfer, to analytics, with focus on the state-of-the-art technologies, tools, architectures, and systems that constitute big-data computing solutions in high-performance networks. Real-life big-data applications and workflows in various domains (particularly in the sciences) are introduced as use cases to illustrate the development, deployment, and execution of a wide spectrum of emerging big-data solutions.

CS 645. Security and Privacy in Computer Systems. 3 credits
Prerequisites: Students are expected to enter this course with a basic knowledge of operating systems, networking, algorithms, and data structures. Also, students should be able to program in Java and C/C++. The course covers fundamental principles of building secure systems and techniques to ensure data security and privacy. Topics include access control mechanisms, operating systems security, malicious code threats and software security, trusted computing, content protection, and database security. The course will also study existing technical approaches to protecting privacy, including Web anonymizers and ant-censorship tools, as well as policy and legal aspects of privacy.

CS 656. Internet and Higher-Layer Protocols. 3 credits
The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

CS 673. Software Design and Production Methodology. 3 credits
Prerequisite: CS 631 (https://catalog.njit.edu/search/?P=CS%20631). Modern techniques and methods employed in the development of large software systems, including a study of each of the major activities occurring during the lifetime of a software system, from conception to obsolescence and replacement. Topics include cost/performance evaluation, documentation requirements, system design and production techniques, system verification techniques, automated aids to system development, and project organization and management.

CS 675. Machine Learning. 3 credits
Pre-requisites: Basic probability, linear algebra, computer programming, and graduate or undergraduate senior standing, OR approval of instructor. This course is an introduction to machine learning and contains both theory and applications. Students will get exposure to a broad range of machine learning methods and hands on practice on real data. Topics include Bayesian classification, perceptron, neural networks, logistic regression, support vector
machines, decision trees, random forests, boosting, dimensionality reduction, unsupervised learning, regression, and learning new feature spaces. There will be several programming assignments, one course project, one mid-term and one final exam.

IS 601. Web Systems Development. 3 credits, 3 contact hours.
Prerequisites: NONE Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 650. Data Visualization and Interpretation. 3 credits, 3 contact hours.
The course will focus on training students in data visualization techniques and relevant tools. They will learn theoretical aspects of visualization design, and gain practical experience in interpreting data as well as critiquing and comparing visualization techniques. They will develop interactive visualization interfaces as part of a class project. Students will also gain a broad understanding of how visualization can enhance data interpretation and play a key role in the data science pipeline. Finally, recent advances will be presented in the areas of information visualization, visual analytics, and human-data interaction.

IS 657. Spatiotemporal Urban Analytics. 3 credits, 3 contact hours.
Prerequisite: IS 665 (https://catalog.njit.edu/search/?P=IS%20665) or equivalent. This course teaches essential concepts and skills needed to efficiently develop spatiotemporal thinking, create a spatiotemporal model, and visualize/model the urban spatiotemporal relationships in the open source environment. Students will learn about big data analytic skills that integrate large open source data and traditional data by investigating the relationship between virtual and physical worlds in the built environment.

IS 665. Data Analytics for Info System. 3 credits, 3 contact hours.
Prerequisite: IS 601 (https://catalog.njit.edu/search/?P=IS%20601) This course gives a graduate level introduction to data analysis, probability and statistics from an information systems perspective, including many of the techniques that are most relevant to the profession of Data Scientist for business, data and web analytics, as well as current data sets. We will learn and conduct Python, MATLAB and R based manipulation of data. Course topics include the rudiments of probability and random variables, estimation, special distribution and sampling, Markov processes, hypothesis testing, graphics and visualization.

MATH 661. Applied Statistics. 3 credits, 3 contact hours.
Prerequisite: MATH 112. Role and purpose of applied statistics. Data visualization and use of statistical software used in course. Descriptive statistics, summary measures for quantitative and qualitative data, data displays. Modeling random behavior: elementary probability and some simple probability distribution models. Normal distribution. Computational statistical inference: confidence intervals and tests for means, variances, and proportions. Linear regression analysis and inference. Control charts for statistical quality control. Introduction to design of experiments and ANOVA, simple factorial design and their analysis. MATH 661 (https://catalog.njit.edu/search/?P=MATH%20661) and MATH 663 (https://catalog.njit.edu/search/?P=MATH %20663) cannot both be used toward degree credits at NJIT.

What are the Required Courses?
The Computer Science Certificate includes three required courses covering foundation of computer science, programming skills, and database techniques, respectively, as well as one additional elective advanced course, for a total of 12 credit hours.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 506 or CS 630</td>
<td>Foundations of Computer Science or Operating System Design</td>
<td>9</td>
</tr>
<tr>
<td>One Programming Language Course - CS 505 Programming, Data Structures and Algorithms OR CS 602 Java Programming OR CS 635 Computer Programming Languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>Electives – Choose one course:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td></td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td></td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td></td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td></td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td></td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td></td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td></td>
</tr>
</tbody>
</table>
Data Visualization

Graduate Certificate in Data Visualization

From the NJIT’s Department of Informatics, the Graduate Certificate in Data Visualization allows students to develop skills in designing, developing, and applying data visualization techniques for solving real-world problems. Data visualization developers and researchers are interested in ways to communicate data to diverse users, improve analytical decision-making, and play a key role in diverse domains such as business intelligence, big data analytics, data science, scientific communication, and journalism. This certificate will equip students with both theoretical and practical knowledge for pursuing professional or research careers in data visualization.

Who would be suited to take this program?

Students and professionals interested in the broad areas of human-centered computing, urban informatics, visual analytics, business intelligence, design thinking and human-data interaction.

What will I learn?

- **Data Visualization and Interpretation** – Theory and practical knowledge about how to design, read, and understand visual representations of data. Hands-on knowledge about state-of-the-art tools, e.g., Tableau, Python, and web-based libraries like D3.js.

- **Spatio-Temporal Urban Analytics** – Essential concepts and skills needed to efficiently develop spatiotemporal thinking. Big data analysis and visualization techniques applied to spatio-temporal urban data. Knowledge about the R programming environment.

- **Elements of Visual Design** – Theories of design, techniques of composition, and technologies of electronic and print publishing. Modules include both design principles and hands-on practice in visual literacy, layout and design, and graphic tools.

- **Advanced Information Design** – Design and creation of multimedia objects, usability heuristics, navigation theory, contemporary design practices and online community building.

- **Visual Informatics for Network and Flow** – Knowledge of open source tools to visualize and interpret network and flow data. Collect network and flow data and create their own visual applications.

- **Customer Discovery** – User-centered design evaluation techniques for understanding potential user’s practice, preferences and mental models. Knowledge of a basic set of qualitative user/customer discovery methods which is essential for both the lean startup entrepreneur and those engaged in design innovation.

- **User Experience Design** – Process of creating compelling interaction designs for digital products from the idea stage into creating a simple and intuitive user experience blueprint. You will ‘learn by doing’ in a team environment, enabling you to practice the techniques with coaching from instructors.

- **Web Systems Development** – Learn web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects.

- **Data Analytics for Information Systems** – Learn and conduct Python, MATLAB and R based manipulation of data, along with graduate level introduction to data analysis, probability and statistics from an information systems perspective.

Why study Data Visualization at NJIT?

A McKinsey report in 2016 says: “As data grows more complex, distilling it and bringing it to life through visualization is becoming critical to help make the results of data analyses digestible for decision makers. We estimate that demand for visualization grew roughly 50 percent annually from 2010 to 2015." With the growing demand for data science-based technologies across various domains and industries, this trend will only go higher. At NJIT, we have a great opportunity to train the next generation workforce in data visualization skills and techniques that will enable them to be at the cutting edge of technological development and play crucial roles in generating actionable insights for diverse stakeholders in the data science ecosystem.

Into what industries might holders of this program find employment?

- Business Intelligence (any enterprise)
- Data Scientist
- Information Designer
- Data Visualization Developer
- Journalist

Prerequisites

Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in a related field (information design, information technology, etc.).

Related Degree Programs

All courses in this program are related to the NJIT MS in Information Systems (https://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/) and MS in Professional and Technical Communication programs.

What are the Required and Elective Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>6</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td></td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td>6</td>
</tr>
<tr>
<td>PTC 606</td>
<td>Advanced Information Design</td>
<td></td>
</tr>
<tr>
<td>IS 654</td>
<td>Visual Informatics for Social Network and Mobile Flow</td>
<td></td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td></td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td></td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 12

Foundations of Cybersecurity

The Foundations in Cybersecurity certificate provides a strong foundation and detailed technical knowledge in security, privacy, and cryptography applied to computer systems, networks, and web applications. This is a 12-credit certificate.

Who would be suited to take this program?

Students and professionals interested in the area of Cybersecurity. The development and operation of security techniques and cryptographic systems require both a deep understanding of theoretical security concepts and detailed knowledge of security practices. Graduates of the program will be well positioned to understand and mitigate existing and emerging security threats.

What are the prerequisites?

Applicants should have a bachelor's degree from an accredited institution in either Computer Science, Information Sciences, Information Technology, Computer Engineering, Mathematics, Physics, or have relevant experience.

NJIT's standard admission requirements apply to this graduate certificate.

What will I learn?

The certificate provides expertise to analyze new and existing security threats and devise solutions against them. Graduates of the program use in-depth knowledge of network-based and system-level attacks and appropriate countermeasures to ensure that the software and the infrastructure is designed and implemented with the best security practices in mind. This requires the ability to perform sophisticated security design review, coupled with the ability to investigate security breaches and perform forensic analysis. It also requires the ability to develop and maintain tools and technologies to enhance the security of applications and infrastructure.

Why Study Cyber Security at NJIT?

NJIT is situated in Newark, minutes from Newark Penn Station. Jersey City and New York City are also a short train ride away, providing easy access to these commercial areas with many companies that employ cybersecurity specialists. NJIT is a top 100 university, classified as R1 very high research activity, with faculty performing cutting-edge research and publishing in top venues. NJIT also consistently ranks highly on added-value and diversity.

Into what industries might holders of this program find employment?
Modern industries need the kind of information assurance that comes from trained cybersecurity professionals who can monitor and protect user accounts, networks, and data. Positions in the industry include:

- Information Security Manager
- Information Assurance Engineer
- IT Security Consultant
- Information Security Specialist
- Information Security Analyst

Related Degree Programs

Credits from this graduate certificate can be applied toward the NJIT MS in Cyber Security and Privacy degree.

COURSE DESCRIPTIONS

CS 608. Cryptography and Security. 3 credits

This course involves computational methods providing secure Internet communication. Among the topics covered are: Security threats in communication systems; conventional cryptography: substitution and transposition codes; distribution of secret key over the Internet; principles of public-key cryptography; RSA and other public-key cryptographic methods; and digital signature protocol.

CS 631. Data Management System Design. 3 credits

CS 634. Data Mining. 3 credits

This course covers the principles of data mining system design and implementation. It presents methods for association and dependency analysis as well as classification, prediction, and clustering. Optional topics may include time series and graph mining, current trends in data mining, and data mining for scientific, medical and engineering applications.

CS 643. Cloud Computing. 3 credits

Prerequisites: CS 633 or CS 656. This course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its main focus is on parallel programming techniques for cloud computing and large scale distributed systems which form the cloud infrastructure. The topics include: overview of cloud computing, cloud systems, parallel processing in the cloud, distributed storage systems, virtualization, secure distributed computing, and multicore programming.

CS 645. Security and Privacy in Computer Systems. 3 credits

Prerequisites: Students are expected to enter this course with a basic knowledge of operating systems, networking, algorithms, and data structures. Also, students should be able to program in Java and C/C++. The course covers fundamental principles of building secure systems and techniques to ensure data security and privacy. Topics include access control mechanisms, operating systems security, malicious code threats and software security, trusted computing, content protection, and database security. The course will also study existing technical approaches to protecting privacy, including Web anonymizers and ant-censorship tools, as well as policy and legal aspects of privacy.

CS 646. Network Protocols Security. 3 credits

Prerequisites: CS 656 or ECE 637. This course covers the security of network protocols currently used on the Internet. It seeks to familiarize students with common threats and network attacks, and provides an in-depth study of methods used to secure network communication. The course includes an applied component, which will help students gain practical experience in attacking and defending networked systems. Topics include authentication systems, and routing security, firewalls, intrusion detection, honeypots, wireless network security, malware, propagation and detection, and web security.

CS 656. Internet and Higher-Layer Protocols. 3 credits

The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

CS 673. Software Design and Production Methodology. 3 credits

Prerequisite: CS 631. Modern techniques and methods employed in the development of large software systems, including a study of each of the major activities occurring during the lifetime of a software system, from conception to obsolescence and replacement. Topics include cost/performance evaluation, documentation requirements, system design and production techniques, system verification techniques, automated aids to system development, and project organization and management.

CS 696. Network Management and Security. 3 credits

Prerequisites: CS 652 or CS 656 or ECE 637. Thorough introduction to current network management technology and techniques, and emerging network management standards. In-depth study of the existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and for protecting systems from network-based attacks. SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management. Various types of security attacks (such as intruders, viruses, and worms). Conventional Encryption and Public Key Cryptology. Various security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility). Same as ECE 638.

COURSE DESCRIPTIONS

CS 608. Cryptography and Security. 3 credits

This course involves computational methods providing secure Internet communication. Among the topics covered are: Security threats in communication systems; conventional cryptography: substitution and transposition codes; distribution of secret key over the Internet; principles of public-key cryptography; RSA and other public-key cryptographic methods; and digital signature protocol.

CS 631. Data Management System Design. 3 credits

CS 634. Data Mining. 3 credits

This course covers the principles of data mining system design and implementation. It presents methods for association and dependency analysis as well as classification, prediction, and clustering. Optional topics may include time series and graph mining, current trends in data mining, and data mining for scientific, medical and engineering applications.

CS 643. Cloud Computing. 3 credits

Prerequisites: CS 633 or CS 656. This course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its main focus is on parallel programming techniques for cloud computing and large scale distributed systems which form the cloud infrastructure. The topics include: overview of cloud computing, cloud systems, parallel processing in the cloud, distributed storage systems, virtualization, secure distributed computing, and multicore programming.

CS 645. Security and Privacy in Computer Systems. 3 credits

Prerequisites: Students are expected to enter this course with a basic knowledge of operating systems, networking, algorithms, and data structures. Also, students should be able to program in Java and C/C++. The course covers fundamental principles of building secure systems and techniques to ensure data security and privacy. Topics include access control mechanisms, operating systems security, malicious code threats and software security, trusted computing, content protection, and database security. The course will also study existing technical approaches to protecting privacy, including Web anonymizers and ant-censorship tools, as well as policy and legal aspects of privacy.

CS 646. Network Protocols Security. 3 credits

Prerequisites: CS 656 or ECE 637. This course covers the security of network protocols currently used on the Internet. It seeks to familiarize students with common threats and network attacks, and provides an in-depth study of methods used to secure network communication. The course includes an applied component, which will help students gain practical experience in attacking and defending networked systems. Topics include authentication systems, and routing security, firewalls, intrusion detection, honeypots, wireless network security, malware, propagation and detection, and web security.

CS 656. Internet and Higher-Layer Protocols. 3 credits

The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

CS 673. Software Design and Production Methodology. 3 credits

Prerequisite: CS 631. Modern techniques and methods employed in the development of large software systems, including a study of each of the major activities occurring during the lifetime of a software system, from conception to obsolescence and replacement. Topics include cost/performance evaluation, documentation requirements, system design and production techniques, system verification techniques, automated aids to system development, and project organization and management.

CS 696. Network Management and Security. 3 credits

Prerequisites: CS 652 or CS 656 or ECE 637. Thorough introduction to current network management technology and techniques, and emerging network management standards. In-depth study of the existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and for protecting systems from network-based attacks. SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management. Various types of security attacks (such as intruders, viruses, and worms). Conventional Encryption and Public Key Cryptology. Various security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility). Same as ECE 638.
IS 601. Web Systems Development. 3 credits, 3 contact hours.
Prerequisites: NONE Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 650. Data Visualization and Interpretation. 3 credits, 3 contact hours.
The course will focus on training students in data visualization techniques and relevant tools. They will learn theoretical aspects of visualization design, and gain practical experience in interpreting data as well as critiquing and comparing visualization techniques. They will develop interactive visualization interfaces as part of a class project. Students will also gain a broad understanding of how visualization can enhance data interpretation and play a key role in the data science pipeline. Finally, recent advances will be presented in the areas of information visualization, visual analytics, and human-data interaction.

IS 657. Spatiotemporal Urban Analytics. 3 credits, 3 contact hours.
Prerequisite: IS 665 (https://catalog.njit.edu/search/?P=IS%20665) or equivalent. This course teaches essential concepts and skills needed to efficiently develop spatiotemporal thinking, create a spatiotemporal model, and visualize/model the urban spatiotemporal relationships in the open source environment. Students will learn about big data analytic skills that integrate large open source data and traditional data by investigating the relationship between virtual and physical worlds in the built environment.

IS 665. Data Analytics for Info System. 3 credits, 3 contact hours.
Prerequisite: IS 601 (https://catalog.njit.edu/search/?P=IS%20601) This course gives a graduate level introduction to data analysis, probability and statistics from an information systems perspective, including many of the techniques that are most relevant to the profession of Data Scientist for business, data and web analytics, as well as current data sets. We will learn and conduct Python, MATLAB and R based manipulation of data. Course topics include the rudiments of probability and random variables, estimation, special distribution and sampling, Markov processes, hypothesis testing, graphics and visualization.

MATH 661. Applied Statistics. 3 credits, 3 contact hours.
Prerequisite: MATH 112. Role and purpose of applied statistics. Data visualization and use of statistical software used in course. Descriptive statistics, summary measures for quantitative and qualitative data, data displays. Modeling random behavior: elementary probability and some simple probability distribution models. Normal distribution. Computational statistical inference: confidence intervals and tests for means, variances, and proportions. Linear regression analysis and inference. Control charts for statistical quality control. Introduction to design of experiments and ANOVA, simple factorial design and their analysis. MATH 661 (https://catalog.njit.edu/search/?P=MATH%20661) and MATH 663 (https://catalog.njit.edu/search/?P=MATH%20663) cannot both be used toward degree credits at NJIT.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses – Take these courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>6</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td></td>
</tr>
<tr>
<td>Electives – Choose two courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td></td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td></td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td></td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td></td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td></td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td></td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Bioinformatics

Degree Requirements

A minimum of 30 credits is required for the degree, excluding bridge courses. The graduate curriculum consists of five core courses and additional elective courses, with an optional thesis (six credits) or research project (three credits).

Students with non-computing STEM background may be accepted and required to take the following bridge courses (CS 506 may count toward the credits required for the MS degree):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 280</td>
<td>Programming Language Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>12</td>
</tr>
</tbody>
</table>

Curriculum

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td>6</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core Electives</td>
<td></td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td></td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td></td>
</tr>
<tr>
<td>MATH 680</td>
<td>Advanced Statistical Learning</td>
<td></td>
</tr>
<tr>
<td>BIOL 605</td>
<td>Prin of Bioscience Processing</td>
<td></td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>R120 512</td>
<td>Cell Biology: Methods & Appl</td>
<td></td>
</tr>
<tr>
<td>R120 515</td>
<td>Molecular Bio Of Eukaryotes</td>
<td></td>
</tr>
<tr>
<td>R120 524</td>
<td>Cell Molec Dev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select at least three from the following</td>
<td>at least 9 credits</td>
</tr>
<tr>
<td></td>
<td>NJIT Electives</td>
<td></td>
</tr>
<tr>
<td>BME 661</td>
<td>Neural Engineering</td>
<td></td>
</tr>
<tr>
<td>BME 671</td>
<td>Biomechanics of Human Structure and Motion</td>
<td></td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td></td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td></td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td></td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 677</td>
<td>Deep Learning</td>
<td></td>
</tr>
<tr>
<td>CS 681</td>
<td>Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CS 731</td>
<td>Applications of Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 782</td>
<td>Pattern Recognition and Applications</td>
<td></td>
</tr>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Computer Science

Degree Requirements

Students will meet with the graduate advisor to assist them in formulating a program of study and selecting a possible specialization. These degree requirements apply to all on-campus and online programs.

The 30 credit requirement may be satisfied in one of three ways:

- Courses (30 credits)
- Courses (27 credits) + MS Project (3 credits)
- Courses (24 credits) + MS Thesis (6 credits)

Students with non-computing STEM background may be accepted and required to take the following bridge courses (CS 506 may count toward the credits required for the MS degree):

M.S. in Computer Science (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 280</td>
<td>Programming Language Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 12

1. CS 505 Programming, Data Structures, and Algorithms requires prior knowledge of higher level programming language. For students with no prior programming experiences, CS 113 Introduction to Computer Science and CS 114 Introduction to Computer Science II are recommended for replacement.

2. The credits earned for CS 506 Foundations of Computer Science count towards the 30 credits required for the degree.
M.S. in Computer Science

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 667</td>
<td>Design Techniques for Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td></td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
</tbody>
</table>

Elective Courses

Two courses from an approved list of advanced courses: 6 credits

Course either from the Computer Science graduate catalog or from another department's graduate catalog: 3 credits

Three courses from the Computer Science graduate catalog or IS 601, IS 650, IS 657, IS 665, MATH 661, YWCC 691: 9 credits

Total Credits: 30

1. Courses from outside the Computer Science Department must be relevant to the Computer Science program and require prior approval.
2. YWCC 691 can be counted towards the 30 credits required for the degree only if no more than 6 out of the 30 credits are earned from non-lecture courses.

M.S. in Computer Science (Master's project)

Bridge Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 350</td>
<td>Intro to Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 12

1. CS 505 Programming, Data Structures, and Algorithms requires prior knowledge of higher level programming language. For students with no prior programming experiences, CS 113 Introduction to Computer Science and CS 114 Introduction to Computer Science II are recommended for replacement.

2. The credits earned for CS 506 Foundations of Computer Science count towards the 30 credits required for the degree.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 667</td>
<td>Design Techniques for Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td></td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

One course from an approved list of advanced courses: 3 credits

Course either from the Computer Science graduate catalog or from another department's graduate catalog: 3 credits

Three courses from the Computer Science graduate catalog or IS 601, IS 650, IS 657, IS 665, MATH 661, YWCC 691: 9 credits

Total Credits: 30

1. Courses from outside the Computer Science Department must be relevant to the Computer Science program and require prior approval.
2 YWCC 691 can be counted towards the 30 credits required for the degree only if no more than 6 out of the 30 credits are earned from non-lecture courses.

M.S. in Computer Science (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 350</td>
<td>Intro to Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

1. CS 505 Programming, Data Structures, and Algorithms requires prior knowledge of higher level programming language. For students with no prior programming experiences, CS 113 Introduction to Computer Science and CS 114 Introduction to Computer Science II are recommended for replacement.

2. The credits earned for CS 506 Foundations of Computer Science count towards the 30 credits required for the degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 601</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 667</td>
<td>Design Techniques for Algorithms</td>
<td></td>
</tr>
<tr>
<td>Select three of the following:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td></td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 701B & 701B</td>
<td>Master's Thesis and Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>or CS 701C</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course either from the Computer Science graduate catalog or from another department's graduate catalog</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Three courses from the Computer Science graduate catalog or IS 601, IS 650, IS 657, IS 665, MATH 661</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

1. Courses from outside the Computer Science Department must be relevant to the Computer Science program and require prior approval.

2. A student must select a specialization, and the thesis must match the selected specialization.

Specializations

Students can optionally specialize in a specific area (see below) by taking a minimum of three (3) courses listed in the specialization in accordance with requirements (b) and (c). Note that some specialization courses have prerequisites that must be fulfilled before enrolling in these courses.

Computer Networking and Security

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select three of the following:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td></td>
</tr>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

9
Databases and Data Mining

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 731</td>
<td>Applications of Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 644</td>
<td>Data Mining and Management in Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CS 744</td>
<td>Data Mining and Management in Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9

1 Taking CS 700 level courses require permission of the graduate advisor.

Image Processing and Pattern Recognition

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CS 681</td>
<td>Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>CS 759</td>
<td>Advanced Image Processing and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9

1 Taking CS 700 level courses require permission of the graduate advisor.

Computer Algorithms

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 611</td>
<td>Introduction to Computability and Complexity</td>
<td>3</td>
</tr>
<tr>
<td>CS 667</td>
<td>Design Techniques for Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9

Bioinformatics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNFO 601</td>
<td>Foundations of Bioinformatics I</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 602</td>
<td>Foundations of Bioinformatics II</td>
<td>3</td>
</tr>
<tr>
<td>CS 744</td>
<td>Data Mining and Management in Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9

1 Taking CS 700 level courses require permission of the graduate advisor.

Master's Project

Students must

- Enroll in CS 700B Master's Project.

In the semester prior to enrolling in CS 700B Master's Project, the student must prepare and submit a project proposal to the Department no later than the last weekday class day of the 8th week of the

- Fall semester for a spring project, or
- Spring semester for a summer or fall project.
The student must have an advisor in the Computer Science Department who is a tenure-track faculty member or who holds a joint appointment in the department.

Project Requirements

- Before a student pursues a Master's Project, the following requirements must be fully satisfied:
 - All bridge courses must be completed - In the semester prior to the project, a student prepares and submits a project proposal to the Department no later than the last weekday class day of the 8th week of the Fall semester for a spring project and no later than the last weekday class day of the 8th week of the Spring semester for a summer or fall project. The preparatory work for the proposal may be accomplished within the framework of a required course or an independent study course offered by the prospective advisor. Therefore, such a course must be taken in the semester prior to the project.
 - A CS Department tenure-track faculty member or a faculty member who holds a joint appointment in the computer science department can advise an MS project.
 - Proposal preparation must adhere to the existing departmental guidelines; the information and templates are available online.

Thesis Option

(30 credits)

Students must

- select a specialization, and
- enroll in the Thesis CS 701 course for two (2) semesters (Thesis must match specialization).

A student can enroll in CS 701 during the second semester of full time study. Normally the student enrolls for two semesters of CS 701 to prepare the thesis proposal, perform the research, and prepare the thesis. The thesis must be orally defended and follow the style set forth by the Graduate School at NJIT. The thesis committee is composed of a Computer Science tenure-track committee chair and two other tenure-track members of the Computer Science Department or Faculty holding a joint appointment to the department.

Thesis Requirements

- Before a student pursues a Master's Thesis, the following requirements must be fully satisfied:
 - All bridge courses must be completed.
 - In the semester prior to the thesis, a student prepares and submits a thesis proposal to the department no later than week 8 of the Fall semester for a spring thesis and week 8 of the Spring semester for a summer of fall thesis. The preparatory work for the proposal may be accomplished within the framework of a required course or an independent study course offered by the prospective advisor. Therefore, such a course must be taken in the semester prior to the thesis.
 - A CS department tenure-track faculty member or a faculty member who holds a joint appointment in the Computer Science Department can advise an MS thesis.
 - An oral defense is required. The defense must take place between one week prior to the Reading Day of the semester and the last day of the Examination period. A committee of at least three tenure-track faculty members from the CS Department, including the thesis advisor, collectively determines the grade for CS 701 at the conclusion of the oral defense.

Other Policies

- **Transfer:** Transfer of computer science courses from other US/Canada institutions is allowed as per university regulations provided that these courses are related to the program. Graduate Advisor and Graduate Studies Office approvals are required.
- **MS/MS Program:** Under the University MS/MS program, up to six credits of courses taken in other departments can be used for graduate credits toward the degree as long as these courses are related to computer science. Graduate advisor and Graduate Studies Office approvals are required.
- **Co-op Program:** Before a student applies for CS 590 /CS 591 /CS 592 registration, the successful completion of the bridge program, all ESL requirements, and at least four graduate courses is required.
 - The same course cannot satisfy two or more requirements.

CS Advanced Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 676</td>
<td>Cognitive Computing</td>
<td>3</td>
</tr>
</tbody>
</table>
CS 643 Cloud Computing 3
CS 659 Image Processing and Analysis 3
CS 661 Systems Simulation 3
CS 670 Artificial Intelligence 3
CS 673 Software Design and Production Methodology 3
CS 677 Deep Learning 3
CS 680 Linux Kernel Programming 3
CS 681 Computer Vision 3
CS 696 Network Management and Security 3
CS 782 Pattern Recognition and Applications 3

M.S. in Computing and Business

The program requires the completion of 30 credits.

Students with non-computing STEM background may be accepted and required to take the following bridge courses (CS 506 may count toward the credits required for the MS degree):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 280</td>
<td>Programming Language Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Global Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following: 1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td></td>
</tr>
<tr>
<td>CS 661</td>
<td>Systems Simulation</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 644</td>
<td>Wireless Communications: Fundamentals to 5G</td>
<td></td>
</tr>
<tr>
<td>FIN 624</td>
<td>Corporate Finance II</td>
<td></td>
</tr>
<tr>
<td>FIN 626</td>
<td>Financial Investment Institutions</td>
<td></td>
</tr>
<tr>
<td>FIN 634</td>
<td>Mergers, Acquisitions, and Restructuring</td>
<td></td>
</tr>
<tr>
<td>FIN 641</td>
<td>Derivatives Markets</td>
<td></td>
</tr>
<tr>
<td>FIN 650</td>
<td>Investment Analysis and Portfolio Theory</td>
<td></td>
</tr>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
<td></td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td></td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Cyber Security and Privacy

Degree Requirements

An MSCSP course program must satisfy the following distribution requirement:

- 30 credits are required, which can be satisfied as either one of the following options:
 - Courses (30 credits)
 - Courses (27 credits) + MS Project (3 credits)
 - Courses (24 credits) + MS Thesis (6 credits)
- All Core courses are required.
- At most two courses can be Foundational courses.
- At most two courses can be chosen from outside the Department of Computer Science.

If a student chooses the MS project or MS thesis option, the following two additional rules apply:

- The project or thesis must be related to cyber security.
- YWCC 691 cannot be taken as an elective course.

Students with non-computing STEM background may be accepted and required to take the following bridge courses (CS 506 may count toward the credits required for the MS degree):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 280</td>
<td>Programming Language Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
</tbody>
</table>

M.S. in Cyber Security and Privacy (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives and Foundational Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 648</td>
<td>Cyber Sec Investigations & Law</td>
<td>3</td>
</tr>
<tr>
<td>CS 660</td>
<td>Digital Watermarking</td>
<td>3</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td>3</td>
</tr>
<tr>
<td>CS 678</td>
<td>Topics in Smartphone Sec & Rel</td>
<td>3</td>
</tr>
<tr>
<td>CS 680</td>
<td>Linux Kernel Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security ¹</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
<td>3</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
<td>3</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>YWCC 691</td>
<td>Graduate Capstone Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Foundational Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
</tbody>
</table>

¹ Substitution allowed only for students with ECE background and with the permission of the graduate advisor.

M.S. in Cyber Security and Privacy (Master's project option)

Core Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security ¹</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives and Foundational Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 648</td>
<td>Cyber Sec Investigations & Law</td>
<td>3</td>
</tr>
<tr>
<td>CS 660</td>
<td>Digital Watermarking</td>
<td>3</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td>3</td>
</tr>
<tr>
<td>CS 678</td>
<td>Topics in Smartphone Sec & Rel</td>
<td>3</td>
</tr>
<tr>
<td>CS 680</td>
<td>Linux Kernel Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security ¹</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
</tbody>
</table>

² Master's Project
IS 657 Spatiotemporal Urban Analytics 3
IS 665 Data Analytics for Info System 3
IS 680 Information Systems Auditing 3
IS 681 Computer Security Auditing 3
IS 682 Forensic Auditing for Computing Security 3
IS 687 Transaction Mining and Fraud Detection 3
IT 620 Wireless Networks Security and Administration 3
IT 640 Network Services Administration 3
ECE 636 Computer Networking Laboratory 3
MGMT 688 Information Technology, Business and the Law 3
MGMT 691 Legal and Ethical Issues in a Digital World 3
MATH 661 Applied Statistics 3

Foundational Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Substitution allowed only for students with ECE background and with the permission of the graduate advisor.
2 The project must be related to cyber security.

M.S. in Cyber Security and Privacy (Master's thesis option)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 701C</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

Thesis

<table>
<thead>
<tr>
<th>Electives and Foundational Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td>CS 648</td>
<td>Cyber Sec Investigations & Law</td>
</tr>
<tr>
<td>CS 660</td>
<td>Digital Watermark</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
</tr>
<tr>
<td>CS 678</td>
<td>Topics in Smartphone Sec & Rel</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
</tr>
<tr>
<td>CS 680</td>
<td>Linux Kernel Programming</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
</tbody>
</table>
Master of Science in Cyber Security and Privacy (CSP) - Cyber Defense Option

The objective of the Cyber Defense Professional Science Master (PSM), an option of the MS CSP, is to create leaders with strong communication and management skills in addition to the strong technical knowledge in security and privacy of computer systems, networks and web applications. This PSM is designed for working professionals or students who already have acquired some professional experience. The Cyber Defense PSM is affiliated with the PSM National Office.

A student in the MS CSP – Cyber Defense Option must satisfy the following distribution of requirements:

- 36 credits are required.
- All Cybersecurity Core courses are required (18 credits)
- The rest of 18 credits must be taken from the combined list of PTC (Professional and Technical Communications), Management, and Computing electives, with at least 3 credits, and no more than 6, from each of the 3 elective lists

Among the required Cybersecurity Core courses, the program includes an MS Project, YWCC 691. These projects are part of a project course, supervised by a CS faculty member, and done in collaboration with industrial partners. These partners will propose projects, and they will co-supervise the students together with the instructor of the course. Students who have a job are allowed to work on projects from their companies, in which case their employer will be actively engaged in the project supervision. The projects will generally be done in teams of 3 students.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>YWCC 691</td>
<td>Graduate Capstone Project</td>
<td>3</td>
</tr>
</tbody>
</table>

PTC (Professional and Technical Communications) Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC 601</td>
<td>Advanced Professional and Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>PTC 620</td>
<td>Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>PTC 622</td>
<td>Working in Teams: Collaborative and Interpersonal Communications</td>
<td>3</td>
</tr>
<tr>
<td>PTC 624</td>
<td>Professional and Technical Editing</td>
<td>3</td>
</tr>
<tr>
<td>PTC 628</td>
<td>Analyzing Social Networks</td>
<td>3</td>
</tr>
<tr>
<td>PTC 629</td>
<td>Theory and Practice of Social Media</td>
<td>3</td>
</tr>
<tr>
<td>PTC 632</td>
<td>Content Management and Information Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Management Courses

Select two of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 641</td>
<td>Global Project Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 682</td>
<td>Business Research Methods I</td>
<td>3</td>
</tr>
</tbody>
</table>
General Information on Cybersecurity Elective Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 648</td>
<td>Cyber Sec Investigations & Law</td>
<td>3</td>
</tr>
<tr>
<td>CS 660</td>
<td>Digital Watermarking</td>
<td>3</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 678</td>
<td>Topics in Smartphone Sec & Rel</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

M.S. in Data Science - Computational Track

Degree Requirements

Students in the Master of Science in Data Science (MSDS) program must successfully complete 30 credits based on any of the following options:

- Courses (30 credits)
- Courses (27 credits) + MS Project (3 credits)
- Courses (24 credits) + MS Thesis (6 credits)

Independent of the chosen option, all core courses in the respective tracks are required.

At most two courses can be chosen from outside the respective track with approval of the respective Program Co-Directors. Computational track students are allowed at most three electives that are non-Computer Science courses. Statistics track students are allowed at most three electives that are non-Math courses.

If a student chooses the MS project or MS thesis option, the project or thesis must be related to data science and requires approval from one of the Program Co-Directors.

The MSDS program has computational and statistics tracks that students must choose from at admission time. These tracks have different core courses but share the same admission requirements and electives.

Students may choose an elective outside the list after approval of their respective advisor.
M.S. in Data Science

Core Course Requirements for Computational Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>CS 677</td>
<td>Deep Learning (Deep Learning)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives and Foundation Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program (only available to students in the Math core)</td>
<td>3</td>
</tr>
<tr>
<td>CS 639</td>
<td>Elec. Medical Records: Med Terminologies and Comp. Imp.</td>
<td>3</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CS 661</td>
<td>Systems Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 676</td>
<td>Cognitive Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 677</td>
<td>Deep Learning (Deep Learning(available only to students in statistics track))</td>
<td>3</td>
</tr>
<tr>
<td>CS 683</td>
<td>Software Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>CS 681</td>
<td>Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 731</td>
<td>Applications of Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 735</td>
<td>High Performance Analytics Dat</td>
<td>3</td>
</tr>
<tr>
<td>CS 744</td>
<td>Data Mining and Management in Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CS 782</td>
<td>Pattern Recognition and Applications</td>
<td>3</td>
</tr>
<tr>
<td>YWCC 691</td>
<td>Graduate Capstone Project (Counting towards the elective credits requires the program director’s prior approval. In addition, it needs to be completed with an external partner (industry, lab, or government), or with a faculty only if the same faculty is not the student’s MS project or MS thesis advisor.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Math Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R (only available to students in computational track)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 680</td>
<td>Advanced Statistical Learning</td>
<td>3</td>
</tr>
<tr>
<td>MATH 683</td>
<td>High Dimensional Stat Inferenc</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>MATH 717</td>
<td>Inverse Problems and Global Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MATH 786</td>
<td>Large Sample Theory and Inference</td>
<td>3</td>
</tr>
</tbody>
</table>
MATH 787 Non-Parametric Statistics 3

Other Electives

BIOL 638 Computational Ecology 3
BME 698 Selected Topics 3
MGMT 635 Data Mining and Analysis 3
MGMT 630 Decision Analysis 3
FIN 600 Corporate Finance I 3
FIN 641 Derivatives Markets 3
FIN 642 Derivatives and Structured Finance 3
MRKT 630 Models Of Consumer Behavior 3
IS 601 Web Systems Development 3
IS 631 Enterprise Database Management 3
IS 650 Data Visualization and Interpretation 3
IS 657 Spatiotemporal Urban Analytics 3
IS 665 Data Analytics for Info System 3
IS 687 Transaction Mining and Fraud Detection 3
IS 688 Web Mining 3
BNFO 601 Foundations of Bioinformatics I 3
BNFO 602 Foundations of Bioinformatics II 3
BNFO 615 Data Analysis in Bioinformatics 3
BNFO 620 Genomic Data Analysis 3

Total Credits 30

Recommended course sequence M.S. in Data Science for Computational Track

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Year 2</td>
</tr>
<tr>
<td>CS 675 Machine Learning</td>
<td>Free elective or Master thesis course</td>
</tr>
<tr>
<td>Math 661 Applied Statistics</td>
<td>Free elective or Master project course</td>
</tr>
<tr>
<td>CS 636 R for Data Science</td>
<td>Free elective</td>
</tr>
<tr>
<td>CS 644 Big Data</td>
<td>CS 677 Deep Learning</td>
</tr>
</tbody>
</table>

M.S. in Software Engineering

The program requires the completion of 30 credits.

Students with non-computing STEM background may be accepted and required to take the following bridge courses (CS 506 may count toward the credits required for the MS degree):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 280</td>
<td>Programming Language Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Students can take other CS courses with advisor approval

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses (21 Credits) Students must take a two-course sequence (CS 690 in the Fall followed by CS 700B in the following Spring) that focuses on a team-based industrial scale software project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>CS 685</td>
<td>Software Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>
Ph.D. in Computer Science

Course Requirements

For students entering the program with a Master's degree in Computer Science or related areas, 12-21 credits at the 600 and 700 level (at least 12 credits at the 700 level) are required. The default requirement is 21 credits, but waivers for 600 level courses may be determined in consultation with and written approval by the PhD committee based on the student's prior background in the three areas of the qualifying examinations. At most 6 credits can be Independent Study in Computer Science (CS 725 and/or CS 726). If a student takes two Independent Study courses, then they should be done with two different professors. At least 6 credits must be for lecture-based courses at the 700 level.

For students entering the program without a Master's degree in Computer Science or related areas, 36 credits at the 600 and 700 level. At least 12 credits must be at the 700 level, and out of those at most 6 credits can be Independent Study in Computer Science (CS 725 and/or CS 726). If a student takes two Independent Studies, then they should be done with two different professors. At least 6 credits must be for lecture-based courses at the 700 level.

Doctoral Dissertation Credits

For students who were admitted in the program in the Fall 2015 semester or after, the rules are described at: http://www5.njit.edu/graduatestudies/content/new-phd-credit-requirements/

For students who were admitted in the program before the Fall 2015 semester, students must complete 30 credits of CS 790. A maximum of 6 credits of CS 792 Pre-Doctoral Research may be used toward the CS 790 requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 683</td>
<td>Software Project Management</td>
<td>3</td>
</tr>
<tr>
<td>IS 676</td>
<td>Requirement Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td>3</td>
</tr>
<tr>
<td>CS 690</td>
<td>Software Studio</td>
<td>3</td>
</tr>
<tr>
<td>CS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

Select three of the following: 9

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
</tr>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
</tr>
<tr>
<td>CS 635</td>
<td>Computer Programming Languages</td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
</tr>
<tr>
<td>IS 690</td>
<td>Web Services and Middleware</td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
</tr>
<tr>
<td>YWCC 691</td>
<td>Graduate Capstone Project</td>
</tr>
</tbody>
</table>

Total Credits 30

1 Students can take other CS courses with advisor approval
2 Count towards the 9 Elective credits only when completed with an industrial partner, AND with Program Director's approval
CS 791: Doctoral Seminar

Full-time students are required to enroll in CS 791 every semester. Full-time PhD students are required to attend 2/3 of the weekly Wednesday departmental seminars.

Qualifying Examinations

All PhD students are required to take qualifying examinations in three areas.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One examinations is in the combined area of:</td>
<td></td>
</tr>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 611</td>
<td>Introduction to Computability and Complexity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two examinations are in the following areas:</td>
<td></td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td></td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td></td>
</tr>
</tbody>
</table>

PhD students are allowed to take up to four qualifying examinations and are required to pass at least three out of the four (the combined CS 610 and CS 611 examination must be among the three examinations the students pass). If they fall short of the three examinations in the first year, then they must make up the number of missing examinations the second year and may take one more examination than the number they are required to pass.

Software Engineering, Analysis, and Design

A software engineer is a person who applies the principles of software engineering to the design, development, maintenance, testing, and evaluation of the software and systems that make computers or anything containing software work. The Graduate Certificate in Software Engineering, Analysis, and Design aims to cover those areas in a compact program.

Who is suited for this program?

This graduate certificate is best suited for students holding an undergraduate degree in electrical engineering, computer engineering, computer science, or those willing to take a number of ancillary courses.

What will I learn?

This certificate program covers:

- Key software engineering principles, methods and frameworks, including process models, agile and lean principles, project and risk management, estimation, modeling, system and software architecture, design patterns, and quality systems.
- Hands-on experience in managing database systems as an essential organizational resource.
- Development of large software systems and the integration of multiple systems into a domain dependent solution.
- Modern techniques and methods employed in the development of large software systems, including a study of each of the major activities during the lifetime of a software system, from conception to obsolescence and replacement.
- Software management technique, various software costing techniques including COCOMO and ROI, team organization and management, and various methods of software development including Cleanroom and Agile.

Why study software engineering at NJIT?

The program’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It’s possible to some of the courses online, so you can more easily fit the program into your busy life. And whether you take courses online or on campus, you’ll learn from NJIT’s distinguished professors and instructors of the College of Computing Sciences.

Prerequisites

NJIT’s standard admission requirements apply to this graduate certificate, but individual courses within the program have additional prerequisites.
Note: Students lacking background relevant to NJIT’s IS 513, IS 531 or IS 565 courses may need to take a placement exam, or take undergraduate bridge courses at NJIT or elsewhere. Please, contact the IS department for details. More information is found here (http://is.njit.edu/academics/graduate/PlacementExam.php).

Related Degree Programs

All credits from the Software Engineering, Analysis, and Design Graduate Certificate can be applied toward the NJIT M.S. Information Systems (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/) or M.S. Software Engineering (http://catalog.njit.edu/graduate/computing-sciences/computer-science/software-engineering-ms/)

Take Note

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one or two of the following:</td>
<td>3-6</td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>6-9</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 676</td>
<td>Requirement Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CS 683</td>
<td>Software Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
</tbody>
</table>

Informatics

The Department of Informatics consists of two divisions: Information Systems and Information Technology. All Informatics degree programs are STEM degrees (STEM = Science, Technology, Engineering and Math).

The Division of Information Systems (IS) demonstrates a long history of integrating innovation, research and education at the intersection of people, information and computing technology. Our state-of-the-art curriculum, with a hands-on focus in web, social media, data science, business applications, and user experience, provides students with solid career knowledge, design and implementation skills, and leadership preparation. Students at all levels engage in research alongside distinguished professors, creating, applying and disseminating fundamental knowledge and innovative approaches. Research concentrates in two rigorous tracks -- data-intensive research and human-centered computing -- conducted by faculty who win teaching awards, highly competitive grants, best paper awards, write books, and publish extensively in very selective journals.

Information Technology (IT) is the "practitioner focused" discipline within the field of computing. The BS IT degree program, the applied computing degree at NJIT, provides a balanced approach to software and hardware applications and their conceptual underpinnings. Moreover, the program offers an array of specializations that prepare students to enter various areas of the information economy. IT courses are taught by faculty and industry professionals having years of IT experience. Students benefit from a hands-on approach that provides them with a real grasp of the actual technology, development tools, and paradigms in demand in the IT industry.

NJIT Faculty

B

Bieber, Michael P., Professor Emeritus

D

Deek, Fadi P., Distinguished Professor, Provost and Senior Executive Vice President
Deek, Maura, Senior University Lecturer

E

Egan, Richard W., Senior University Lecturer

H

Haiper, Michael, Professor and IT Program Director
Hendela, Arthur, Professor of Practice
Hiltz, S. Roxanne, Distinguished Professor Emeritus
Hoover, Amy, Assistant Professor

J
Jones, Quentin, Associate Professor

K
Kehoe, Donald, University Lecturer
Kettering, Joan, Senior University Lecturer

L
Lee, Michael, Assistant Professor
Lin, Lin, Senior University Lecturer

N
Nersesian, Eric, University Lecturer

P
Phan, Hai, Assistant Professor

S
Scher, Julian M., Associate Professor Emeritus
Senesy, Stanley, Senior University Lecturer
Sequeira, Marc, University Lecturer
Statica, Robert, Senior University Lecturer

T
Tremaine, Marilyn M., Professor Emeritus
Turoff, Murray, Distinguished Professor Emeritus

W
Wang, Shaohua, Assistant Professor
Waltrous-Deversterre, Lori, Senior University Lecturer
Williams, Keith A., University Lecturer
Wong, Donghee Yvette, Assistant Professor
Wu, Yi-Fang, Brook, Associate Professor and Chair

X
Xu, Songhua, Assistant Professor

Programs
- Business and Information Systems - M.S. (p. 237)
- Information Systems - M.S. (p. 240)
- Information Technology and Administration Security - M.S. (p. 245)
Programs

- Information Systems - Ph.D. (p. 247)

Programs

- Business and Information Systems Implementation (p. 249)
- IT Administration (p. 250)
- Information Security (p. 252)
- Network Security and Information Assurance (p. 253)
- Web Systems Development (p. 254)

Informatics Courses

IS 513. Programming Foundations for IS. 3 credits, 3 contact hours.
This course is an introduction to the Java programming language teaching the foundations of writing, testing and debugging of programs. The course has three major parts. The first part teaches fundamental programming techniques that use primitive data types, variables, assignments expressions and operators, control statements, arrays and files I/O. The second part covers testing and debugging, and teaches students how to write programs that work reliably. The third part introduces object-oriented programming.

IS 531. Database Fundamentals. 3 credits, 3 contact hours.
This course gives students extensive, pragmatic experience in designing, building, querying, updating, maintaining and managing relational databases, using the Structured Query Language (SQL). We will start our journey by analyzing what database is and why it is superior to other data management methods. We will then conduct logical and physical database design. SQL will be extensively covered, and students will design and implement sophisticated SQL queries invoking self-joins, outer joins, correlated subqueries and related concepts. Hands-on experience will be gained by working with actual databases using industry-standard database management systems such as Oracle.

IS 565. Aspects Of Information Systems. 3 credits, 3 contact hours.
Methods and models of supporting the management process; ethical issues pertaining to the construction, deployment, and impact of information systems on organizations and society; description, analysis, and design of information systems to assist problem solving and decision-making in a business environment.

IS 590. Graduate Co-op Work Experience I. 3 credits, 3 contact hours.
Prerequisite: students must have the approval of the co-op advisor for the IS department. Provides on-the-job reinforcement and application of concepts presented in the graduate IS curriculum. Work assignments are identified by the co-op office and developed and approved by the IS department in conjunction with the student and employer. Students must submit, for IS department approval, a proposal detailing the nature of the intended work. A report at the conclusion of each semester's work experience is required. Credits for this course may not be applied toward degree requirements for either the bachelor's or master's in IS.

IS 591. Graduate Co-op Work Experience II. 3 credits, 3 contact hours.
Prerequisite: students must have the approval of the co-op advisor for the IS department. Provides on-the-job reinforcement and application of concepts presented in the graduate IS curriculum. Work assignments are identified by the co-op office and developed and approved by the IS department in conjunction with the student and employer. Students must submit, for IS department approval, a proposal detailing the nature of the intended work. A report at the conclusion of the semester work experience is required. Credits for this course may not be applied toward degree requirements for either the bachelor's or master's in IS.

IS 592. Graduate Co-op Work Experience III. 3 credits, 3 contact hours.
Prerequisites: graduate standing, and acceptance by the IS department and the Division of Career Development Services. Students must have the approval of the co-op advisor for the IS department. Provides on-the-job reinforcement and application of concepts presented in the graduate IS curriculum. Work assignments are identified by the co-op office and developed and approved by the IS department in conjunction with the student and employer. Students must submit, for IS department approval, a proposal detailing the nature of the intended work. A report at the conclusion of the semester work experience is required. Credits for this course may not be applied toward degree requirements for either the bachelor's or master's in IS.

IS 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisites: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

IS 601. Web Systems Development. 3 credits, 3 contact hours.
Prerequisites: NONE Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.
IS 612. Emergency Management Informatics. 3 credits, 3 contact hours.
This course covers core aspects of Emergency Management (EM) as they relate to information systems and usage of associated technologies. EM theory identifies four critical areas: 1) understanding & mitigating risk, 2) planning & preparedness, 3) reaction & response, 4) recovery & normalization. The role of informatics for each critical area will vary and is the basis for discussions and assignments. This course also focuses on innovative information systems approaches to EM in each area. Within the EM domain, business continuity (information processing and sharing during crisis situations), cyberterrorism, and international response are covered.

IS 613. Design of Emergency Management Information Systems. 3 credits, 0 contact hours.
This course is concerned with the development of requirements, the design of the human interaction, and the supporting functionality of any Information System related to the complete preparedness lifecycle for emergency, disaster, and crisis situations for government bodies, non-profit, and/or private organizations that are concerned with business continuity. It also focuses on organizational behavior and its effects on the functionality of the system and the design of the human interface.

IS 614. Command and Control Systems. 3 credits, 3 contact hours.
This course investigates the relevance and applicability of using of Command and Control (C2) models in organizational responses to both normal emergencies and catastrophic events. C2 refers to how leadership, authority, decision-making and coordination are assured within an organization, including distributed and virtual organizations. The course examines the functionality and properties of C2 systems in terms of matching requirements for these systems to the behavior of individuals, groups, and organizations during emergency conditions. It will address integrating systems and technologies within organizational emergency operations functions and processes to include business continuity and disaster response.

IS 616. Learning Methodologies and Training Technologies. 3 credits, 3 contact hours.
This course provides an overview of learning methodologies and training technologies, with an emphasis on emergency management. It reviews theories and develops skills for the planning, evaluation and selection of traditional and new technology-driven learning and training methods. Course participants will review relevant research and learn how to choose the most effective training methodologies, technologies and content resources appropriate to the needs of different audiences.

IS 631. Enterprise Database Management. 3 credits, 3 contact hours.
Prerequisites: IS 601 This course provides an understanding of the issues as well as hands-on experience in managing database systems as an essential organizational resource. Students will obtain a conceptual foundation of database design and explore the implications for organizational database usage. Students also will gain experience with enterprise database management systems, such as Oracle. This course introduces the design and management of enterprise-wide database systems. Topics include: (1) data modeling and database design; (2) database implementation with SQL; (3) database access standards for enterprise database systems; (4) multidimensional databases, online analytic processing (OLAP) and data warehousing, customer relationship management (CRM); and (5) web-based enterprise database systems.

IS 634. Information Retrieval. 3 credits, 3 contact hours.
Prerequisites: IS 601 Modern information retrieval systems, such as web search engines, empower users to easily access information on the web. The course covers the concepts and principles of information retrieval systems design, including web crawling, automatic indexing, vector space modeling, retrieval algorithms, digital libraries, text mining, information extraction, and document warehousing. These techniques are essential for building web systems, text databases, document processing systems, and other advanced information management systems.

IS 661. User Experience Design. 3 credits, 3 contact hours.
This is a foundation course on the design of digital products. User eXperience Design (UXD) isn't just about making interfaces usable. It is about designing and building relevant and successful products. Effective UXD requires a mix of Interaction Design (ID) methods and processes. This course takes you through the process of creating compelling interaction designs for digital products from the idea stage into creating a simple and intuitive user experience blueprint. You will 'learn by doing' in a team environment, enabling you to practice the techniques with coaching from instructors. The course will demystify Lean UX; Agile UX; Human Computer Interaction (HCI); Design Audits and Claims analysis; Persona construction; Storyboarding; ID scenarios; ID Frameworks; Role of user-research in UX; and Design Patterns.

IS 663. System Analysis and Design. 3 credits, 3 contact hours.
Pre or Corequisite: IS 601 This course develops the skills necessary to analyze, design and manage the development of effective enterprise-scale information systems solutions incorporating contemporary methods and effective organizational and global project management practices. It focuses on technical business systems analysis and design techniques, and covers key software engineering principles, methods and frameworks, including process models, agile and lean principles, project and risk management, estimation, requirements elicitation and analysis, modeling, system and software architecture, design patterns, and quality systems. Students will actively participate in discussions, review selected articles, participate in team exercises and collaborate on projects involving analysis and prototyping of applications addressing real-world problems and integrating current and emerging technologies.

IS 664. Customer Discovery. 3 credits, 3 contact hours.
‘Customer Discovery’ is the term used by lean startup companies to describe the process of directly engaging with customers to explore potential new markets. Such evidence-based entrepreneurship guides the potential for new product ideas early in the development process. Similarly, high-tech innovators in new media, web, software apps, social networking, wearable computing, and mobile devices need to determine early on if their proposed solutions address real user needs. They do this by understanding potential user's practice, preferences and mental models. As a result, knowledge of a basic set of qualitative customer discovery methods is essential for both the lean startup entrepreneur and those engaged in interaction design innovation. This course teaches these methods through hands-on team projects. Students will design and run interview and diary studies, thinking out-loud protocols and focus groups, and analyze and report on findings. Students will explore over the course of the semester a problem domain and gain understanding of customer needs that will serve as a foundation for high-tech, innovative product design.
IS 665. Data Analytics for Info System. 3 credits, 3 contact hours.
Prerequisites: IS 601 This course gives a graduate level introduction to data analysis, probability and statistics from an information systems perspective, including many of the techniques that are most relevant to the profession of Data Scientist for business, data and web analytics, as well as current data sets. We will learn and conduct Python, matlab and R based manipulation of data. Course topics include the rudiments of probability and random variables, estimation, special distribution and sampling, Markov processes, hypothesis testing, graphics and visualization.

IS 676. Requirements Engineering. 3 credits, 3 contact hours.
Corequisites: IS 663 or CS 673 or equivalent project experience in the field. Requirements engineering is one of the all-important beginning stages of the systems development life cycle. Revealing and understanding the system's requirements is a crucial component of success for developing new computing systems or adjusting existing applications. This course covers the theory, principles, and practical application of the methodologies and tools for requirements engineering. The focus is development of large software systems and the integration of multiple systems into a comprehensive, domain dependent solution. All aspects of requirements engineering including the knowledge and skills needed to elicit and analyze requirements, translate these requirements into technical specifications, verify that the requirements accurately capture the system requirements, and manage software requirements through the system development cycle will be covered. Students will actively participate in discussions, labs and exercises, and prepare operational requirements and technical specifications for real-world problems. We will spend a considerable amount of time interacting and learning through discussion of assigned readings and other material.

IS 677. Information System Principles. 3 credits, 3 contact hours.
This course introduces the field of Information Systems; the study of how people and organizations should use information technologies effectively. We examine the major areas in the field, analyzing the major issues, trends and problems. We survey the role of information systems in organizations and how these systems support organizational objectives and organizational structure, as well as providing competitive business advantages. We discuss basic concepts such as the systems point of view, the organization of a system, the nature of information and information flows, as well as how people process information and related cognitive concepts. We also examine various types of information system applications such as e-commerce, supply chain, decision support, and enterprise systems. And, finally, we also consider critical ethics issues including privacy, personalization and security.

IS 678. IT Service Management. 3 credits, 3 contact hours.
Prerequisites: IS 663 or CS 673 This course introduces the Information Technology Infrastructure Library (ITIL) fundamentals of the service management life cycle-service strategy, service design, service transition, service operation, and continual service improvement. ITIL provides a comprehensive, consistent, and coherent framework of best practices for IT Service Management (ITSM), which promotes a quality approach for achieving business effectiveness and efficiency in the use of information systems. This course presents the basic terminology and an overview of the functions and processes for each of the life cycle phases as they apply to IT Management. Although ITIL is originally presented as an approach for designing IT processes, we can expand this view and apply it to the design of other business services. Possible semester-long contexts are the processes of an educational services provider or health care services provider.

IS 680. Information Systems Auditing. 3 credits, 3 contact hours.
Due to the dynamic nature of information technology, the need arises continually to redefine audit, control and security requirements and processes. Topics include the IS audit process, IT infrastructure and operations, information protection, disaster recovery and business continuity, IT service delivery and support, business application systems, and project management. Students gain practical experience with each by working through a series of sample Certified Information Systems Audit (CISA) exam questions.

IS 681. Computer Security Auditing. 3 credits, 3 contact hours.
This course reflects the current emphasis on information security and security management in Fortune 500 corporations. Students will delve into information protection concepts, privacy impact analysis, computer crime, legal issues, controls and auditing systems, and firewall configuration. Students will have the opportunity to learn and perform evaluations on security infrastructures in a controlled environment in class labs by completing realistic security auditing projects and using vulnerability assessment tools to assess risks and evaluate security controls on networked infrastructures.

IS 682. Forensic Auditing for Computing Security. 3 credits, 3 contact hours.
A computer forensics audit is the proper identification and collection of computer evidence. Computers are involved in security violations through crime or violations of policy, or being targeted by an attack. This course deals with the preservation, identification, extraction, documentation, reporting, acquisition, analysis and interpretation of computer data. Topics covered include evidence handling, chain of custody, collection, preservation, identification and recovery of computer data. In this hands-on course, you will conduct several labs where you will be taught to analyze, review and extract information from computer hard drives, and determine what and how the information could have been compromised. Computer Forensics Audit professionals become experts in e-discovery and preserving sensitive evidential matter.

IS 683. Web Systems Development. 3 credits, 3 contact hours.
Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 684. Business Process Innovation. 3 credits, 3 contact hours.
Prerequisites: IS 663 or CS 673 This course adopts a balanced approach to business process innovation (BPI) that includes both incremental improvement and re-engineering. It specifically examines the concept of a service-oriented architecture (SOA) and the use of web services as a way to enable scalable and adaptive business processes. Students will learn how to develop process maps using the Business Process Modeling Notation (BPMN) and design process improvements to achieve efficiency, effectiveness, compliance and agility objectives. The focus of the course is on ways in which information technology can be used to manage, transform and improve business processes.
IS 685. Enterprise Architecture and Integration. 3 credits, 3 contact hours.
Prerequisites: None, but recommend completion of IS 663 or CS 673. The Enterprise Architecture (EA) describes an organization’s IT strategy and operational structure. IS and IT professionals utilize the EA to analyze, design and integrate the (often heterogeneous) IT infrastructure and applications to most effectively support the enterprise and respond to risks. Students learn to develop an EA analysis which reflects its business strategies, capabilities, processes, and systems, metrics, information resources, and networking infrastructure. This enables students to determine the impact of IT solutions, by learning to deconstruct, analyze and configure IT systems in alignment with enterprise-wide business strategies. The course covers the industry standard The Open Group Architecture Framework (TOGAF) enterprise architecture framework and focuses on Enterprise Application Integration (EAI).

IS 686. Pervasive Computing: An HCI Perspective. 3 credits, 3 contact hours.
This course examines Pervasive/Ubiquitous Computing, the trend toward increasingly ubiquitous connected computing devices in the environment - a trend being brought about by a convergence of advanced electronic, and particularly, wireless technologies and the internet. We do this from a Human Computer Interaction perspective looking at the current and future design of various systems.

IS 687. Transaction Mining and Fraud Detection. 3 credits, 3 contact hours.
Prerequisites: IS 665 Increasingly, all of our transactions are electronic. We use debit and credit cards (electronic transactions) instead of checks and cash at banks, restaurants, stores, and many other businesses. Evaluation of transactions to find risk includes detection of terrorists and money launderers. Every financial institution is legally required to monitor transactions to detect organized crime and terrorism. Mining transaction streams to find good or bad customers in a rapidly growing area of employment for IS graduates. This course will present methods that are being used to analyze and mine transactional data and the business applications of these methods.

IS 688. Web Mining. 3 credits, 3 contact hours.
Prerequisite: IS 665. Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents and usage logs. It has direct applications in e-commerce, Web analytics, information retrieval/filtering, personalization, and recommender systems. Employees knowledgeable about Web mining techniques and their applications are highly sought by major Web companies such as Google, Amazon, Yahoo, MSN and others who need to understand user behavior and utilize discovered patterns from terabytes of user profile data to design more intelligent applications. The primary focus of this course is on Web usage mining and its applications to business intelligence and biomedical domains. We learn techniques from machine learning, data mining, text mining, and databases to extract useful knowledge from the Web and other unstructured/semistructured, hypertextual, distributed information repositories. This data could be used for site management, automatic personalization, recommendation, and user profiling. Topics covered include crawling, indexing, ranking and filtering algorithms using text and link analysis, applications to search, classification, tracking, monitoring, and Web intelligence. Programming assignments give hands-on experience. A group project highlights class topics.

IS 689. Web Services and Middleware. 3 credits, 3 contact hours.
Prerequisite: IS 601. Web services enable integration of web-based applications and feature sets to any other web-based system in a modular way. Middleware is a set of functionality positioned in between and enabling interoperability among different, distributed enterprise and other computing applications. This course provides an introduction to web services and middleware in the context of digital libraries - large scale multimedia information repositories. Students will gain hands-on experience developing their own web services managing a complex distributed computing platform.

IS 698. Special topics in Information Systems. 3 credits, 3 contact hours.
Special area course given when suitable interest develops. Advance notice of forthcoming topics will be given.

IS 700. Master's Project. 0 credits, 0 contact hours.
An approved project involving design, implementation, and analysis, or theoretical investigation, under the guidance of a faculty member. Students are strongly advised to work with the faculty member to develop a project proposal during the semester prior to conducting the master's project. Approval to register for the project must be obtained from the faculty member advising the project.

IS 700B. Master's Project. 3 credits, 3 contact hours.
An approved project involving design, implementation, and analysis, or theoretical investigation, under the guidance of a faculty member. Students are strongly advised to work with the faculty member to develop a project proposal during the semester prior to conducting the master's project. Approval to register for the project must be obtained from the faculty member advising the project.

IS 700C. Master's Project. 6 credits, 6 contact hours.
An approved project involving design, implementation, and analysis, or theoretical investigation, under the guidance of a faculty member. Students are strongly advised to work with the faculty member to develop a project proposal during the semester prior to conducting the master's project. Approval to register for the project must be obtained from the faculty member advising the project.

IS 701. Master's Thesis. 0 credits, 0 contact hours.
An approved research-oriented project involving design, implementation, and analysis or theoretical investigation, carried out under the supervision of a faculty member who will be the thesis advisor. The thesis should be of such depth and caliber as to warrant publication in a technical or scientific journal. Approval to register for the thesis must be obtained from the thesis advisor. A student must register for a minimum of 3 credits per semester. Credit will be limited, however, to the 6 credits required for the thesis. Students are strongly advised to work with the thesis advisor to develop a thesis proposal during the semester prior to commencing the project.
IS 701B. Master’s Thesis. 3 credits, 3 contact hours.
An approved research-oriented project involving design, implementation, and analysis or theoretical investigation, carried out under the supervision of a faculty member who will be the thesis advisor. The thesis should be of such depth and caliber as to warrant publication in a technical or scientific journal. Approval to register for the thesis must be obtained from the thesis advisor. A student must register for a minimum of 3 credits per semester. Credit will be limited, however, to the 6 credits required for the thesis. Students are strongly advised to work with the thesis advisor to develop a thesis proposal during the semester prior to commencing the project.

IS 701C. Master’s Thesis. 6 credits, 3 contact hours.
An approved research-oriented project involving design, implementation, and analysis or theoretical investigation, carried out under the supervision of a faculty member who will be the thesis advisor. The thesis should be of such depth and caliber as to warrant publication in a technical or scientific journal. Approval to register for the thesis must be obtained from the thesis advisor. A student must register for a minimum of 3 credits per semester. Credit will be limited, however, to the 6 credits required for the thesis. Students are strongly advised to work with the thesis advisor to develop a thesis proposal during the semester prior to commencing the project.

IS 725. Independent Study in Information Systems. 3 credits, 3 contact hours.
Prerequisites: Graduate standing and department consent.

IS 726. Independent Research II. 3 credits, 3 contact hours.

IS 727. Independent Research III. 3 credits, 1 contact hour.

IS 735. Social Media. 3 credits, 3 contact hours.
Prerequisite: IS 665 or MATH 661, or a graduate course in statistics or course in quantitative research methods. Seminar style course that covers design and impact of computer-based systems for human communication, including email and IM, discussion boards, Computer-Supported Cooperative Work (CSCW), Group Decision Support Systems (GDSS), and Social Networking Systems. Topics include alternative design structures, impacts of primarily text-based group communication, and recent empirical studies of virtual teams, online communities, and systems used for social networking, including 3-D worlds such as Second Life and “micro blogging” systems such as Twitter.

IS 746. Research Methods for Human-Centered Computing and Design. 3 credits, 0 contact hours.
Prerequisites: None. This introductory seminar in human centered computing and design provides a survey of the methodological literature on qualitative research methods paired with appropriate article-length exemplars. We cover a variety of different research strategies including design science, action research, case study, qualitative data collection and analysis techniques, and scenario-based design. This course develops skills in designing and evaluating systems using qualitative methods. We also discuss writing and reviewing academic articles and research proposals. The course utilizes information systems as the primary domain but could be extended for students in other disciplines.

IS 765. Quantitative Methods in Information Systems Research. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or equivalent. This course is a practical and project-oriented introduction to quantitative methods in information systems (IS) research. The focus of the course is on developing researchers’ capability to select and implement appropriate statistical procedures for a variety of research questions and to interpret the results of these procedures.

IS 766. Philosophy of Information Science. 3 credits, 3 contact hours.
This seminar explores central issues in contemporary philosophy of science. We consider “scientific” progress in the computing sciences with a focus on information systems and human computer interaction theory. We discuss topics such as confirmation and disconfirmation of theories; falsifiability and pseudo-science; introduction; probability; and statistical inference, prediction, explanation and empirical equivalence. We read key works by philosophers such as Popper and Kuhn. We examine the notion of “design science” and contrast it with “natural science”, and examine whether social science research should strive to emulate natural science methods. Readings will be tied into research within information systems and the computing sciences in general, looking at how scientific theories are tested or confirmed.

IS 776. IS Research Proposition. 3 credits, 3 contact hours.
Prerequisite: Restricted to students in the doctoral program in Information Systems. The IS Research Study serves as the Information Systems PhD qualifying exam and demonstrates research readiness. Each student works with a faculty member to identify the topic of a research study, and then takes the lead in designing and conducting the study, and analyzing the results.

IS 785. ST. 3 credits, 3 contact hours.
These seminars examine a special interest area of Information Systems in depth. Each seminar emphasizes recent work in the area selected.

IS 786. Special Topics. 3 credits, 3 contact hours.
These seminars examine a special interest area of Information Systems in depth. Each seminar emphasizes recent work in the area selected.

IS 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.
IS 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790C. Doct Dissertation & Res. 6 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 790F. Doct Dissertation & Res. 15 credits, 3 contact hours.
For PhD students who have completed the qualifying exam. Research and writing are carried out under the supervision of a designed graduate faculty member. The completed dissertation should be a substantial contribution to the knowledge of the topic under research, and of sufficient merit to warrant publication in a leading scientific or technical journal.

IS 791. Graduate Seminar. 0 credits, 0 contact hours.
A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in information systems. In the course students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.

IS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Prerequisite: permission from department chairperson. For students admitted to the doctoral program in IS who have passed the field exam or the qualifying examination. Research is carried out under the supervision of a designated faculty member. Students identify a research problem and prepare a plan to solve the problem. A maximum of 6 credits of IS 792 may be applied to the IS 790 requirement.

IT 610. System Administration. 3 credits, 3 contact hours.
Prerequisite: Completion of the Bridge requirements for the MS in IT Administration and Security (or the equivalent). This course is an introduction to the skills needed for and tasks performed by a System Administrator. The course will cover administration of host and server systems in modern operating system environments. Topics to be covered include: user, configuration, and change management, shell scripting, monitoring and performance analysis, disaster mitigation and recovery, and auditing.

IT 620. Wireless Networks Security and Administration. 3 credits, 3 contact hours.
Prerequisite: Completion of the Bridge requirements for the MS in IT Administration and Security (or the equivalent). This course introduces the fundamentals of wireless network security and administration. Topics include: wireless LAN vulnerabilities, passive and active wireless attacks, enterprise wireless hardware security, secure wireless authentication and communication, wireless intrusion detection and prevention systems, WiFi and cellular network management, location privacy, personal area network administration and security, mobile IP security, GSM, CDPD, 3G and 4G network security. The course provides both a theoretical foundation and hands-on experience in these areas.

IT 635. Database Administration. 3 credits, 3 contact hours.
Prerequisite: Completion of the Bridge requirements for the MS in IT Administration and Security (or the equivalent). This course provides a broad overview of the tasks and techniques necessary to function as a Database Administrator (DBA) in a modern relational database environment. Students will learn the duties typically performed by a DBA, which include: user authorization, disaster planning and recovery, monitoring, performance analysis, database tuning, metadata maintenance as well as data modeling, analysis and database design.

IT 640. Network Services Administration. 3 credits, 3 contact hours.
Prerequisite: Completion of the Bridge requirements for the MS in IT Administration and Security (or the equivalent). This course provides an introduction to the fundamentals of network services administration. It covers how web-based and domain-services operate, integrate and communicate. Topics include: fundamental technologies that underpin the web services paradigm, key standards necessary for their development, and how other critical domain services should be deployed. This course will enable students to gain skills necessary to plan, install, configure, secure and maintain web servers, DNS servers, email & print servers, resource sharing systems, and domain authentication systems.

IT 725. Independent Study. 3 credits, 3 contact hours.

M.S. in Business and Information Systems

(30 Credits)
M.S. in Business and Information Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Core (2 courses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 677</td>
<td>Information System Principles</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td>IS 645 Information Systems Principles</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT 615</td>
<td>Management Accounting ¹</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I ²</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior ²</td>
<td></td>
</tr>
<tr>
<td>Information Systems Core (6 courses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td>3</td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 684</td>
<td>Business Process Innovation</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 685</td>
<td>Enterprise Architecture and Integration</td>
<td>3</td>
</tr>
<tr>
<td>IS 678</td>
<td>IT Service Management</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Electives and Specialization Areas

We strongly encourage students to design and conduct a Masters Project or Thesis with an Informatics professor. If you are considering a Project or Thesis, please consult the professor early to determine the best electives to support your work. IS 700 can substitute for one elective and IS 701 for two electives, and be considered part of a specialization with the MS Advisor's permission.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two of the following electives or ²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Select IS 700B and one of the following electives or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select IS 701 to substitute for both of your electives:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Electives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
<td>3</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td>3</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td>3</td>
</tr>
<tr>
<td>Additional Electives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 676</td>
<td>Cognitive Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 731</td>
<td>Applications of Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CE 602</td>
<td>Geographic Information System</td>
<td>3</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 682</td>
<td>Business Research Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PTC 628</td>
<td>Analyzing Social Networks</td>
<td>3</td>
</tr>
</tbody>
</table>
Business Decision Making

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 678</td>
<td>IT Service Management</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MIS 680</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 685</td>
<td>Operations Research and Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Competing in Global Markets</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 645</td>
<td>Internet Marketing Strategy</td>
<td>3</td>
</tr>
</tbody>
</table>

Healthcare Informatics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 639</td>
<td>Elec. Medical Records: Med Terminologies and Comp. Imp.</td>
<td>3</td>
</tr>
<tr>
<td>IE 686</td>
<td>Intro to Healthcare Systems</td>
<td>3</td>
</tr>
<tr>
<td>IE 687</td>
<td>Healthcare Enterprise Systems</td>
<td>3</td>
</tr>
<tr>
<td>IE 688</td>
<td>Healthcare Sys Perfor Modeling</td>
<td>3</td>
</tr>
<tr>
<td>PTC 640</td>
<td>Health Communications</td>
<td>3</td>
</tr>
<tr>
<td>R834 581</td>
<td>Health Systems and Policy</td>
<td>3</td>
</tr>
<tr>
<td>R834 582</td>
<td>Health Care Management</td>
<td>3</td>
</tr>
<tr>
<td>R834 659</td>
<td>Healthcare Finance</td>
<td>3</td>
</tr>
</tbody>
</table>

User Experience Design

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>4</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td>4</td>
</tr>
<tr>
<td>IS 686</td>
<td>Pervasive Computing: An HCI Perspective</td>
<td>3</td>
</tr>
<tr>
<td>IS 735</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
<td>3</td>
</tr>
<tr>
<td>IE 662</td>
<td>Cognitive Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IE 664</td>
<td>Advanced Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>PTC 606</td>
<td>Advanced Information Design</td>
<td>3</td>
</tr>
<tr>
<td>PTC 629</td>
<td>Theory and Practice of Social Media</td>
<td>3</td>
</tr>
<tr>
<td>PTC 650</td>
<td>eLearning Design for Mobile</td>
<td>3</td>
</tr>
</tbody>
</table>

Security and Network Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
<td>3</td>
</tr>
<tr>
<td>CS 652</td>
<td>Computer Networks-Architectures, Protocols and Standards</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>CS 756</td>
<td>Mobile Computing and Sensor Networks</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td>3</td>
</tr>
</tbody>
</table>
Systems Analysis and Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 676</td>
<td>Requirement Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IS 683</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 685</td>
<td>Enterprise Architecture and Integration</td>
<td>3</td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td>3</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
<td>3</td>
</tr>
<tr>
<td>CS 683</td>
<td>Software Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>CS 685</td>
<td>Software Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 636</td>
<td>Design and Development of High Technology Products</td>
<td>3</td>
</tr>
</tbody>
</table>

Web Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
<td>3</td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td>3</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td>3</td>
</tr>
<tr>
<td>IS 690</td>
<td>Web Services and Middleware</td>
<td>3</td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>PTC 628</td>
<td>Analyzing Social Networks</td>
<td>3</td>
</tr>
<tr>
<td>PTC 632</td>
<td>Content Management and Information Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Build Your Own Specialization

Students may propose a coherent set of courses that have a common thread related to an area that you are interested in. The MS BIS advisor approves the proposed specialization.

1. Students who have taken an undergraduate equivalent of one of these courses may substitute up to one business core course with an additional elective.

2. Students may optionally choose 2 or more courses from a single area, which will constitute a specialization.

4. Students considering a Master's Project or Thesis with the User Experience specialization are encouraged to take both IS 661 User Experience Design and IS 664 Customer Discovery as electives.

M.S. in Information Systems

(30 Credits)

M.S. in Information Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 684</td>
<td>Business Process Innovation</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following User Experience courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following Analytics courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
<td>3</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td>3</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives and Specialization Areas

Select three of the following electives or

1. Students who have taken an undergraduate equivalent of one of these courses may substitute up to one business core course with an additional elective.

2. Students may optionally choose 2 or more courses from a single area, which will constitute a specialization.

4. Students considering a Master's Project or Thesis with the User Experience specialization are encouraged to take both IS 661 User Experience Design and IS 664 Customer Discovery as electives.
Select IS 700B and two of the following electives or
Select IS 701 and one of the following electives:

Data Analytics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
</tr>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 676</td>
<td>Cognitive Computing</td>
</tr>
<tr>
<td>CS 731</td>
<td>Applications of Database Systems</td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
</tr>
<tr>
<td>CE 602</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to Statistical Computing with SAS and R</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
</tr>
<tr>
<td>MGMT 682</td>
<td>Business Research Methods I</td>
</tr>
<tr>
<td>PTC 628</td>
<td>Analyzing Social Networks</td>
</tr>
</tbody>
</table>

Business Decision Making

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 677</td>
<td>Information System Principles</td>
</tr>
<tr>
<td>IS 678</td>
<td>IT Service Management</td>
</tr>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
</tr>
<tr>
<td>MIS 680</td>
<td>Management Science</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
</tr>
<tr>
<td>MGMT 685</td>
<td>Operations Research and Decision Making</td>
</tr>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
</tr>
<tr>
<td>MGMT 710</td>
<td>Forecasting Methods for Business Decisions</td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Competing in Global Markets</td>
</tr>
<tr>
<td>MRKT 645</td>
<td>Internet Marketing Strategy</td>
</tr>
</tbody>
</table>

Healthcare Informatics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 686</td>
<td>Intro to Healthcare Systems</td>
</tr>
<tr>
<td>IE 687</td>
<td>Healthcare Enterprise Systems</td>
</tr>
<tr>
<td>IE 688</td>
<td>Healthcare Sys Perfor Modeling</td>
</tr>
<tr>
<td>PTC 640</td>
<td>Health Communications</td>
</tr>
<tr>
<td>RB34 581</td>
<td>Health Systems and Policy</td>
</tr>
<tr>
<td>RB34 582</td>
<td>Health Care Management</td>
</tr>
<tr>
<td>RB34 659</td>
<td>Healthcare Finance</td>
</tr>
</tbody>
</table>

User Experience Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
</tr>
<tr>
<td>IS 686</td>
<td>Pervasive Computing: An HCI Perspective</td>
</tr>
<tr>
<td>IS 735</td>
<td>Social Media</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
</tr>
<tr>
<td>IE 662</td>
<td>Cognitive Engineering</td>
</tr>
<tr>
<td>IE 664</td>
<td>Advanced Ergonomics</td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
</tr>
<tr>
<td>PTC 606</td>
<td>Advanced Information Design</td>
</tr>
<tr>
<td>PTC 629</td>
<td>Theory and Practice of Social Media</td>
</tr>
<tr>
<td>PTC 650</td>
<td>eLearning Design for Mobile</td>
</tr>
<tr>
<td>Security and Network Management</td>
<td></td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
</tr>
<tr>
<td>CS 646</td>
<td>Network Protocols Security</td>
</tr>
<tr>
<td>CS 647</td>
<td>Counter Hacking Techniques</td>
</tr>
<tr>
<td>CS 651</td>
<td>Data Communications</td>
</tr>
<tr>
<td>CS 652</td>
<td>Computer Networks-Architectures, Protocols and Standards</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
</tr>
<tr>
<td>CS 755</td>
<td>Security and Privacy in Wireless Networks</td>
</tr>
<tr>
<td>CS 756</td>
<td>Mobile Computing and Sensor Networks</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
</tr>
<tr>
<td>Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
</tr>
<tr>
<td>IS 676</td>
<td>Requirement Engineering</td>
</tr>
<tr>
<td>IS 685</td>
<td>Enterprise Architecture and Integration</td>
</tr>
<tr>
<td>CS 673</td>
<td>Software Design and Production Methodology</td>
</tr>
<tr>
<td>CS 683</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
</tr>
<tr>
<td>CS 685</td>
<td>Software Architecture</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
</tr>
<tr>
<td>MRKT 636</td>
<td>Design and Development of High Technology Products</td>
</tr>
<tr>
<td>Web Systems</td>
<td></td>
</tr>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
</tr>
<tr>
<td>IS 690</td>
<td>Web Services and Middleware</td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
</tr>
<tr>
<td>PTC 628</td>
<td>Analyzing Social Networks</td>
</tr>
<tr>
<td>PTC 632</td>
<td>Content Management and Information Architecture</td>
</tr>
<tr>
<td>Build Your Own Specialization</td>
<td></td>
</tr>
</tbody>
</table>

Students may propose a coherent set of courses that have a common thread related to an area that you are interested in. The MS IS advisor approves the proposed specialization.
Please consult the professor or academic advisor early to determine the best electives to support your work.

Students may optionally choose 2 or more courses from a single area, which will constitute a specialization. Students will choose 3 electives if taking the course-only option, 2 electives if taking IS 700B Master's Project, or 1 elective if taking IS 701B Master's Thesis. We strongly encourage students to design and conduct a Master Project or Master Thesis with an Informatics professor. If you are considering a Project or Thesis, please consult the professor early to determine the best electives to support your work. A Master Project or Master Thesis can be considered part of a specialization with the MS Advisor's permission.

Students considering a Master's Project or Thesis with the User Experience specialization are encouraged to take both IS 661 User Experience Design and IS 664 Customer Discovery - one as a core course and the other as an elective.

MS in Information Systems – Professional Management Option (36 credits)

- All 7 MSIS core courses (21 credits) are required.
- Experiential Aspect: A one-semester IS Capstone Project (IS 700B - 3 credits), two-semester MS Thesis (IS 701 – 6 credits), or Co-Op experience (not counting towards degree credits) is required.
- Electives: To meet the 36-credit requirement, students will take 9-15 credits of electives, where each elective course is 3 credits. The electives required will depend on which Experiential Aspect is chosen.
 - Students who take the IS Capstone Project (IS 700B - 3 credits) must take 4 elective courses: 1 course from the list of IS electives, 1-2 courses from the list of PTC electives and 1-2 courses from the list of Management electives.
 - Students who take the MS Thesis (IS 701 – 6 credits) must take 3 elective courses: 1-2 courses from the list of PTC electives and 3-6 credits from the list of Management electives.
 - Students who take the Co-Op experience (IS 590) must take 5 elective courses: 1-2 courses from the list of IS electives, 1-3 courses from the list of PTC electives and 1-3 courses from the list of Management electives.

MS IS Core Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td>3</td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 684</td>
<td>Business Process Innovation</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following Analytics courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
</tr>
</tbody>
</table>

IS Experiential Aspect

Select one of the following Capstone or Co-op options. The Co-op does not count towards the degree credits. All Experiential options will be undertaken in collaboration with industry, and evaluated by a faculty member.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
<tr>
<td>IS 701B</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>IS 701C</td>
<td>Master's Thesis</td>
<td>1</td>
</tr>
</tbody>
</table>

Information System Electives

Students who take the IS Capstone Project (IS 700B) choose 1 IS elective. Students who take the MS Thesis (IS 701) choose no IS electives.

Students who take the Co-Op experience (IS 590) choose 1-2 IS electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
</tr>
<tr>
<td>IS 676</td>
<td>Requirement Engineering</td>
</tr>
<tr>
<td>IS 677</td>
<td>Information System Principles</td>
</tr>
<tr>
<td>IS 678</td>
<td>IT Service Management</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
</tr>
<tr>
<td>IS 685</td>
<td>Enterprise Architecture and Integration</td>
</tr>
<tr>
<td>IS 686</td>
<td>Pervasive Computing: An HCI Perspective</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
</tr>
<tr>
<td>IS 735</td>
<td>Social Media</td>
</tr>
</tbody>
</table>

Code

PTC (Professional and Technical Communications) Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC 601</td>
<td>Advanced Professional and Technical Communication</td>
<td></td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td></td>
</tr>
<tr>
<td>PTC 606</td>
<td>Advanced Information Design</td>
<td></td>
</tr>
<tr>
<td>PTC 610</td>
<td>Research Methods for Information Design</td>
<td></td>
</tr>
<tr>
<td>PTC 620</td>
<td>Proposal Writing</td>
<td></td>
</tr>
<tr>
<td>PTC 622</td>
<td>Working in Teams: Collaborative and Interpersonal Communications</td>
<td></td>
</tr>
<tr>
<td>PTC 624</td>
<td>Professional and Technical Editing</td>
<td></td>
</tr>
<tr>
<td>PTC 628</td>
<td>Analyzing Social Networks</td>
<td></td>
</tr>
<tr>
<td>PTC 629</td>
<td>Theory and Practice of Social Media</td>
<td></td>
</tr>
<tr>
<td>PTC 632</td>
<td>Content Management and Information Architecture</td>
<td></td>
</tr>
<tr>
<td>PTC 6XX</td>
<td>User Experience Design</td>
<td></td>
</tr>
</tbody>
</table>

Code

Management Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td></td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td></td>
</tr>
<tr>
<td>MIS 680</td>
<td>Management Science</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 641</td>
<td>Global Project Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 682</td>
<td>Business Research Methods I</td>
<td></td>
</tr>
<tr>
<td>MGMT 685</td>
<td>Operations Research and Decision Making</td>
<td></td>
</tr>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
<td></td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues</td>
<td></td>
</tr>
<tr>
<td>MGMT 710</td>
<td>Forecasting Methods for Business Decisions</td>
<td></td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Competing in Global Markets</td>
<td></td>
</tr>
<tr>
<td>MRKT 636</td>
<td>Design and Development of High Technology Products</td>
<td></td>
</tr>
<tr>
<td>MRKT 645</td>
<td>Internet Marketing Strategy</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Information Technology Administration and Security

Master of Science in Information Technology Administration and Security (MSITAS)

(30 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 120</td>
<td>Introduction to Network Technology</td>
<td>3</td>
</tr>
<tr>
<td>IT 220</td>
<td>Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>IT 230</td>
<td>Computer and Network Security</td>
<td>3</td>
</tr>
<tr>
<td>IT 340</td>
<td>Introduction to System Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 420</td>
<td>Computer Systems and Networks</td>
<td>3</td>
</tr>
<tr>
<td>IS 331</td>
<td>Database Design Management and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 21

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 610</td>
<td>Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 635</td>
<td>Database Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 30

Elective Courses

Select four of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>or IS 631</td>
<td>Enterprise Database Management</td>
<td></td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td></td>
</tr>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td>1</td>
</tr>
<tr>
<td>or ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td></td>
</tr>
<tr>
<td>CS 698</td>
<td>ST:</td>
<td></td>
</tr>
<tr>
<td>IS 677</td>
<td>Information System Principles</td>
<td></td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td></td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td></td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
<td></td>
</tr>
<tr>
<td>ECE 645</td>
<td>Design of Wireless Networks: 5G Architecture and Services</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 12

1 ECE course substitution for CS 652 Cognitive Cloud Networking - Architectures and Applications and CS 656 Internet and Higher-Layer Protocols is only for students with ECE background and upon approval of the graduate advisor.

Master of Science in Information Technology Administration and Security (MSITAS)

Professional Management Option

The objective of the Professional Management Option in the MSITAS degree is to create leaders with both the technical and managerial skills to be of benefit to an organization. Students in this degree program should have both an undergraduate degree in a computing related field and significant experience working in the field.
CURRICULUM DESIGN

A student in the MS in Administration & Security (MSITAS) – Professional Management PSM Option must satisfy the following requirements:

- 33 credits are required.
- 5 MSITAS core courses (15 credits) are required.
- Experiential Aspect: A one-semester Graduate Capstone Project (YWCC 691) - 3 credits - is required.
- Electives: To meet the 33 credit requirement, students will take 15 credits of electives, where each elective course is 3 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 610</td>
<td>Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 635</td>
<td>Database Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
</tbody>
</table>

Management Electives (5 courses from the following list) 15

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td></td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 641</td>
<td>Global Project Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 682</td>
<td>Business Research Methods I</td>
<td></td>
</tr>
<tr>
<td>MGMT 688</td>
<td>Information Technology, Business and the Law</td>
<td></td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td></td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Global Marketing Management</td>
<td></td>
</tr>
<tr>
<td>MRKT 636</td>
<td>Design and Development of High Technology Products</td>
<td></td>
</tr>
<tr>
<td>MRKT 645</td>
<td>Digital Marketing Strategy</td>
<td></td>
</tr>
</tbody>
</table>

Required Experiential Capstone (3 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Experiential Aspect</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>All Experiential options will be undertaken in collaboration with industry, and evaluated by a faculty member.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YWCC 691</td>
<td>Graduate Capstone Project</td>
<td>3</td>
</tr>
</tbody>
</table>

The YWCC (http://catalog.njit.edu/search/?P=CS%20700B) Graduate Capstone Project provides the student with opportunities to work with industry or faculty sponsored problems that encompass real-world examples of system administration & management in the industry. Projects are completed as a team and range from application or web development, game programming, virtual reality, multimedia or web and network security.

Project Requirements

- Before a student pursues the Graduate Capstone Project, the following requirements must be fully satisfied:
 - All assigned bridge courses must be completed. In addition, the student must complete IT 114 as well as IT 610 and IT 635. IT 114 would normally be assigned as bridge if the student did not have an equivalent course completed. IT 610 and 635 are required core courses of the degree.
 - Students will be formed into teams and assigned to a relevant project based upon their experience and interests. Projects will be guided by industry or faculty members
 - A CS Department tenure-track faculty member or a faculty member who holds a joint appointment in the computer science department will grade the overall project based upon the evaluation of the industry representative(s).
 - Proposal preparation must adhere to the existing departmental guidelines; the information and templates are available online.
Ph.D. in Information Systems

Degree Requirements

To graduate, students must have an approved dissertation and are expected to attain an overall GPA of at least 3.5. Students need always to get approval of the Ph.D. Graduate Committee for the courses they take for their degree requirements.

Ph.D. Information Systems
(Students with a master’s in information science or related computational degree).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700-level courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>600-level courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Dissertation</td>
<td>IS790 Doct Dissetation & Res</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>IS 791 Doctoral Seminar</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Ph.D. Information Systems
(Students with a bachelors in information science or related computational degree).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 and 700-level courses</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Dissertation</td>
<td>IS790 Doct Dissetation & Res</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>IS 791 Doctoral Seminar</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

1. Ph.D. students with a recognized master’s degree are required to take four 600-level classes and four 700-level classes. Ph.D. students with a Baccalaureate degree are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits). Master’s project (course 700), Master’s thesis (course 701), or more than two independent study courses (courses 725 and 726) cannot be used to satisfy these coursework requirements. No more than 6 credits may be IS725 or IS726 Independent Study. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student’s dissertation committee may ask the student to take additional courses.

2. Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (IS 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (IS790 Doct Dissertation & Res) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 courses as per Ph.D. program guidelines or dissertation committee recommendation.

3. Ph.D. students must register six semesters for this seminar. Students must attend at least 5 seminars per semester. Part-time students may request that this requirement be waived for some semesters. Exit requirements for IS791 Graduate Seminar include presentations in research group meetings and satisfactory reviewing performance on research proposition panels.

4. Students without a background in information science or computer science may need to take some added foundational courses in programming or computational methods.

Deadlines

Students who do not meet the following deadlines may be dismissed from the Ph.D. program.
• The required coursework for the Ph.D. program should be completed successfully by the end of the second year in the program.

• The qualifying exam should be completed no later than the first semester of the third year in the program or four semesters after registering for the first time in the 792 pre-doctoral research course.

• The dissertation proposal should be defended successfully by the end of the third year in the Ph.D. program.

• The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

Selection of Dissertation Advisor
Temporary advisors are assigned upon entry into the program based on student preferences and availability of funding. Students must select a dissertation topic and permanent advisor within 18 months of joining the program. Change of advisor should have the consent of the previous advisor in most cases and departmental approval. In cases where more than one advisor is directing the dissertation, the primary advisor must be on the core departmental faculty.

Qualifying Exam: Research Study
The research study serves as the Ph.D. qualifying exam and demonstrates research readiness. Each student works with their Ph.D. advisor to identify the topic of a research study. The student takes the lead in designing and conducting the study and analyzing the results.

Timing of the Qualifying Exam: The study proposal should be submitted during the first semester of the third academic year. At the start of the second semester, the student will present the study and results in a department seminar, and prepare a quality publication as lead author. Recommended revisions to the study and publication should be completed by the end of the first semester of the third year. Because the study topic may be part of the faculty member’s existing research efforts, the student must petition the department Ph.D. committee to be allowed to utilize the work as a dissertation topic as well. The student will register for IS 776 under the faculty advisor to conduct this Research Study (IS 725 and IS 726 cannot be used for this Research Study).

Qualifying Exam Committee (QEC): The faculty advisor will propose a Qualifying Exam Committee (QEC) of 3 faculty members with sufficient familiarity with the topic or the study methodology. The QEC must be approved by the Department Ph.D. Committee. The faculty advisor will not be a member of the QEC. Each QEC member will vote (pass-fail) on the Research Study as a whole (considering the design, execution, analysis, and written report to be submitted for publication). The student must receive a unanimous pass vote from the QEC to pass the Qualifying Exam.

Formation of the Dissertation Committee
A dissertation committee must be formed within three months after passing the qualifying examination. The dissertation committee must be approved by the Department Ph.D. Committee at the time of its formation and before the presentation of the research proposal. The committee consists of a minimum of five members, at least one of whom is external to the Informatics Department or NJIT, and at least three of whom are members of the Informatics department.

The dissertation committee meeting chairperson typically is the doctoral candidate’s program advisor, but other faculty may be selected. The dissertation advisor must be a tenure-track or tenured faculty member at NJIT. If the dissertation advisor is an Informatics department faculty member, then the chair of the student’s dissertation committee may be any tenure-track or tenured faculty member in the Informatics Department at NJIT. If the dissertation advisor is not a member of the Informatics department at NJIT, then the chair of the student’s dissertation committee must be a tenured faculty member in the Informatics department at NJIT. If the dissertation advisor is not an Informatics department faculty member including jointly appointed faculty, there must be a co-advisor who is a faculty member in the Informatics department at NJIT.

Dissertation Research Proposal
Doctoral candidates must prepare a written research proposal for approval by their dissertation committee. The dissertation proposal is both a plan for research and a binding contract between the dissertation committee and the student. The proposal must be presented after the formation of the committee but within twelve months after passing the qualifying exam.

Research is expected to investigate or develop a unique contribution to science and technology. Research may be experimental, analytical, applied, or theoretical, provided it satisfies these criteria and is approved by the dissertation committee.

The research proposal would normally include title and goal of the proposed dissertation; a detailed discussion of background material, including a substantial literature search and review; a summary of work accomplished to date; a plan and outline of the theory, methods, and work to be done; and a proposed time table for completion of the research.

Dissertation and Defense
A dissertation should demonstrate original research that contributes to knowledge in the field. The dissertation should result in scholarly publication and must be defended in a publicly-announced oral defense.
A fully-formatted version of the completed dissertation should be available to the committee at least three (3) weeks before the oral defense is scheduled; otherwise, the meeting of the committee will be rescheduled.

A successful defense of the dissertation is determined by a vote of the dissertation committee. All members of the committee must be present to hear the defense. Every member of the dissertation committee must sign the approval page of the final dissertation document.

In regard to format, the standard reference is the latest edition of the Estrin/Roche manual Guidelines for Scientific and Professional Theses. The Office of Graduate Studies policies on the number of copies, deadlines, and submission of dissertation and abstracts are also to be followed.

Publishing Dissertation Research. Before defending the final dissertation, a student must submit a quality paper approved by his or her advisor based upon a substantial aspect of the thesis work to a recognized conference or journal in the field. Students cannot be certified by the Informatics department for the doctoral degree until the student publishes at least one paper in a peer-reviewed journal deemed of acceptable quality by the dissertation advisor.

Independent Teaching Practicum

During the practicum, a degree candidate will teach at least one course under the course coordinator's direct supervision. It is preferred that this be a class in which the student served as a teaching assistant. Students apprentice with a faculty member for a semester in preparation for a teaching practicum. During the apprenticeship, students typically will serve as a teaching assistant or grader.

Participation in Research Activities

Informatics Ph.D. seminar meetings present an important opportunity for faculty and Ph.D. students to immerse themselves in Informatics research paradigms, learn about research interests, present ideas, and find collaborators.

Publishing: Students should have one paper accepted for publication in a quality conference or journal as the lead author by the end of their third year. Students are strongly encouraged to start on this requirement during this stage and over time submit multiple papers to ensure that it is met. Students also are encouraged to co-author papers with faculty and other doctoral students.

Ongoing Activities in Ph.D. Development: As Ph.D. students are training to be future independent researchers, Ph.D. students are encouraged to work with faculty and fellow students to:

- Publish regularly in quality conferences and journals, including co-authoring,
- Attend conferences relevant to the student's research area,
- Regularly review conference and journal submissions, and
- Participate in authoring grant submissions and working on grant-funded projects.

Business and Information Systems Implementation

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/business-information-systems-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program. Changes in information technology have been substantial in recent years; such as, analysis, design and programming have become "object-oriented" and information systems are impacted by concerns for privacy, ethics, intellectual property, and compliance issues.

Who would be suited to take this program?

This certificate is designed for systems analysts, systems consultants, project managers, and development team leaders. Besides learning about IS topics such as databases, application development tools, web design, software use and evaluation, management information, and decision support systems, students will learn such business topics as accounting, finance, financial products, business operations, and marketing.

What will I learn?

In this program you'll learn:

- Basic Java constructs and syntax, as well as core advanced features
- The role of information systems in organizations, with a focus on management information systems
- And more in two elective courses

Why study Business and Information Systems Implementation at NJIT?

This certificate provides an update on current information technologies and practices. The focus is on a broad view of the delivery of data content and applications in an organization and the identification of trends that will have a major impact on future business results.

It's possible to earn the certificate entirely through online course, so you can more easily fit it into your busy life. And whether you take courses online or on campus, you'll learn from NJIT's distinguished professors and instructors of the Department of Computer Science (http://cs.njit.edu/).
Prerequisites

NJIT’s standard admission requirements apply to this graduate certificate. In addition, non-elective courses within the program require:

- Advanced web-based programming skills
- An understanding of object-oriented programming concepts such as encapsulation, inheritance, and polymorphism
- Experience with C++
- Knowledge of a higher-level programming language and a computer system

Check the course descriptions for full details.

Note: Students lacking background relevant to NJIT’s IS 513, IS 531 or IS 565 courses may need to take a placement exam, or take undergraduate bridge courses at NJIT or elsewhere. Please, contact the IS department for details. More information is found here (http://is.njit.edu/academics/graduate/PlacementExam.php).

Related Degree Programs

All track 1 credits may be applied toward the NJIT MS in Information Systems or MS in Business and Information Systems.

All track 2 credits may be applied toward the NJIT MS in Business and Information Systems (http://catalog.njit.edu/graduate/computing-sciences/information-systems/business-information-systems-ms/) or MS in Computing and Business (http://catalog.njit.edu/graduate/computing-sciences/computer-science/computing-business-ms/) or MS in Information Systems (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/)

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/transportation-studies-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>IS 684</td>
<td>Business Process Innovation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives: Select (1) of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 602</td>
</tr>
<tr>
<td>IS 631</td>
</tr>
<tr>
<td>IS 661</td>
</tr>
<tr>
<td>ACCT 615</td>
</tr>
<tr>
<td>HRM 601</td>
</tr>
<tr>
<td>IS 677</td>
</tr>
<tr>
<td>or MIS 645</td>
</tr>
<tr>
<td>IS 678</td>
</tr>
</tbody>
</table>

IT Administration

According to the U.S. Bureau of Labor Statistics, employment of network and computer systems administrators is expected to increase by 27 percent by 2016. This growth translates into a need for systems administrators who can help organizations use technology to communicate with employees, clients, and consumers. Demand for computer security specialists will grow as businesses and government continue to invest heavily in “cyber security,” protecting vital computer networks and electronic infrastructures from attack. The information security field is expected to generate many new systems administrator jobs over the next decade as firms across all industries place a high priority on safeguarding their data and systems.

Who is suited for this program?

This certificate is recommended for anyone involved or interested in network and computer systems and the security of those systems.

What will I learn?

This certificate will provide the basics of IT administration as well as a solid technical background in databases and networking. Students learn concepts, principles, techniques, and practices needed to administer and secure a modern IT environment. Security is a main component and discussed in detail. Topics covered include:
- Administration of host server systems in a modern operation system environment
- Fundamentals of wireless network security and administration
- Protocols and standards of TCP/IP suite that govern the functions of the Internet
- Security control risks and issues
- Various network architecture and protocol standards

Why study Information Technology Administration at NJIT?

NJIT has a long history of innovation in digital communications. With one of the most computing intensive campuses in the world, NJIT has pioneered the application of new technologies as learning tools. The university educates one of the largest groups of information technology students in the nation. New Jersey is one of the leading states for computing and high technology businesses. Thirty of the nation's fastest growing technology companies are based in the state. New Jersey ranks 7th in the nation as a cyberstate and 8th for venture capital investment – $3.5 billion – in information technology and software. New Jersey offers the highest median salary in the nation for information systems managers.

Prerequisites

NJIT's standard admission requirements apply to this graduate certificate. Applicants should have an undergraduate degree in information technology, computer science, computer engineering, information systems or a related field. Students who lack an appropriate undergraduate background may be required to complete some or all of the following bridge courses.

- IT 114 Advanced Programming for Information Technology
- IT 120 Introduction to Network Technology (networking basics, protocols, modern OS)
- IT 220 Wireless Networks (tools and technologies, designing wireless networks)
- IT 230 Computer & Network Security (system defense, attacks, security protocols, and recovery)
- IT 340 Introduction to System Administration (Linux/unix admin)
- IT 420 Computer Systems and Networks (standards, connectivity, performance, protocols, network configurations, network design, wireless technology, management and simulation)
- IS 331 Database System Design & Management

Related Degrees

Courses in the Graduate Certificate program in Information Technology Administration can be wholly applied to NJIT's MS in IT Administration and Security (http://it.njit.edu/academics/graduate/).

Take Note

Check the course descriptions for more information. Some courses have prerequisites and must be taken in order. Complete course descriptions can be found in the NJIT Graduate Catalog (http://catalog.njit.edu/graduate/).

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/it-administration-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>IT 610</td>
<td>Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td></td>
</tr>
<tr>
<td>IT 635</td>
<td>Database Administration</td>
<td></td>
</tr>
<tr>
<td>IT 640</td>
<td>Network Services Administration</td>
<td></td>
</tr>
</tbody>
</table>
Information Security

As time goes on, more and more information is placed on the Internet at the fingertips of regular people. This information is also available to those with a malicious intent. It seems like every day (http://www.usatoday.com/story/money/2016/02/26/cyber-hack-gained-access-more-than-700000-irs-accounts/80992822/), a new hack (http://timesofindia.indiatimes.com/tech/tech-news/Over-8000-website-hacking-incidents-in-Jan-Mar-2016-Government/articleshow/52110920.cms) or a new exploit (http://money.cnn.com/2016/05/19/technology/linkedin-hack/) has been made available or used online, allowing for access to information (http://www.computerweekly.com/news/450298683/LogMeIn-resets-user-passwords-after-scouring-data-dumps-from-LinkedIn-Tumblr-and-MySpace-hacks/) that should not be. The Graduate Certificate in Information Security covers topics that help to protect this information so we can all be safer online.

Who would be suited to take this program?

This graduate certificate is best suited for students holding an undergraduate degree in computer science, information technology or those willing to take a number of ancillary courses.

What will I learn?

This certificate program covers:

- Security threats in communication systems; conventional cryptography: substitution and transposition codes; distribution of secret key over the Internet; principles of public-key cryptography; RSA and other public-key cryptographic methods; and digital signature protocol.
- Existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and for protecting systems from network attacks.
- SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management.
- Information protection concepts, privacy impact analysis, computer crime, legal issues, controls and auditing systems, and firewall configuration.
- Conventional Encryption and Public Key Cryptology. Security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility).

Why study Information Security at NJIT?

The program’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It’s possible to some of the courses online, so you can more easily fit the program into your busy life. And whether you take courses online or on campus, you’ll learn from NJIT’s distinguished professors and instructors of the College of Computing Sciences (http://ccs.njit.edu/).

Prerequisites

NJIT’s standard admission requirements apply to this graduate certificate, but individual courses within the program have additional prerequisites.

Note: Students lacking background relevant to NJIT’s IS 513, IS 531 or IS 565 courses may need to take IS 601.

Related Degree Programs

All credits from the Information Security Graduate Certificate can be applied toward the NJIT M.S. Cyber Security and Privacy (http://catalog.njit.edu/graduate/computing-sciences/computer-science/cyber-security-privacy-ms/), M.S. Information Systems (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/), or M.S. IT Administration and Security (http://catalog.njit.edu/graduate/computing-sciences/information-technology/administration-security-ms/).

Take Note

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select four of the following:</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CS 608</td>
<td>Cryptography and Security</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td></td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td></td>
</tr>
<tr>
<td>IT 620</td>
<td>Wireless Networks Security and Administration</td>
<td></td>
</tr>
</tbody>
</table>
Network Security and Information Assurance

The foundations of network security go back a long way, and involve many old-time policies and procedures since the inception of the Internet. We are entering a new age where devices never conceived before have access to the Internet, from single board computers to refrigerators to cars to thermostats. All of these devices need to be properly understood, designed, configured and maintained. The Graduate Certificate in Network Security and Information Assurance aims to help the end user and professional do that on their own but laying the foundations of how to secure these networks before they are compromised.

Who is suited for this program?

This graduate certificate is best suited for students holding an undergraduate degree in electrical engineering, computer engineering, computer science, or those willing to take a number of ancillary courses.

What will I learn?

This certificate program covers:

- An overview of computational methods used to provide secure Internet communication
- The fundamentals of current network management technology and techniques and emerging network management standards
- An overview of widely used security applications, schemes, and practices on the Internet and enterprise networks
- A working knowledge of information assurance and particular network and computer security concepts, applications, and standards
- Audit, control and security issues, requirements, and processes in organizational information systems
- Relevant issues in computer security auditing

Why study Network Security and Information Assurance at NJIT?

The program’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It’s possible to some of the courses online, so you can more easily fit the program into your busy life. And whether you take courses online or on campus, you’ll learn from NJIT’s distinguished professors and instructors of the College of Computing Sciences (http://ccs.njit.edu/).

Prerequisites

NJIT’s standard admission requirements apply to this graduate certificate, but individual courses within the program have additional prerequisites.

Note: Students lacking background relevant to the program may need to take IS 601 as a prerequisite course.

Related Degree Programs

All credits from the Network Security & Information Assurance Graduate Certificate can be applied toward the MS in Information Systems (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/), MS IT Administration and Security (http://catalog.njit.edu/graduate/computing-sciences/information-technology/administration-security-ms/), or MS in Cyber Security and Privacy (http://catalog.njit.edu/graduate/computing-sciences/computer-science/cyber-security-privacy-ms/).

Take Note

Gainful Employment Disclosure

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td>3</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
<td>3</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td>3</td>
</tr>
<tr>
<td>CS 652</td>
<td>Computer Networks-Architectures, Protocols and Standards</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Courses

Select two of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
</tr>
<tr>
<td>IS 682</td>
<td>Forensic Auditing for Computing Security</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 652</td>
<td>Computer Networks-Architectures, Protocols and Standards</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
</tr>
</tbody>
</table>
Web Systems Development

The Internet and the World Wide Web are the most transformative inventions of our time, and NJIT’s graduate certificate in Web Systems Development provides a core set of knowledge and skills to develop Web-based application systems. This certificate provides a foundation and knowledge to allow competition in an ever changing technical world.

Who is suited for this program?

This certificate is designed for web system designers and developers, or those looking to move into this field, for career and knowledge advancement in the web development community.

What will I learn?

The program focuses on java programming and other object-oriented software development which are used in the construction of web systems. Various media such as text, images, video and audio are covered in order to produce a rich and rewarding web experience. Techniques essential for building databases, document processing, and information management systems are covered so that the web system is dynamic and data driven. Topics covered include information retrieval, multimedia systems, open source web design, web mining, web services, middleware, and authentication.

Why study Web Systems Development at NJIT?

With one of the most computing intensive campuses in the world, NJIT is a pioneer in the application of new technologies as learning tools. The College of Computing Sciences educates one of the largest groups of computing students in the nation and has outstanding faculty dedicated to preparing students for exciting careers in this field. The university educates one of the largest groups of information technology students in the nation. New Jersey is one of the leading states for computing and high technology businesses. Thirty of the nation's fastest growing technology companies are based in the state.

Prerequisites

NJIT’s standard admission requirements apply to this graduate certificate. In addition, non-elective courses within the program require:

• Advanced web-based programming skills
• An understanding of object-oriented programming concepts
• Experience with C++ or knowledge of a higher-level programming language
• Mathematics
• Accounting

Note: Students lacking background relevant to NJIT’s IS 513, IS 531 or IS 565 courses may need to take a placement exam, or take undergraduate bridge courses at NJIT or elsewhere. Please, contact the IS department for details. More information is found here (http://is.njit.edu/academics/graduate/PlacementExam.php).

Related Degrees

Courses in the Graduate Certificate program in Web Systems Development can be wholly applied to NJIT’s MS in Information Systems (http://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/), and partially to the MS in Computer Science (http://catalog.njit.edu/graduate/computing-sciences/computer-science/ms/).

Take Note

Check the course descriptions for more information. Some courses have prerequisites and must be taken in order. Complete course descriptions can be found in the NJIT Online Catalog. (http://catalog.njit.edu/graduate/)

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/web-systems-development-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td>3</td>
</tr>
</tbody>
</table>
Electives
Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
<td>3</td>
</tr>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
<td>3</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td>3</td>
</tr>
<tr>
<td>IS 690</td>
<td>Web Services and Middleware</td>
<td>3</td>
</tr>
</tbody>
</table>

Data Science M.S.

The Department of Data Science is the newest addition to the Ying Wu College of Computing. It was founded by well established, prominent researchers and educators with outstanding track records in Artificial Intelligence, Machine Learning, High Performance Data Analytics, Security/Privacy/Ethics in Data Science, Health Data Science, Green Data Science, and Data Visualization. The Department of Data Science was founded in 2021. The M.S. degree program in Data Science is jointly administered by the Department of Data Science and the Department of Mathematical Sciences. This degree program responds to a strong demand from employers for trained Data Scientists. Data is revolutionizing most industries and M.S. graduates in Data Science command high starting salaries.

Data Science combines powerful methods from Computer Science, Statistics, Artificial Intelligence and Machine Learning into a unique new blend of techniques for deriving valuable insights from Big Data. Data Science is an ideal choice for students who are interested in applying data processing methods to ever larger and more varied real-world data sets, including image, video, natural language and speech data that go substantially beyond traditional text and table data to solve real-world problems. The Department of Data Science closely collaborates with the Department of Mathematical Sciences and the Department of Computer Science. Students also can get involved in state-of-the-art research projects at the NJIT Institute for Data Science, where top notch scientists work with users to develop data-driven technologies to innovate the way the world works and lives.

Master of Science in Data Science

The Master of Science (M.S.) in Data Science (DS) is intended for students who are interested in pursuing advanced studies in data science.

Admission Requirements

- **GPA**
 - Undergraduate GPA of at least 3.0 out of 4.0 is required for students with a data science, applied statistics, or computer science background.
 - Undergraduate GPA of at least 3.0 out of 4.0 is required for students without a data science, applied statistics, or computer science background.

- **Foreign students without GPA** must have graduated “first class,” corresponding to a B average.

- **International students TOEFL score:** the Institute requires a minimum score of 213 **paper based** or 79 **online**.

- **International students:** GRE required.

- **Students with a US or Canadian degree in data science, computer science, mathematical sciences, or engineering:** GRE recommended but not required.

- **Students with a US or Canadian degree not in data science, computer science, mathematical sciences, or engineering:** GRE required.

Students are expected to have good programming skills and a grasp of the fundamentals of computer science, data science, and the mathematical sciences (students should have acquired this knowledge in the undergraduate degree Bachelor of Science in Data Science, Applied Statistics, or Computer Science or an equivalent degree). Detailed topics are listed below.

Applicants to the computing concentration lacking the computing background should first enroll in one of the three associated Data Science Certificates (Data Mining, Data Visualization, Big Data), and, upon successful completion of the Certificate, apply for transfer into the M.S. in DS program – computing concentration. Applicants to the statistics concentration with insufficient background in mathematics/statistics will be asked to complete suitable bridge courses as per the advisor’s review.

Students must maintain a cumulative graduate GPA of 3.0 or better throughout the course of studies and for graduation.

Application Processing

The Departments of Data Science and Mathematical Sciences review only completed applications submitted to the Office of Graduate Admissions. Applicants are advised to request status information on their application directly from the Graduate Admissions Office, not the Departments of Data Science or Mathematical Sciences. Graduate Admissions can be reached at admissions@njit.edu or www.njit.edu/gadmission (https://www.njit.edu/admissions/graduate-admissions/) or by mail at NJIT, Graduate Admissions Office, University Heights, Newark NJ 07102.
Detailed Topics:

Students entering the M.S. in DS program are expected to have mastered the following topics: Basic programming constructs, writing and debugging programs, iteration, recursion; basic data structures (lists, arrays, hash tables), search and sort, algorithm analysis; basic probability distributions and statistical analysis; linear algebra, calculus (derivatives, integrals, applications, functions of multiple variables).

B
Bader, David, Distinguished Professor

D
Dasgupta, Aritra, Assistant Professor

G
Geller, James, Professor

P
Phan, Hai, Assistant Professor

R
Roshan, Usman, Associate Professor

W
Wu, Chase, Professor

Programs

Data Science - M.S.– Computational Track (p. 263)

- Artificial Intelligence (p. 258)
- Big Data Essentials (p. 258)
- Data Mining (p. 260)
- Data Visualization (p. 261)

DS 632. Computing with Advanced Data Representations. 3 credits, 3 contact hours.
Prerequisites: CS 631 or knowledge of SQL, and good knowledge of a high-level programming language. Covers the rapidly changing concepts and principles of modern database systems and database programming. Topics include relational databases, object-oriented databases and object-oriented data modeling, XML data, JSON data, Graph Databases, NO-SQL databases, programming with stored procedures, database security and access control, indexing in SQL and NO-SQL databases, and current trends in databases (e.g., serverless cloud databases). Example systems used include Oracle with PL/SQL, MongoDB, and Neo4j.

DS 636. Data Analytics with R Program. 3 credits, 3 contact hours.
Prerequisites: Entry-level courses in programming, probability and statistics (e.g MATH 333, CS 280, or equivalent courses with permission of the instructor). This course teaches data analytics with R programming. The student will learn and gain basic analytic skills via this high-level language. The course covers fundamental knowledge in R programming. Popular R packages for data science will be introduced as working examples. The course also includes case studies on data analytics projects. As a core course in data science, it provides skills that are highly desirable for both industry and academic employers.

DS 642. Applications of Parallel Computing. 3 credits, 3 contact hours.
Prerequisites: Proficiency in (non-parallel) programming in a high level procedural language. This course will teach students how to design, analyze, and implement, parallel programs for high performance computational science and engineering applications. The course focuses on advanced computer architectures, parallel algorithms, parallel languages, and performance-oriented computing. Students will develop knowledge and skills to efficiently solve challenging problems in science and engineering, where very fast computers are required either to perform complex simulations or to analyze enormous datasets.

DS 644. Introduction to Big Data. 3 credits, 3 contact hours.
Prerequisites: Permission of the instructor. This course provides an in-depth coverage of various topics in big data from data generation, storage, management, transfer, to analytics, with focus on the state-of-the-art technologies, tools, architectures, and systems that constitute big-data computing solutions in high-performance networks. Real-life big-data applications and workflows in various domains (particularly in the sciences) are introduced as use cases to illustrate the development, deployment, and execution of a wide spectrum of emerging big-data solutions.
DS 650. Data Visualization and Interpretation. 3 credits, 3 contact hours.
The course will focus on training students with the knowledge of data visualization theory, techniques, and tools. Students will learn why and how visualization can be applied in the human-centered data science pipeline and the different uses of visualization, such as in exploratory data analysis, and in the communication of data-driven insights. They will gain practical experience in interpreting, critiquing, and comparing visualization techniques by using real-world data sets and case studies. Students will also develop interactive visualization interfaces as part of the class project. They will gain a broad understanding of how visualization can enhance trust and interpretation of machine learning models. The students will read and learn about recent progress in the areas of information visualization, visual analytics, and human-data interaction.

DS 669. Reinforcement Learning. 3 credits, 3 contact hours.
Prerequisites: Linear algebra, basic probability, basic calculus, computer programming, or approval of instructor. Experience with machine learning, artificial intelligence, or deep learning (e.g., CS 675, CS 670, CS 677) is recommended. This course covers current topics, key concepts, and classic and modern algorithms in reinforcement learning and contains both theory and applications. The topics include but are not limited to, Markov Decision Processes, exploration and exploitation, planning, value-based learning, policy gradient, etc. Students will present recent papers in reinforcement learning, and work on written and programming assignments and do a reinforcement learning project. After completing this course, students will be able to start using reinforcement learning for real world problems that can be specified as Markov Decision Processes.

DS 675. Machine Learning. 3 credits, 3 contact hours.
Prerequisites: Basic probability, linear algebra, computer programming, and graduate or undergraduate senior standing, OR approval of instructor. This course is an introduction to machine learning and contains both theory and applications. Students will get exposure to a broad range of machine learning methods and hands on practice on real data. Topics include Bayesian classification, perceptron, neural networks, logistic regression, support vector machines, decision trees, random forests, boosting, dimensionality reduction, unsupervised learning, regression, and learning new feature spaces. There will be several programming assignments, one course project, one mid-term and one final exam.

DS 677. Deep Learning. 3 credits, 3 contact hours.
Prerequisites: DS 675 or approval of the instructor. Restrictions: None. This course covers current topics in data science. The topics include but are not limited to parallel programming on GPU and CPU multi-cores, deep learning, representation learning, optimization algorithms, and algorithms for big datasets. Students will present recent papers in data science, work on programming assignments, and do a machine learning/deep learning/data science project.

DS 680. Natural Language Processing. 3 credits, 3 contact hours.
Prerequisites: DS 675 or DS 677 and instructor's approval. This course aims to teach how to process one of the fundamental data sources—natural language—with the help of deep learning techniques. The target of this course is to familiarize students with state-of-the-art language models, wide variety of tasks performed with these models and the fusion of these in deep learning architectures. This course will help students read advanced research papers on complex NLP concepts and theories, while the class project will help them apply NLP techniques to different domains.

DS 725. Independent Study I. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both DS 725 and DS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

DS 726. Independent Study II. 3 credits, 3 contact hours.
Approval of the academic advisor is required for registration. Students working on their PhD dissertation cannot register for both DS 725 and CS 726 with the same faculty. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

DS 786. Selected Topics in Data Science. 3 credits, 3 contact hours.
Prerequisites: As determined by nature of topic area. Introduction to selected topics in data science.

DS 789. Trustworthy Artificial Intelligence. 3 credits, 3 contact hours.
Prerequisites: DS 675 or approval of instructor. As machine learning (ML) systems are increasingly being deployed in real-world applications, it is critical to ensure that these systems are behaving responsibly and are trustworthy. That will lead to wider adoption of ML in real-world applications in practice. This course will provide a deep understanding of state-of-the-art ML methods designed to make AI more trustworthy to unforeseen faults, adversarial manipulation, and to violations of ethical norms in privacy and fairness. Students will gain an understanding of and experience in using a set of methods and tools for deploying transparent, ethically sound, and robust machine learning solutions. The course is also an excellent opportunity to conduct research on the security/privacy/trustworthiness in ML and find research topics for Ph.D. and M.S. theses.

DS 790A. Doctoral Dissertation & Research. 1 credit, 1 contact hour.
Corequisites: DS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in data science. For PhD students who have successfully defended their dissertation proposal. The student must register in DS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members.

DS 791. Graduate Seminar. 0 credits, 1 contact hour.
Corequisite (for doctoral students only): DS 790. A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in data science. In the course, students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.
DS 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Corequisites: DS 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in data science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

Artificial Intelligence

2Course List
The requirements for the AI certification program are as follows:
12 credits are required, which can be satisfied by:
o 2 core courses (6 credits)
o 2 elective courses (6 credits)

Admission Requirements
Applicants should have a bachelor’s degree and have some experience with programming and data analytics. Some experience with programming, equivalent to CS602 (Java), and some experience in data analytics, equivalent to CS482 (Data Mining).

What are the prerequisites?
Some experience with programming, equivalent to CS602 (Java), and some experience in data analytics, equivalent to CS482 (Data Mining).

What are the Courses to be taken?
Students must take a total of four courses, with the following compulsory core courses and elective courses to choose from.

Core courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>DS 677</td>
<td>Deep Learning</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>DS 680</td>
<td>Natural Language Processing</td>
<td>3</td>
</tr>
<tr>
<td>DS 669</td>
<td>Reinforcement Learning</td>
<td>3</td>
</tr>
<tr>
<td>DS 789</td>
<td>Trustworthy AI</td>
<td>3</td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 681</td>
<td>Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Sample course sequence:
1. DS634, CS670, DS675, DS677
2. DS675, DS677, DS669, DS680
3. DS670, DS675, DS677, CS681

Big Data Essentials
Big Data embraces technology, decision-making and public policy. Supplying the technology is a fast-growing market, increasing at more than 30 percent a year and likely to reach $24 billion by 2016, according to a forecast by IDC, a research firm. Big Data is poised to be the next big trend in management.

This certificate will focus on managing Big Data analytics to understand customers, develop new products and cut operational costs. Learn how to gather and analyze large amounts of data, and how to use that data to manage and make important financial decisions.
Most of the jobs emerging in Big Data require knowledge of programming and the ability to develop applications, as well as an understanding of how to meet business needs. This certificate will provide entrepreneurs or managers the opportunity to advance in a strong new growth area, and provide consulting services to companies expanding into Big Data.

Who would be suited to take this program?

People currently working in computing who want to advance their knowledge and catch up in the growing field of Big Data. Skills most often mentioned in connection with Big Data jobs include math, statistics, data analysis, business analytics and even natural language processing.

Demand is brisk for people with data skills. The McKinsey Global Institute, the research arm of the consulting firm, projects that the United States needs 140,000 to 190,000 more workers with "deep analytical" expertise and 1.5 million more data-literate managers, whether retrained or hired, by 2020.

What Will I Learn?

Efficiency, powerful programming techniques and algorithms to transform large quantities of information into business intelligence.

In this program you’ll gain 12 credits that can be applied to NJIT master’s programs, and learn:

- Mathematical properties and usage of database programming languages.
- Methods of database design, conceptual modeling, and physical storage for Big Data sets.
- Fundamental notions of concurrency control and recovery in database systems.
- Goal tree search, logic and deduction, uncertainty, fuzzy logic, knowledge representations, machine learning, vision, and action planning.
- Methods for association and dependency analysis, classification and predication, and clustering analysis.
- Current trends in data mining, and data mining for scientific, medical and engineering applications.

Why Study Big Data Essentials at NJIT?

One of the nation’s leading public technological universities, New Jersey Institute of Technology (NJIT) prepares students to be leaders in the technology-dependent economy of the 21st century. The university’s multidisciplinary curriculum and computing-intensive approach to education provides the technological proficiency, business know-how and leadership skills that future CEOs and entrepreneurs will need to succeed. With an enrollment of almost 10,000 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university.

The graduate certificate’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It’s possible to earn the certificate entirely through online courses, so you can more easily fit it into your busy life. And whether you take courses online or on campus, you’ll learn from NJIT’s distinguished professors and instructors of the Department of Computer Science.

Prerequisites

An undergraduate Computer Science degree from an accredited institution is recommended. Three years or more in programming or database work.

NJIT’s standard admission requirements apply to this graduate certificate.

Related Degree Programs

Credits from this graduate certificate can be applied toward the NJIT MS in Data Science (https://catalog.njit.edu/graduate/computing-sciences/computer-science/data-science-ms/) or the MS in Computer Science (http://cs.njit.edu/academics/graduate/mscs.php)

COURSE DESCRIPTIONS

IS 601. Web Systems Development. 3 credits, 3 contact hours.
Prerequisites: NONE Students will gain experience in open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 650. Data Visualization and Interpretation. 3 credits, 3 contact hours.
The course will focus on training students in data visualization techniques and relevant tools. They will learn theoretical aspects of visualization design, and gain practical experience in interpreting data as well as critiquing and comparing visualization techniques. They will develop interactive visualization interfaces as part of a class project. Students will also gain a broad understanding of how visualization can enhance data interpretation and play a key role in the data science pipeline. Finally, recent advances will be presented in the areas of information visualization, visual analytics, and human-data interaction.

IS 657. Spatiotemporal Urban Analytics. 3 credits, 3 contact hours.
Prerequisite: IS 665 (https://catalog.njit.edu/search/?P=IS%20665) or equivalent. This course teaches essential concepts and skills needed to efficiently develop spatiotemporal thinking, create a spatiotemporal model, and visualize/model the urban spatiotemporal relationships in the open source
Data Mining environment. Students will learn about big data analytic skills that integrate large open source data and traditional data by investigating the relationship between virtual and physical worlds in the built environment.

IS 665. Data Analytics for Info System. 3 credits, 3 contact hours. Prerequisite: IS 601 (https://catalog.njit.edu/search/?P=IS%20601) This course gives a graduate level introduction to data analysis, probability and statistics from an information systems perspective, including many of the techniques that are most relevant to the profession of Data Scientist for business, data and web analytics, as well as current data sets. We will learn and conduct Python, MATLAB and R based manipulation of data. Course topics include the rudiments of probability and random variables, estimation, special distribution and sampling, Markov processes, hypothesis testing, graphics and visualization.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 735</td>
<td>High Performance Analytics Dat</td>
<td></td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td></td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td></td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td></td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 12

Data Mining

Many companies collect reams of data about their customers and their transactions, but must drill through these repositories of data to unearth crucial insights and knowledge about customer behavior and market trends.

This graduate certificate provides an introduction to data mining with an emphasis on large-scale databases as a source of knowledge generation and competitive advantage.

Who would be suited to take this program?

This certificate is designed for data analysts working with large organizations to design and use their data resources.

What will I learn?

In this program you’ll gain 12 credits that can be applied to NJIT master’s programs, and learn:

- The fundamentals of relational database technology, concurrency, and recovery
- Methods of database design and conceptual modeling
- The principles of information-retrieval system design
- Techniques essential for building text databases, document-processing systems, office automation systems, and other advanced information management systems
- And more in two elective courses

Why study Data Mining at NJIT?

The graduate certificate’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It’s possible to earn the certificate entirely through online courses, so you can more easily fit it into your busy life. And whether you take courses online or on campus, you’ll learn from NJIT’s distinguished professors and instructors of the Department of Computer Science.

Prerequisites

NJIT’s standard admission requirements apply to this graduate certificate. In addition, non-elective courses within the program require prior knowledge of C and data structures learned in these courses:
Note: Students lacking background relevant to NJIT’s IS 513, IS 531 or IS 565 courses may need to take a placement exam, or take undergraduate bridge courses at NJIT or elsewhere. Please, contact the IS department for details. More information is found here (http://is.njit.edu/academics/graduate/PlacementExam.php).

- CS 113 Intro to Computer Science I
- CS 252 Comp Org & Architecture
- CS 114 Intro to Computer Science II
- CS 332 Principles of Operating Systems
- CS 356 Introduction to Computer Networks
- CS 431 Database System Design & Mgmt
- CS 506 Foundations of Computer Science
- Math 111 Calculus I
- Math 112 Calculus II
- Math 333 Probability and Statistics

Check the course descriptions for full details.

Related Degree Programs

All credits from the data mining graduate certificate can be applied toward these NJIT programs:

- M.S. Computer Science (http://cs.njit.edu/academics/graduate/mscs.php)
- M.S. Information Systems (https://is.njit.edu/academics/graduate/msis/)
- M.S. Business and Information Systems (https://is.njit.edu/academics/graduate/msbis/)

Take Note

Some courses have prerequisites, and must be taken in order.

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/data-mining-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
</tr>
<tr>
<td>IS 634</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
</tr>
</tbody>
</table>

Data Visualization

Graduate Certificate in Data Visualization

From the NJIT’s Department of Informatics, the Graduate Certificate in Data Visualization allows students to develop skills in designing, developing, and applying data visualization techniques for solving real-world problems. Data visualization developers and researchers are interested in ways to communicate data to diverse users, improve analytical decision-making, and play a key role in diverse domains such as business intelligence, big data analytics, data science, scientific communication, and journalism. This certificate will equip students with both theoretical and practical knowledge for pursuing professional or research careers in data visualization.
Who would be suited to take this program?

Students and professionals interested in the broad areas of human-centered computing, urban informatics, visual analytics, business intelligence, design thinking and human-data interaction.

What will I learn?

- **Data Visualization and Interpretation** – Theory and practical knowledge about how to design, read, and understand visual representations of data. Hands-on knowledge about state-of-the-art tools, e.g., Tableau, Python, and web-based libraries like D3.js.

- **Spatio-Temporal Urban Analytics** - Essential concepts and skills needed to efficiently develop spatiotemporal thinking. Big data analysis and visualization techniques applied to spatio-temporal urban data. Knowledge about the R programming environment.

- **Elements of Visual Design** - theories of design, techniques of composition, and technologies of electronic and print publishing. Modules include both design principles and hands-on practice in visual literacy, layout and design, and graphic tools.

- **Advanced Information Design** - Design and creation of multimedia objects, usability heuristics, navigation theory, contemporary design practices and online community building

- **Visual Informatics for Network and Flow** - Knowledge of open source tools to visualize and interpret network and flow data. Collect network and flow data and create their own visual applications.

- **Customer Discovery** – User-centered design evaluation techniques for understanding potential user’s practice, preferences and mental models. Knowledge of a basic set of qualitative user/customer discovery methods which is essential for both the lean startup entrepreneur and those engaged in design innovation.

- **User Experience Design** – Process of creating compelling interaction designs for digital products from the idea stage into creating a simple and intuitive user experience blueprint. You will ‘learn by doing’ in a team environment, enabling you to practice the techniques with coaching from instructors.

- **Web Systems Development** - Learn web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects.

- **Data Analytics for Information Systems** - Learn and conduct Python, MATLAB and R based manipulation of data, along with graduate level introduction to data analysis, probability and statistics from an information systems perspective.

- **Why study Data Visualization at NJIT?**

A McKinsey report in 2016 says: “As data grows more complex, distilling it and bringing it to life through visualization is becoming critical to help make the results of data analyses digestible for decision makers. We estimate that demand for visualization grew roughly 50 percent annually from 2010 to 2015.” With the growing demand for data science-based technologies across various domains and industries, this trend will only go higher. At NJIT, we have a great opportunity to train the next generation workforce in data visualization skills and techniques that will enable them to be at the cutting edge of technological development and play crucial roles in generating actionable insights for diverse stakeholders in the data science ecosystem.

Into what industries might holders of this program find employment?

- Business Intelligence (any enterprise)
- Data Scientist
- Information Designer
- Data Visualization Developer
- Journalist

Prerequisites

Applicants should have a bachelor’s degree from an accredited institution with some undergraduate background in a related field (information design, information technology, etc.).

Related Degree Programs

All courses in this program are related to the NJIT MS in Information Systems (https://catalog.njit.edu/graduate/computing-sciences/information-systems/ms/) and MS in Professional and Technical Communication programs.

What are the Required and Elective Courses?
M.S. in Data Science - Computational Track

Degree Requirements

Students in the Master of Science in Data Science (MSDS) program must successfully complete 30 credits based on any of the following options:

- Courses (30 credits)
- Courses (27 credits) + MS Project (3 credits)
- Courses (24 credits) + MS Thesis (6 credits)

Independent of the chosen option, all core courses in the respective tracks are required.

At most two courses can be chosen from outside the respective track with approval of the respective Program Co-Directors. Computational track students are allowed at most three electives that are non-Computer Science courses. Statistics track students are allowed at most three electives that are non-Math courses.

If a student chooses the MS project or MS thesis option, the project or thesis must be related to data science and requires approval from one of the Program Co-Directors.

The MSDS program has computational and statistics tracks that students must choose from at admission time. These tracks have different core courses but share the same admission requirements and electives.

Students may choose an elective outside the list after approval of their respective advisor.

M.S. in Data Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>6</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td></td>
</tr>
</tbody>
</table>

Elective courses (2)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td>6</td>
</tr>
<tr>
<td>PTC 606</td>
<td>Advanced Information Design</td>
<td></td>
</tr>
<tr>
<td>IS 654</td>
<td>Visual Informatics for Social Network and Mobile Flow</td>
<td></td>
</tr>
<tr>
<td>IS 664</td>
<td>Customer Discovery</td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td></td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td></td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

12

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>CS 677</td>
<td>Deep Learning (Deep Learning)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives and Foundation Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program (only available to students in the Math core)</td>
<td>3</td>
</tr>
<tr>
<td>CS 639</td>
<td>Elec. Medical Records: Med Terminologies and Comp. Imp.</td>
<td>3</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CS 661</td>
<td>Systems Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 676</td>
<td>Cognitive Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 677</td>
<td>Deep Learning (Deep Learning(available only to students in statistics track))</td>
<td>3</td>
</tr>
<tr>
<td>CS 683</td>
<td>Software Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CS 684</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>CS 681</td>
<td>Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>CS 708</td>
<td>Advanced Data Security and Privacy</td>
<td>3</td>
</tr>
<tr>
<td>CS 731</td>
<td>Applications of Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 735</td>
<td>High Performance Analytics Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 744</td>
<td>Data Mining and Management in Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CS 782</td>
<td>Pattern Recognition and Applications</td>
<td>3</td>
</tr>
<tr>
<td>YWCC 691</td>
<td>Graduate Capstone Project (Counting towards the elective credits requires the program director’s prior approval. In addition, it needs to be completed with an external partner (industry, lab, or government), or with a faculty only if the same faculty is not the student’s MS project or MS thesis advisor.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Math Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R (only available to students in computational track)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 680</td>
<td>Advanced Statistical Learning</td>
<td>3</td>
</tr>
<tr>
<td>MATH 683</td>
<td>High Dimensional Stat Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>MATH 717</td>
<td>Inverse Problems and Global Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MATH 786</td>
<td>Large Sample Theory and Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 787</td>
<td>Non-Parametric Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 638</td>
<td>Computational Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BME 698</td>
<td>Selected Topics</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>FIN 641</td>
<td>Derivatives Markets</td>
<td>3</td>
</tr>
<tr>
<td>FIN 642</td>
<td>Derivatives and Structured Finance</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 630</td>
<td>Models Of Consumer Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 687</td>
<td>Transaction Mining and Fraud Detection</td>
<td>3</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 601</td>
<td>Foundations of Bioinformatics I</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 602</td>
<td>Foundations of Bioinformatics II</td>
<td>3</td>
</tr>
</tbody>
</table>
Recommended course sequence M.S. in Data Science for Computational Track

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>CS 675 Machine Learning</td>
<td>CS 631 Data Management and System Design</td>
</tr>
<tr>
<td></td>
<td>Math 661 Applied Statistics</td>
<td>CS 644 Big Data</td>
</tr>
<tr>
<td></td>
<td>CS 636 R for Data Science</td>
<td>CS 677 Deep Learning</td>
</tr>
<tr>
<td>Year 2</td>
<td>Free elective or Master thesis course</td>
<td>Free elective or Masters thesis course</td>
</tr>
<tr>
<td></td>
<td>Free elective or Master project course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td></td>
</tr>
</tbody>
</table>

College of Science and Liberal Arts

The College of Science and Liberal Arts (CSLA) is the home of discovery and scholarship with strong programs in the traditional disciplines of biology, chemistry, physics, mathematics and history. CSLA also is the home of interdisciplinary programs that include communication and media; law, technology and culture; science, technology and society; environmental science; and theatre arts and technology. The sciences and liberal arts have long been the foundation of a university education and they allow us to address the complexities of modern life at the intersection of science, technology, and human values.

With over 150 full-time teachers and researchers, the CSLA community represents a wide range of interests, but also shares the value of academic excellence. CSLA faculty and students are at the forefront of many national research activities, including solar astronomy, mathematical modeling, and the history of medicine and technology.

CSLA provides students with the intellectual foundations necessary to understand and analyze the technological world in which we live. The college’s courses and degrees prepare students to ask questions about the world, to collect data and provide evidence, and to express ideas and conclusions with clarity and precision. These skills transcend specific professional competence and distinguish CSLA students as individuals who can blaze a trail for others and lead society into a rapidly evolving future.

Programs

- Biology - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/biology/ms/)
- Chemistry - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/chemistry-environmental-science/chemistry-ms/)
- History - M.A. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/history/ms/)
- Pharmaceutical Chemistry - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/chemistry-environmental-science/pharmaceutical-chemistry-ms/)

Programs

- Biology - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/biology/phd/)
- Chemistry - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/chemistry-environmental-science/chemistry-phd/)
• Mathematical Sciences - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/mathematical-sciences/phd/)

Programs
• Biostatistics Essentials (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/mathematical-sciences/biostatistics-essentials-cert/)
• Clinical Trials: Design and Analysis (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/mathematical-sciences/clinical-trials_design-and-analysis-cert/)
• Environmental Science (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/chemistry-environmental-science/environmental-science-cert/)
• Environmental Science and Engineering (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/chemistry-environmental-science/environmental-science-engineering-cert/)
• Neuroscience (http://catalog.njit.edu/archive/2022-2023/graduate/science-liberal-arts/biology/neuroscience-cert/)

College of Science and Liberal Arts Courses

BIOL 590. Grad Coop Work Experience I. 1 credit, 1 contact hour.

BIOL 591. Graduate Coop Work Exper II. 1 credit, 1 contact hour.

BIOL 593. Graduate Co-Op Work Exp IV. 0 credits, 0 contact hours.

BIOL 601. Computational Biology I. 3 credits, 3 contact hours.
This course will describe mathematical and simulation techniques used in modeling a variety of biological systems. Students will learn stability analysis, phase space analysis, basic bifurcation theory and numerical simulation techniques with examples from neuroscience, cell and molecular biology as well as ecology and evolution. Students enrolling in this course are expected to have basic knowledge of calculus, linear algebra and some programming abilities.

BIOL 605. Prin of Bioscience Processing. 3 credits, 3 contact hours.
This course covers the main concepts of cell physiology, molecular biology, and cell biology. The fundamental aspects of biochemistry that relate directly to pharmaceutical developments are discussed and include basic organic chemistry, blood and buffers, protein based enzymes, complex carbohydrates, nucleic acids, and fats. Those topics will then be integrated into a thorough understanding of Bioprocessing in pharmaceutical industries. This course is for Professional Science Master's Biotechnology students with limited knowledge of Biology.

BIOL 606. App Bioproc & Immun Based Ther. 3 credits, 3 contact hours.
Prerequisite: BIOL 605 or permission of the instructor. This course provides foundational knowledge about immunology and immunological applications relevant to bioprocessing science including immunoglobulin genetics, leukocyte activation and migration, transplant immunology, and immunotherapy and vaccines.

BIOL 610. Comparative Vertebrate Anatomy. 3 credits, 3 contact hours.
This course introduces students to the groups of vertebrates and explores the anatomical evolution of vertebrates within the context of the functional interrelationships of organs and the changing environments to which vertebrates have adapted. An ideal entry point into the ways living creatures interact with their immediate physical world, we examine how the forms and activities of animals reflect the materials available to nature and consider rules for structural design under environmental forces.

BIOL 612. Comparative Animal Physiology. 3 credits, 3 contact hours.
This course will explore how animals, from invertebrates to vertebrates, function from the cellular to the organism level. The study of the structure and function of the various organs provides insight into how animals survive extreme environments and how they respond to changes in their environment. The comparative approach shows that the underlying physiological principles that govern life are common to all animals and yet animals have evolved unique and sometimes startling physiological solutions to problems posed by their particular environments.

BIOL 621. Ecology. 3 credits, 3 contact hours.
Prerequisites: Graduate student status or permission of the instructor. Ecological patterns and processes shape global biodiversity. From the community of microbes under your fingernail to entire continents and the planet, the field of ecology seeks to understand complex interactions among biological species and the environment. These themes are increasingly important; humans are reliant on functioning ecosystems even as anthropogenic factors alter our planet in profound ways. This course introduces graduate students to ecology at multiple conceptual and geographic scales.
BIOL 622. Evolution. 3 credits, 3 contact hours.
This course will provide a comprehensive overview of research in the field of evolutionary biology. Topics will include: the development of evolutionary theory, the history of the evolution of life on Earth, the genetic bases of variation and heredity, natural selection, evolution and development, and speciation. The format will be brief lectures to review topics covered in text, followed by class discussions of relevant primary literature. Students will write two papers on the topic of their choice and will be required to lead a minimum of one class discussion.

BIOL 628. Cell Biology of Disease: Cells Gone Bad. 3 credits, 3 contact hours.
This course will briefly review normal physiological function of cells and will then extensively explore the basis of many human diseases at cellular level. The goal is to understand how alterations in normal cell functions affect human physiology by reviewing current research in the field of cell biology.

BIOL 630. Critical Thinking for the Life Sciences. 3 credits, 3 contact hours.
Researchers in the biological sciences must understand and be able to effectively apply the scientific method, and they must also be able to clearly communicate their ideas and results. This course will involve heavy student participation and discuss the scientific method, analyze and discuss data gathering and organizing, and will analyze existing grant proposals with the goal of enabling graduate students to write a clear and convincing grant proposal.

BIOL 635. Intro to Comp Neuroscience. 3 credits, 3 contact hours.
Prerequisite: Permission by instructor. Introduction to the modeling, computational and analysis techniques for single neurons and small neuronal networks. The course work is designed so that students can develop an independent modeling/computational project by the end of the semester. The required knowledge of neurobiology, electric circuits and numerical tools for the solution of differential equations will be introduced as needed.

BIOL 636. Advanced Comp Neuroscience. 3 credits, 3 contact hours.
Prerequisites: BIOL 635 or permission by the instructor. Modeling and computational analysis of biological neuronal networks. The course consists of lectures, scientific paper presentations and computational work. Students are expected to develop an independent modeling/computational project by the end of the semester.

BIOL 638. Computational Ecology. 3 credits, 3 contact hours.
An overview of computational approaches to the study of mathematical models in ecology. Topics include one-, two-, and multi-species models, life history analysis, spatial dynamics, epidemiology. The course is taught as a hands-on computer lab in which students explore models, perform simulations and solve problems.

BIOL 640. Cellular Neurophysiology. 3 credits, 3 contact hours.
Prerequisite: Graduate student status or permission of the instructor. This course will examine the nervous system from a functional perspective. The goal is to understand how ion channels and other components of nerve cells give rise to electrical excitability and synaptic function, and how those properties are then used for coding information and higher order function in the nervous system.

BIOL 641. Systems Neuroscience. 3 credits, 3 contact hours.
This course will examine neurophysical phenomena from a systems perspective. The course will review basic concepts of cellular neuroscience, such as excitability, impulse conduction, and integration of activity at the cellular, before focusing on network level physiology of the nervous system and its role in the generation of behavior. The goal is to provide students with the basic knowledge to understand neurobiological processes at all levels of complexity.

BIOL 643. Biology of Addiction. 3 credits, 3 contact hours.
Prerequisites: Graduate status. This course will explore Substance Use Disorder from a biological viewpoint. The psychological, epidemiological, social and economical aspects of addiction will be touched upon as needed. The course will consist of several Modules that would be taught in parallel. The Modules include: ‘Psychopharmacology’, ‘The Structure and Function of the Nervous System’, ‘Neurotransmitters and Neuromodulators’, ‘Substances of Abuse’, and ‘What is Addiction?’ The goal is to provide students with a comprehensive understanding of biological mechanisms, both in the body and in the brain, that lead to and underlie Substance Use Disorder.

BIOL 644. Physiological Mechanisms. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology and cell biology. This course utilizes clinical (pathological) case studies to reinforce and extend physiological knowledge, and provides students a strong basis for future studies in biomedical and health related fields.

BIOL 645. Biological Imaging Techniques. 3 credits, 3 contact hours.
Prerequisites: Graduate student status or permission of the instructor. This combined lecture and lab course will introduce the students to a variety of approaches to examine biological structures at different microscopic scales: conventional light microscopy, fluorescent microscopy, modern high resolution light microscopy, and electron microscopy. In addition, the course will cover optical approaches to study the dynamics of cellular function, including calcium and voltage imaging, and molecular interactions.

BIOL 646. Endocrinology. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology, biochemistry, and cell biology. The course will cover the entire human endocrine system from both an anatomical and physiological perspective. The development, gross anatomy, regulation and interaction between various endocrine components will be discussed. Emphasis will be placed on student learning through detailed examinations of endocrine disorders in a clinical setting in order to apply critical thinking about the endocrine system in a real world context.

BIOL 648. Neuropathology. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology and neurobiology. This course will utilize clinical (pathological) case studies to reinforce and extend Neuropathological knowledge, providing students a strong basis for future studies in biomedical and health related fields.
BIOL 650. Human Anatomy. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology and cell biology. This course in an introduction to human anatomy and physiology from an integrative perspective. Students learn the structure and function of human tissues, skeletal system, nervous system, endocrine system, and muscular system from the cellular to organismal levels.

BIOL 653. Medical Genetics and Genomics. 3 credits, 3 contact hours.
Prerequisites: Understanding of basic undergraduate-level classic genetics. The objective of this course is to offer students an opportunity to explore how the field of Genetics has been shaped after the completion of the sequencing of the genomes of humans and a variety of other organisms. Students will be able to describe new technologies that are available in medicine, diagnostics, genetic testing and the generation of genetically modified organisms and evaluate the advantages and current obstacles of these technologies. Through the analysis of case studies and primary literature, students will acquire a real-life knowledge of applications of Genomics in the 21st century.

BIOL 660. College Teaching. 3 credits, 3 contact hours.
College Teaching helps students in STEM fields who teach or plan to teach in colleges or universities develop important professional knowledge, skills, values, and dispositions that can enable them to help undergraduate and graduate students develop societally and personally significant abilities. The course emphasizes research-based methods demonstrated to be effective for enhancing learning in diverse people.

BIOL 668. Evolutionary Medicine. 3 credits, 3 contact hours.
Restrictions: Students should have a background that includes basic biology, including evolutionary mechanisms. This course addresses the evolutionary principles and processes underlying many types of disease (both infectious and hereditary/genetic). The class is a mixture of lecture and discussion of case studies. Material covered includes biology, epidemiological models, and some aspects of human behavior.

BIOL 672. Computational Systems Biology. 3 credits, 3 contact hours.
Prerequisite: Permission by the instructor. Introduction to the mathematical and computational modeling of biological systems with a focus on chemical, biochemical, metabolic and genetic networks. The course work is designed so that students can develop an independent modeling/computational project by the end of the semester. The required knowledge of biology and numerical tools for the solution of differential equations will be introduced as needed.

BIOL 698. Selected topics in Biology. 3 credits, 3 contact hours.
Survey of recent research topics in Biology at the Master's level.

BIOL 699. Selected Topics in Biology. 3 credits, 3 contact hours.
Survey of recent research topics in Biology at the Masters level.

BIOL 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. A written report must be submitted to the project advisor. The student cannot register in BIOL 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BIOL 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in BIOL 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BIOL 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (BIOL 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

BIOL 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

BIOL 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for BIOL 726 if they have taken BIOL 725 in a prior semester.
Biol 731. Proposal Prep for Extln Fundin. 3 credits, 3 contact hours.
Prerequisite: BIOL 630. This course is intended for doctoral students in their first or second year who intend to apply for external funding for their research. The course is hands-on and students are required to identify sources of funding and to write and submit a grant proposal. Topics covered include developing research questions and hypotheses, organization of specific aims, components of the proposal, including significance, innovation, expected outcomes, potential pitfalls and broader impact. The course also emphasizes practices of good grantsmanship and provides an overview of how proposals are reviewed at NSF and NIH.

Biol 788. Selected Topics in Biology. 3 credits, 3 contact hours.
Survey of recent research topics in Biology at the doctoral level.

Biol 790. Doct Dissertation & Resrch. 0 credits, 0 contact hours.

Biol 790A. Doct Dissertation & Resrch. 1 credit, 1 contact hour.
Co-requisite: BIOL 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. For PhD students who have successfully defended their dissertation proposal. The student must register in BIOL 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

Biol 790B. Doct Dissertation & Resrch. 3 credits, 3 contact hours.
Co-requisite: BIOL 791. Since the BIOL 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

Biol 790C. Doctoral Dissertn & Resrch. 6 credits, 6 contact hours.
Co-requisite: BIOL 791. Since the BIOL 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

Biol 790D. Doct Dissertation & Resrch. 9 credits, 0 contact hours.

Biol 790E. Doctrinal Dissertation. 12 credits, 12 contact hours.

Biol 791. Biology Seminar. 0 credits, 0 contact hours.
This seminar includes student and faculty presentations on current papers, student presentations related to their research and occasional outside speakers. It will acquaint students with possible topics for dissertation search, and provide an opportunity to present and receive feedback on current work.

Biol 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: BIOL 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in biology. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

Biol 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

Biol 792D. Pre-Doctoral Research. 12 credits, 12 contact hours.

Biol 794. Computational Biology Colloquium. 1 credit, 1 contact hour.
Restriction: graduate standing. Students and outside speakers present and discuss current research activities in computational biology and related scientific areas.

Chem 590. Graduate Co-Op Work Exper I. 1 credit, 1 contact hour.

Chem 591. Graduate Co-Op Work Exper II. 1 credit, 1 contact hour.

Chem 592. Graduate Co-Op Work Exper III. 1 credit, 1 contact hour.

Chem 593. Graduate Co-Op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

Chem 595. Practicum in Cell & Gene Therapy Sciences. 3 credits, 3 contact hours.
The practicum is designed to give students supervised practical experience that will apply the skills and knowledge gained as part of the master's program in Pharmaceutical Chemistry/PSM Cell and Gene Therapy Sciences.

Chem 599. Methods for Teaching Assistants and Graduate Assistants. 3 credits, 3 contact hours.
Restriction: graduate standing. Required for all chemistry teaching assistants and graduate assistants. Covers techniques of teaching, interaction with students, and safety. Does not count as degree credit.
CHEM 601. Special Topics in Chemistry I. 3 credits, 3 contact hours.
Restriction: graduate standing and permission of the instructor. Topics of current interest in chemistry.

CHEM 605. Advanced Organic Chemistry I: Structure. 3 credits, 3 contact hours.
Prerequisite: undergraduate organic chemistry. Structure of organic molecules. Topics include atomic and molecular structure, stereochemistry, reactive intermediates (cations, anions, radicals, and carbenes), orbital symmetry, and spectroscopy.

CHEM 606. Physical Organic Chemistry. 3 credits, 3 contact hours.
Prerequisite: CHEM 502 or equivalent. Emphasis is placed on the physical aspects of the subject. Determination of reaction mechanisms, equilibria, and kinetics using simple molecular orbital theory and absolute reaction rate theory.

CHEM 610. Advanced Inorganic Chemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate physical chemistry or permission of the instructor. Theories of observed chemical and physical properties of the elements and their compounds; prediction of reactivity and properties of proposed new compounds.

CHEM 617. Mass Spectrometry and Interpretation of Mass Spectra. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. Historical background, fundamentals and mechanics of operation for components incorporated into modern Mass Spectrometers: vacuum system, ion sources, mass filter, ion detection, plus computer operation and data collection. Explanation and interpretation of mass spectra and fragmentation patterns are a fundamental theme throughout the course. Lecture material includes principles of operation and appropriate applications for modern types of mass spectrometers: magnetic sector, quadrupole, time of flight, ion trap, FT-ICR. Theory and applications of electron impact, chemical, electrospray, and other ionization techniques including atmospheric sampling are covered. High resolution analysis using magnetic sector and FT - ion cyclotron instruments. Analytical applications in environmental, petroleum and biochemical analysis and applications and coupling of mass spectrometry with other instruments (GC, LC, AES,) are illustrated.

CHEM 658. Advanced Physical Chemistry. 3 credits, 3 contact hours.
Prerequisite: one year of undergraduate physical chemistry. Principles and applications of quantum chemistry; the wave equation, its properties and mathematics; the Schrodinger equation and wave functions; the harmonic oscillator; variational and perturbational methods; atomic theory, structure, and properties; simple molecules, LCAO and valence bond theories; semi-empirical methods; time dependence, and introduction to electronic and vibration-rotation spectroscopy.

CHEM 661. Instrumental Analysis Laboratory. 3 credits, 3 contact hours.
Prerequisite: one year of undergraduate physical chemistry. Instruments for chemical analysis are discussed in class and used in the laboratory; basic theory; sample preparation; use of instruments and interpretation of data are covered for spectroscopy including UV/VIS, FTIR, AA, and NMR; HPLC, GC, ion chromatography, mass spectrometry. Applications to food science, pharmaceuticals, polymers, and other chemical areas.

CHEM 662. Air Pollution Analysis. 3 credits, 4 contact hours.
Prerequisite: undergraduate physical chemistry. Chemical and physical principles of gaseous species and trace level measurement techniques for airborne vapors and particulates. Emphasis on analyzing real air samples at the parts-per-billion level, meteorological dispersion and life times of pollutants are covered. Laboratory work in air pollution sampling methods for vapor and particulate species. Determination of primary air pollutants using wet chemical and instrumental techniques.

CHEM 664. Advanced Analytical Chemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate physical chemistry. The principles of chemical analysis as they apply to chromatography, electrochemistry, and spectroscopy. Sampling considerations, separations, and sample preparation steps. This course is a useful adjunct to CHEM 661, where these analytical techniques are considered in a more practical way.

CHEM 667. Biochemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate organic and physical chemistry, or suitable background in these subjects. Fundamentals of biochemistry related to physical organic chemistry for students who have an interest in biomedical engineering, chemistry, chemical engineering, or environmental science.

CHEM 698. Selected Topics in Chemistry. 3 credits, 3 contact hours.
Survey of recent research topics in Chemistry at the Master's level.

CHEM 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry. A written report must be submitted to the project advisor. The student cannot register in CHEM 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CHEM 701B. Masters Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CHEM 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CHEM 701C. Masters Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CHEM 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).
CHEM 702. Special Topics in Chemistry II. 3 credits, 3 contact hours.
Restriction: Graduate standing. Topics of current interest in chemistry.

CHEM 714. Pharmaceutical Analysis. 3 credits, 3 contact hours.
The objective of this course is to provide an overview of instrumental techniques used in the analysis of different pharmaceutical products. Many different types of analysis are carried out in the pharmaceutical industry pertaining to active ingredients, formulations as well as impurities and degradation. The focus will be on instrumentation such as chromatography, mass spectrometry, different types of spectroscopy, quality assurance and GMP.

CHEM 716. Integrated Drug Dev & Discover. 3 credits, 3 contact hours.
Prerequisite: Strong background in organic chemistry This course offers an overview of the drug development process combined with hands-on experience in computer-aided drug design. Topics include pharmacokinetics, bioavailability, drug formulation, and structure-based drug design.

CHEM 717. Mass Spectrometry and Mass Spectral Interpretation. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. CHEM 717 and EVSC 617 are comprised of CHEM 717 and EVSC 617 plus a research project: Research projects usually comprise experimental and mass spectrometry interpretation studies. These can be performed at NJIT or in the students corporate mass spectrometry facility. Projects may also include theory, data interpretation or literature reviews pertinent to a current active area in mass spectrometry research. Projects should be approved or in consult with the instructors.

CHEM 718. Organic Synthesis. 3 credits, 3 contact hours.
Organic Synthesis is widely used in the production of organic materials and pharmaceutical drugs. The course introduces modern synthetic methods to the graduate students of NJIT. The first part of the course teaches organic reactions categorized by their roles in synthesis. Topics include substitution and addition of carbon nucleophiles, functional group conversion, oxidation, reduction, concerted cycloadditions, aromatic substitutions, and organometallic catalysis. The second part of the course teaches general strategies to develop synthetic plans, special considerations for difficult synthetic targets, and examples of natural product synthesis.

CHEM 719. Drug Delivery Systems. 3 credits, 3 contact hours.
Prerequisite: Strong background in organic chemistry This course emphasizes the importance of effective drug delivery to achieve specific therapeutic outcomes. Students learn current trends in research on the design of drug delivery systems to release drug content in a controllable and targeted manner.

CHEM 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CHEM 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for CHEM 726 if they have taken CHEM 725 in a prior semester.

CHEM 727. Independent Study III. 3 credits, 3 contact hours.
Restriction: written permission from the Associate Chairperson for Environmental Science plus courses prescribed by the supervising faculty member (who is not the student’s thesis advisor). This special course covers areas of study in which one or more students may be interested, but which are not sufficiently broad to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

CHEM 734. Thermochemical Kinetics-Detailed Mechanistic Modeling. 3 credits, 3 contact hours.
Prerequisite: graduate level course in either kinetics or reactor design, or permission of instructor. Quantitative estimation of thermochemical data and chemical reactions in the vapor phase, and to some extent in the liquid phase; theories of transition state, RRKM, and Quantum RRK; and detailed chemical modeling concepts for reactor design. Applied computer project is required.

CHEM 735. Combustion. 3 credits, 3 contact hours.
Prerequisite: thermodynamics and kinetics or equivalent, or permission of instructor. Thermodynamic properties of stable molecules and free radical species in combustion and oxidation of aliphatic hydrocarbons; reactions occurring in high temperature combustion systems; and related kinetic principles.

CHEM 737. Applications of Computational Chemistry and Molecular Modeling. 3 credits, 3 contact hours.
Students are exposed to hands-on applications and fundamental aspects of computational chemistry and molecular modeling in organic, inorganic, bio- and physical chemistry. The course provides methods to determine the thermochemistry of a reaction, and strength (energy) of interactions by organic drug-like molecules with proteins. The course teaches the student to evaluate relative energy of different structures plus chemical species stability, reactivity and equilibrium ratios in chemical environments.
CHEM 748. Nanomaterials. 3 credits, 3 contact hours.
New feature of the 700 level course will be hands-on small projects carried out by groups of two students in Professor Iqbal's laboratories during the second half of the semester. The projects will be selected from the topics covered in the course. A second feature will involve a lecture on a specialized nanomaterial topic given by an invited outside lecturer. This 3 credit interdisciplinary course is designed to teach and provide hands-on project experience to M.S. and Ph.D. graduate students in chemistry, physics/materials science, and chemical/biomedical/electrical engineering on the fundamentals, synthesis, characterization and applications of nanomaterials. 75% of the course will comprise of lectures-one or two of which will be given by invited outside lecturers. 25% of the course will involve small projects based on the syllabus and conducted in the research laboratories of the instructor.

CHEM 764. Advanced Analytical Chemistry. 3 credits, 3 contact hours.
Prerequisites: undergraduate General and Analytical Chemistry. The principles of chemical analysis as they apply to chromatography, electrochemistry, and spectroscopy. Sampling considerations, separations, and sample preparation steps. This course is a useful adjunct to CHEM 661, where these analytical techniques are considered in a more practical way.

CHEM 777. Principles Pharm Chemistry. 3 credits, 3 contact hours.
Teaches about drug design, and the molecular mechanisms by which drugs act in the body. Covers pharmacodynamics, pharmacokinetics, molecular targets used by drugs, the interaction of a drug with a target, and the consequences of this interaction. Covers strategies used in discovering and designing new drugs, and surveys the "tools of the trade" involved, e.g., QSAR, combichem and computer aided design. Covers special topics like chlorinergics, analgesics, opiates, antibacterials, antivirals, and antulcer agents.

CHEM 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Co-requisite: CHEM 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry. For PhD students who have successfully defended their dissertation proposal. The student must register in CHEM 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

CHEM 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
Co-requisite: CHEM 791. Since the CHEM 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

CHEM 790C. Doctoral Dissertation. 6 credits, 6 contact hours.
Co-requisite: CHEM 791. Since the CHEM 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in chemistry. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

CHEM 790D. Doctoral Dissertation. 9 credits, 3 contact hours.
CHEM 790E. Doctoral Dissertation. 12 credits, 3 contact hours.
CHEM 790F. Doctoral Dissertation. 15 credits, 15 contact hours.
CHEM 790G. Doctoral Dissertation. 18 credits, 18 contact hours.

CHEM 791. Graduate Seminar. 0 credits, 0 contact hours.
Required of all chemistry graduate students receiving departmental or research-based awards and all doctoral students. The student must register each semester until completion of the degree. Outside speakers and department members present their research for general discussion.

CHEM 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
CHEM 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: CHEM 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in chemistry. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

CHEM 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

ENG 502. English for International Graduate Students. 3 credits, 3 contact hours.
Practice in writing to improve sentence structure, grammar, vocabulary, and organization. For technical writing, see ENG 541. Level: High Intermediate.

ENG 503. Public Speaking for International Teaching Assistants and Others. 3 credits, 3 contact hours.
Practice in public speaking for international TAs and others who want to improve their oral presentation skills. Includes teaching techniques, extemporaneous speaking, and pronunciation. Weekly video-recorded presentations.

ENG 505. English Pronunciation for International Graduate Students. 3 credits, 3 contact hours.
Offers practice and guidance in developing clear, accurate English pronunciation.
ENG 507. Advanced Conversation and American Culture. 3 credits, 3 contact hours.
Practice in conversation in English. The goal is to help students gain cultural knowledge and everyday speaking skills to increase participation in American life. Develops skill in using American idiomatic expressions.

ENG 521. Technical Written and Oral Communication. 3 credits, 3 contact hours.
Designed for Ph.D. students, but also open to Masters students who want to improve their writing and oral presentation skills in English. Focus on communication on a professional level. The approach is practical; course is taught in workshop format with special attention to journal articles, material for the job market, conference presentations and aspects of the dissertation. Students learn to write clear and grammatically correct documents and develop skills in technical speaking presentations. Native speakers of English may also take this course.

ENGL 603. Speaking English in Professional Situations. 3 credits, 3 contact hours.
This course includes practice in speaking at conferences, seminars, and job interviews, along with leading group discussions, speaking on video platforms, teaching, and giving dissertation defenses. Each class meeting includes practice in speaking in a specific professional situation, with clear, easily understandable English speech. The course is designed for Ph.D. students whose first language is not English and is also open to master’s students.

ENGL 621. Technical Writing for Graduate Students. 3 credits, 3 contact hours.
This course develops the English language skills needed to write a dissertation, journal articles, grant proposals, and related forms of professional technical writing. For some assignments, students may work on projects from courses in their own fields, a part of their dissertation-in-progress, or a projected article for publication. Special attention is given to producing writing that is clear, grammatically correct, in accord with professional stylistic guidelines, and effectively organized. The course is designed for PhD students whose first language is not English but is also open to master’s students and native English speakers who want to improve their writing.

EPS 601. Research Methods for Environment and Sustainability Policy. 3 credits, 3 contact hours.
Introduces the research methods necessary to conduct studies in environmental and sustainability policy. Topics covered include literature review, problem identification, hypothesis testing, and quantitative methods of data analysis and problem solving. Students are required to implement and present their independently designed projects.

EPS 602. Research Analysis for the Social and Policy Sciences. 3 credits, 3 contact hours.
Prerequisite: EPS 601. Distribution of social, political, economic and health-related data in both samples and populations using a general linear model with residuals. Test hypotheses using both the Fisher and Neyman-Pearson criteria. Use of software such as SPSS, Microsoft Excel and Resampling Stats. to develop and test models using correlation, regression and ANOV techniques.

EPS 609. Environmental Risk Assessment. 3 credits, 3 contact hours.
Methodology to assess the social and economic risks to present-day environmental resources of air and water; cost-benefit and trade-off analysis; technical characteristics of materials such as half-life, decomposition rates, and temperature sensitivity; and probabilities of various environmental situations.

EPS 610. Introduction to Environmental Policy Studies. 3 credits, 3 contact hours.
Introduction to six areas essential to a comprehensive understanding of environmental policy: concept of environmental policy; tools (law, economics, planning, science, engineering, ethics) for environmental policy; the U.S. perspective (NEPA, clean air and water acts, CERCLA); the international perspective (Club of Rome models, 1972 UNEP, 1992 Rio); industrial perspective (pollution prevention/life cycle engineering, privatization); and the local perspective (New Jersey DEP, NGOs, local industry, shoreline.) Same as MIP 612.

EPS 613. Environmental History and Policy. 3 credits, 3 contact hours.
Explores the dialogue between humanity and the environment in the United States, as well as its global implications. Surveys fundamental themes of history and policy from an environmental perspective: colonial development, independence, western expansion, industrialization, urbanization, and the rise of a consumer society. Gives special attention to the emergence of an environmental perspective: wilderness appreciation, the conservation movement, public health, the rise of the environmental movement since the 1960s, environmental science, and the legislative and regulatory process.

EPS 614. Environmental Economics and Management. 3 credits, 3 contact hours.
Overviews the complex and dynamic interactions between the economy and the environment from biological, economic, and institutional perspectives and investigates various strategies for resolving conflicts in resource management and pollution control. Topics include the basic principles of risk assessment, cost benefit analysis, and cost-effectiveness analysis in environment management and assessment of contemporary environment politics in air and water pollution control and waste and toxics management.

EPS 622. Sustainable Politics and Policy. 3 credits, 3 contact hours.
Identifies the origins of the concept of sustainability development and institutional efforts to implement strategies at various geopolitical scales: international, national, regional, and local. The course introduces tools to measure progress toward sustainability through the use of metrics such as ecological footprint analysis and life-cycle analysis. Other topics include steady-state economics, sustainable systems of production and consumption, and sustainability transitions.

EPS 638. Physical Geography. 3 credits, 3 contact hours.
Understanding the interaction between humans and the physical environment is important to the formulation of sound environmental policy. The course examines processes that shape the physical environment, the influence of human activities on these processes and the physical environment, and the application of this information to solving environmental problems.
EPS 644. The Rhetoric of Environmental Policy. 3 credits, 3 contact hours.
Introduces students to the major types of rhetorical analysis as well as assures that students can analyze and write technology policy that is informed by core rhetorical principles of that analysis.

EPS 651. Introduction to Urban and Environmental Health. 3 credits, 3 contact hours.
Health problems associated with the social and psychological factors found in urban areas and health problems stemming from contamination of air, water, food, the work place and other special environments. Policies required to promote healthful living behavior and those required to regulate negative externalities.

EPS 660. Ethics and Environmental Policy. 3 credits, 3 contact hours.
Contemporary environmental problems from the perspective of ethics or moral philosophy. Is there a moral obligation to preserve or protect the natural environment? What are the ethical presumptions and values underlying environmental policy? Are traditional theories of moral philosophy applicable to contemporary environmental problems, or is a new conception of the relationship between humanity and nature needed?

EPS 698. ST:. 3 credits, 3 contact hours.
Course considers advanced topics of special or current interest related to environmental and sustainability policy.

EPS 699. ST:. 3 credits, 3 contact hours.
Course considers advanced topics of special or current interest related to environmental and sustainability policy.

EPS 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental and sustainability policy. A written report must be submitted to the project advisor. The student cannot register in EPS 700B more than once and the incomplete (I) grade is not allowed.

EPS 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental and sustainability policy that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in EPS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EPS 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental and sustainability policy that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (EPS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EPS 702. Special Topics. 3 credits, 3 contact hours.
Restriction: Approval of graduate advisor in Environmental Science. Topics of current interest in the field of environmental policy. Doctoral level course.

EPS 712. Advanced Studies in Environmental and Sustainability Policy. 3 credits, 3 contact hours.
Evaluates strategies to reduce energy and material throughput including eco-efficiency relocalization of production and consumption, and green consumerism. Also considered are debates surrounding innovative policies to foster work-time reduction, to develop alternative measures of well-being, and to include societal values shifts.

EPS 714. Environmental and Natural Resources Economics. 3 credits, 3 contact hours.
Examines environmental regulation of firms and natural resource use with emphasis on the theoretical foundations required for public policy. Students focus primarily on the application of economic tools to improve environmental quality.

EPS 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

EPS 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for EPS 726 if they have taken EPS 725 in a prior semester.

EVSC 591. Graduate Work Experience I. 1 credit, 1 contact hour.
Restriction: permission of the associate chairperson for environmental science and the Division of Career Development Services. Provides on-the-job reinforcement of environmental science assignments. Projects are developed by the co-op office in consultation with the associate chairperson for environmental science. Cannot be used for degree credit.

EVSC 592. Graduate Work Experience II. 1 credit, 1 contact hour.
Restriction: permission of the associate chairperson for environmental science and the Division of Career Development Services. Provides on-the-job reinforcement of environmental science assignments. Projects are developed by the co-op office in consultation with the associate chairperson for environmental science. Cannot be used for degree credit.
EVSC 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

EVSC 600. Environmental Science Seminar. 0 credits, 3 contact hours.
Restriction: graduate standing. Current environmental topics of interest to the environmental professional are presented. Required every semester for environmental science graduate students receiving departmental or research-based awards and for all doctoral students.

EVSC 602. Special Topics in Environmental Science I. 3 credits, 3 contact hours.
Restriction: approval of graduate advisor in environmental science. Topics of current interest in the environmental field.

EVSC 603. Hazardous Waste Operations and Emergency Response. 3 credits, 3 contact hours.
Explores the safe operation of hazardous waste sites as well as emergency responses to hazardous releases. Overview of OSHA regulations and NIOSH standards concerning toxicological hazards and medical surveillance requirements. Emphasis on recognition and monitoring of site hazards. A written health and safety plan, and participation in a group problem involving a simulated hazardous site entry using actual protective equipment is required. Course satisfies the regulatory compliance mandates to meet 29 CFR 1910.120 for OSHA, with certification valid for one year.

EVSC 610. Environmental Chemical Science. 3 credits, 3 contact hours.
Restriction: graduate standing. Principles of physical, inorganic and organic chemistry are applied to understanding the origins of environmental pollutants, their transport, distribution and decomposition pathways.

EVSC 611. Hazardous Waste Management. 3 credits, 3 contact hours.
Restriction: graduate standing. An overview of hazardous waste management; case histories; legislation and regulations; treatment, disposal and cleanup technologies; sampling and analysis methodology; persistence and fate in the environment; emergency response procedures.

EVSC 612. Environmental Analysis. 3 credits, 4 contact hours.
Restriction: graduate standing. The analysis of environmental samples is studied from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis, and data treatment.

EVSC 613. Environmental Problem Solving. 3 credits, 3 contact hours.
Restriction: graduate standing. This course is designed to study solutions for current environmental problems. Students are asked to respond to an imaginary Request for Proposal (RFP) in writing and before a team of technical experts at an oral presentation. Solutions proposed in student RFPs must reflect knowledge of environmental science and technology in current use.

EVSC 614. Quantitative Environmental Risk Assessment. 3 credits, 3 contact hours.
Restriction: graduate standing. Applications of quantitative risk assessment concepts to the management of environmental problems.

EVSC 615. Global Environmental Problems. 3 credits, 3 contact hours.
Restriction: graduate standing. With an understanding that environmental problems are not restricted by geographical boundaries, relationships of the earth's temperature balance, global air circulation patterns, global energy needs, and control and remediation technologies are studied.

EVSC 616. Toxicology. 3 credits, 3 contact hours.
Restriction: graduate standing. The general principles of toxicology are presented and applied to the assessment of acute, subacute and chronic effects of hazardous and toxic chemicals. Qualitative and quantitative measures of toxicity and testing protocols are addressed. The role of toxicology in risk assessment and risk management is discussed.

EVSC 617. Mass Spectrometry and Interpretation of Mass Spectra. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. Historical background, fundamentals and mechanics of operation for components incorporated into modern Mass Spectrometers: vacuum system, ion sources, mass filter, ion detection, plus computer operation and data collection. Explanation and interpretation of mass spectra and fragmentation patterns are a fundamental theme throughout the course. Lecture material includes principles of operation and appropriate applications for modern types of mass spectrometers: magnetic sector, quadrupole, time of flight, ion trap, FT-ICR. Theory and applications of electron impact, chemical, electrospray, and other ionization techniques including atmospheric sampling are covered. High resolution analysis using magnetic sector and FT - ion cyclotron instruments. Analytical applications in environmental, petroleum and biochemical analysis and applications and coupling of mass spectrometry with other instruments (GC, LC, AES,) are illustrated.

EVSC 621. Ecological Risk Assessment. 3 credits, 3 contact hours.

EVSC 622. Bioremediation. 3 credits, 3 contact hours.

EVSC 623. Environmental Health. 3 credits, 3 contact hours.

EVSC 624. Environmental Analysis Methods and Laboratory. 3 credits, 4 contact hours.
Basic theory, methods, instruments, and data interpretation for chemical analysis of environmental samples are described in lectures and used in the laboratory; sampling; sample preparation; quality assurance, chain of custody. Instrument methods and uses include: UV-VIS, FTIR, AA, HPLC, GC, Ion Chromatography, and Mass Spectrometry as applied to environmental samples.

EVSC 625. Social Dimensions of Risk. 3 credits, 3 contact hours.
Low-probability/high consequence events involving terrorism, food safety, and extreme weather offer ample evidence the prevalent approaches of economics and statistics are not able to deal with the complex ways that risk permeates modern societies. This course treats risk analysis as a broad interdisciplinary activity and draws on the full range of the social sciences to explore the multifaceted way that risk infuses itself into the fabric of contemporary affairs.
EVSC 626. Hydrogeology. 3 credits, 3 contact hours.
This course covers the principles of ground water flow, advanced water cycle properties, aquifer flow and aquifer recharge. Contaminant migration and remediation methods are discussed. Basic groundwater chemistry and quality is covered.

EVSC 627. Environmental Microbiology. 3 credits, 3 contact hours.
Prerequisites: R120 101, R120 102, (General Biology I and II) or permission of instructor. This course offers an overview of 1) basic microbiology: biochemical principles, cell structure organization, microbial nutrition and growth, 2) the important microbes involved in environmental microbiology and address the environments where they are found, and 3) how they are detected and monitored, and their effects on humans, and the environment. Traditional lectures and exams are supplemented with discussions of current research articles.

EVSC 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science. A written report must be submitted to the project advisor. The student cannot register in EVSC 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EVSC 701A. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in EVSC 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EVSC 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (EVSC 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EVSC 702. Special Topics in Environmental Science II. 3 credits, 3 contact hours.
Restriction: approval of graduate advisor in environmental science. Topics of current interest in the environmental field.

EVSC 711. Advanced Environmental Analysis. 3 credits, 3 contact hours.
Prerequisite: EVSC 612 or equivalent. Analysis of complex environmental samples is studied, from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis and data handling. Collection and analysis of samples from air, water, soil, and biological systems will be discussed. Emphasis on the study of current literature.

EVSC 712. Hazardous Substance Management. 3 credits, 3 contact hours.
Restriction: Graduate standing. The course material comprises an overview of hazardous materials and hazardous waste management and control in an industrial setting. The course examines the technical approaches utilized in the control, remediation, and prevention of hazardous substances and waste. It also includes the major technical elements of federal regulations that govern operations involving the handling of hazardous materials.

EVSC 715. Energy and Sustainability. 3 credits, 3 contact hours.
This course comprises an interdisciplinary review of energy fundamentals including the basic principles necessary to understand energy systems. The technological and engineered systems for processing and using different energy non-renewable and renewable sources. The social and environmental consequences of energy production, distribution, and use, including a comparison of socioeconomic models of global energy applications.

EVSC 717. Mass Spectrometry and Mass Spectral Interpretation. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. CHEM 717 and EVSC 617 are comprised of CHEM 717 and EVSC 617 plus a research project: Research projects usually comprise experimental and mass spectrometry interpretation studies. These can be performed at NJIT or in the students corporate mass spectrometry facility. Projects may also include theory, data interpretation or literature reviews pertinent to a current active area in mass spectrometry research. Projects should be approved or in consult with the instructors.

EVSC 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

EVSC 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for EVSC 726 if they have taken EVSC 725 in a prior semester.
EvSC 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Co-requisite: EvSC 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science. For PhD students who have successfully defended their dissertation proposal. The student must register in EvSC 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

EvSC 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
Co-requisite: EvSC 791. Since the EvSC 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

EvSC 790C. Doctoral Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: EvSC 791. Since the EvSC 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in environmental science. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

EvSC 790D. Doctoral Dissertation & Res. 9 credits, 3 contact hours.
Required of all students working toward the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Candidates must register for at least 6 credits of dissertation per semester until 36 credits are reached, and 3 credits per semester thereafter until a written dissertation is approved.

EvSC 790E. Doctoral Dissertation & Res. 12 credits, 3 contact hours.
Required of all students working toward the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Candidates must register for at least 6 credits of dissertation per semester until 36 credits are reached, and 3 credits per semester thereafter until a written dissertation is approved.

EvSC 790F. Doctoral Dissertation. 15 credits, 15 contact hours.
Required of all students working toward the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Candidates must register for at least 6 credits of dissertation per semester until 36 credits are reached, and 3 credits per semester thereafter until a written dissertation is approved.

EvSC 791. Graduate Seminar. 0 credits, 1 contact hour.
Required of all environmental science graduate students receiving departmental or research-based awards and all doctoral students. The student must register each semester until completion of the degree. Outside speakers and department members present their research for general discussion.

EvSC 792A. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: EvSC 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in environmental science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

HIST 600. History Research Seminar. 3 credits, 3 contact hours.
This seminar course introduces students to various methods for conducting historical research using primary and secondary source materials, and teaches them how to write a formal research paper. The seminars are on a particular topic chosen by the professor, and can focus on a chronological period or geographic region, on an historical event, cultural movement, or social group, or on a type of history such as environmental history, the history of technology, or the history of health and medicine.

HIST 620. Culture and Science in the History of American Medicine. 3 credits, 3 contact hours.
Provides an overview of American medical history and a familiarity with the theoretical and practical ramifications of different approaches to the complex relationships between medicine, science, and culture. Topics include: the extent to which medicine is or has been scientific; reasons why science has been considered so important to medicine's professional culture; and the degree to which medicine's professional culture has been shaped by science as well as other factors, such as economic and political self-interest, technology, class, race, gender, and other kinds of cultural values.

HIST 624. Technology, Environment and Medicine in World History, 1500-1900. 3 credits, 3 contact hours.
Examines the interrelationship between the emerging modern world system and changes in technology, environment, and medicine, with particular emphasis on European overseas expansion and its impact in non-Western regions.
HIST 626. Social History of American Medicine Since 1800. 3 credits, 3 contact hours.
Topics include the practices of 19th-century regular medicine; the relation between medical concepts and mainstream social thought; the treatment of women's health; antebellum alternative healers and alternative politics; the triumphs of late 19th- and early 20th-century medical therapeutics; the emergence of medicine as big business; medicine and racism; the emergence of nursing as a profession; modern medicine in an international perspective; New Age healing; the AIDS crisis and AIDS activism; and contemporary debates on the future of health care in the United States.

HIST 628. Gender, Science and Technology in the Modern World. 3 credits, 3 contact hours.
Introduction to a wide range of political and cultural analyses of science and technology, with an emphasis on recent feminist critiques of science. Explores the questions of scientific neutrality; the gendering of scientific knowledge; the relationship between science, technology, and capitalism; the role of science in international politics; and why science has not freed women.

HIST 630. History of the Body in Modern Western Culture. 3 credits, 3 contact hours.
Considers medical or scientific history primarily in terms of implications for bodily experience in everyday life. Begins with grand narratives of historical shifts in bodily perceptions and practices, and proceeds to more focused narratives of changing bodily experience, engaging key distinctions between genders, classes, and species as well as perceptions of pain and internal bodily structure. Materials will be drawn from early modern and modern Europe, as well as more recent bodily experience in the United States.

HIST 632. Global Hist of Tech & Culture. 3 credits, 3 contact hours.
Explores the dialogue between humankind and the environment in North America over the course of the last four centuries. Examines the latest and most interesting work done in the new field of environmental history to see what such a perspective has to offer.

HIST 634. Environmental History of North America. 3 credits, 3 contact hours.
A team-taught course which surveys the methods employed in the three fields. Explores the interdisciplinary nature of each field, and the value of interdisciplinary scholarship.

HIST 635. History of Technology, Environment and Medicine: Theory and Method. 3 credits, 3 contact hours.
This course takes a global view of human interaction with the natural world, mixing broad themes such as colonialism and industrialization with detailed case studies in an effort to understand the ways that people and the environment have mutually shaped one another. Because environmental change often transcends national boundaries, this course places important subjects in environmental history such as disease, agriculture, pollution, and environmentalism into a global and transnational context.

HIST 637. Global Environmental History. 3 credits, 3 contact hours.
This course examines the history of western efforts to promote health and nutrition in the “developing world” from the beginnings of tropical medicine. We will trace this history through its many permutations of colonial health services to the development of the Global Programme on AIDS. In doing so, we will explore the various economic and political interests and underlying cultural assumptions that have shaped the development of ideas and practices associated with international health and development.

HIST 640. The Urban Environment. 3 credits, 0 contact hours.
This course examines the role of the economy, culture, and technology in shaping the urban environment. Makes extensive use of Newark and the New York metropolitan area, including field observations and local research. In addition to other topics, explores in detail spatial relationships, the role of transportation, and the development of suburbia.

HIST 642. The History of Health and International Development. 3 credits, 3 contact hours.
This course examines the history of western efforts to promote health and nutrition in the “developing world” from the beginnings of tropical medicine. We will trace this history through its many permutations of colonial health services to the development of the Global Programme on AIDS. In doing so, we will explore the various economic and political interests and underlying cultural assumptions that have shaped the development of ideas and practices associated with international health and development.

HIST 644. War, Technology and Society, 1500-1914. 3 credits, 3 contact hours.
Examines key themes in the interrelationship between warfare, technology and society from the beginnings of modern warfare until World War I. Primary emphasis placed on the historical connections between violent conflict, the technical means by which it is carried out, and the socio-political environment within which wars take place. The effect of technology upon war and considerations of the effect of war on technological change and development. Samples the rich tradition of thought and ideas produced by philosophers and theorists on these themes.

HIST 645. American Legal History to 1860. 3 credits, 3 contact hours.
Readings and discussion on the legacy of common law after the Revolution; the emergence of legal instrumentalism; and the evolution of tort, contract, and damages in the context of industrialism and economic growth.

HIST 650. History of American Conservatism. 3 credits, 3 contact hours.
This course examines postwar American conservatism through classic works and contemporary studies. Topics include the rise of conservatism, groups under the conservative umbrella, and the rise of the right as related to key events in postwar history (Cold War, McCarthyism, the ’60s, the suburbs and urban change). Course interrogates postwar conservatism with respect to American political and intellectual history and in relation to histories of gender, race, class, sexuality, place and religion.
HIST 652. Topics in the History of Technology. 3 credits, 3 contact hours.
Selected topics in the history of technology.

HIST 653. Topics in European Intellectual and Cultural History. 3 credits, 3 contact hours.
Examination of issues and methods in European intellectual and cultural history, with a consideration of some leading problems in the field.

HIST 654. Topics in American Intellectual and Cultural History. 3 credits, 3 contact hours.
Examination of issues and methods in American intellectual and cultural history, with a consideration of some leading problems in the field.

HIST 655. Topics in American Urban and Ethnic History. 3 credits, 3 contact hours.
Examination of issues and methods in American urban and ethnic history, with a consideration of some leading problems in the field.

HIST 656. Topics in the History of Health. 3 credits, 3 contact hours.
Selected topics in the history of Health.

HIST 657. Topics in Environmental History. 3 credits, 3 contact hours.
Selected topics in environmental history.

HIST 658. Topics in American Legal History. 3 credits, 3 contact hours.
Readings and discussion on the growth of legal formalism, the evolution of substantive due process, changes in legal education and the legal profession, and the evolution of private law.

HIST 660. The Enlightenment in Britain. 3 credits, 3 contact hours.
The 18th century was the age of the Enlightenment. Great Britain became a unified polity and the most powerful imperial force in the world. We examine the Enlightenment in Britain against the backdrop of war and empire, imperial consumer culture, the growth and significance of sociability and politeness, representations of gender, the writing of cultural history, social uses of science/technology, print culture, and competition among varying notions of ethnic identity.

HIST 661. Problems and Readings in European History since 1850. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in European history since 1850.

HIST 662. Prob. and Read: Hist/US Foreign Policy and Diplomacy. 3 credits, 3 contact hours.
Examination of issues and methods in American diplomatic history, with a consideration of some leading problems in the field.

HIST 663. Problems and Readings in American History, 1492-1789. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1492 to 1789.

HIST 664. Problems and Readings in American History, 1789-1865. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1789 to 1865.

HIST 665. Problems and Readings in American History, 1865-1914. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1865 to 1914.

HIST 666. Problems and Readings in American History, 1890-1945. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1890 to 1945.

HIST 667. Problems and Readings in American History, 1945-Present. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history since 1945.

HIST 701B. Master's Thesis. 3 credits, 3 contact hours.
Restriction: permission of graduate history advisor. For students writing a master's thesis in the history of technology, environment and medicine. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

HIST 701C. Master's Thesis. 6 credits, 6 contact hours.
Restriction: Permission of graduate history advisor. For students writing a master's thesis in the history of technology, environment and medicine.

HIST 702. Master's Essay. 3 credits, 3 contact hours.
For those who don't write a 6 credit thesis, the 3 credit Master's Essay caps the M.A./M.A.T. A substantial work done with an advisor, may be: 1. Interpretive historical essay based on primary source research. 2. Narrative history based on primary source research. Prereq: R510:504, R510:505, or R510:506. 3. Historiographical essay. 4. Content-focused curriculum design, either a course or significant portion thereof. 5. Design for an historical museum exhibition/other work in public history. Prereq: R510:565.

HIST 725. Independent Study. 3 credits, 1 contact hour.
Restriction: permission of graduate history advisor and course instructor.

HIST 726. Independent Study. 3 credits, 1 contact hour.
Restriction: permission of graduate history advisor and course instructor.

HIST 727. Independent Study. 3 credits, 3 contact hours.
Restriction: permission of graduate history advisor and course instructor.

HIST 791. Seminar in History of Technology, Environment and Medicine. 0 credits, 0 contact hours.
Faculty, students and invited speakers present and discuss current topics of research in history, technology and medicine.
MATH 545. Introductory Mathematical Analysis. 3 credits, 3 contact hours.
Prerequisite: MATH 211 or MATH 213, and departmental approval. Rigorous treatment of the calculus of real-valued functions of one real variable: the real number system, epsilon-delta theory of limit, continuity, derivative, and the Riemann integral. The fundamental theory of calculus. Series and sequences including Taylor series and uniform convergence. The inverse and implicit function theorems.

MATH 546. Advanced Calculus. 3 credits, 3 contact hours.
Prerequisite: MATH 545 or MATH 480. Rigorous treatment of the calculus of real-valued functions of several real variables: the geometry and algebra of n-dimensional Euclidean space, limit, continuity, derivative, and the Riemann integral of functions of several variables, the inverse and implicit function theorems, series, including Taylor series, optimization problems, integration on curves and surfaces, the divergence and related theorems.

MATH 573. Intermediate Differential Equations. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 337, or departmental approval. Methods and applications for systems of ordinary differential equations: existence and uniqueness for solutions of ODEs, linear systems, stability analysis, phase plane and geometrical methods, Sturm-Liouville eigenvalue problems.

MATH 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisites: Graduate status, departmental approval, and permission of the Division of Career Development Services. Cooperative education/internship providing on-the-job complement to academic programs in mathematics. Work assignments and projects are developed by the Co-op Office in consultation with the Department of Mathematical Sciences.

MATH 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

MATH 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisites: Graduate status, departmental approval, and permission of the Division of Career Development Services.

MATH 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

MATH 599. Teaching in Mathematics. 3 credits, 3 contact hours.
Required of all master's and doctoral students in Mathematical Sciences who are receiving departmental or research-based awards. Provides students with the skills needed to communicate effectively and to perform their teaching and related duties. Students are exposed to strategies and methods for communicating and for teaching undergraduate mathematics, and they are required to practice and demonstrate these techniques. Not counted for degree credit.

MATH 604. Mathematical Finance. 3 credits, 3 contact hours.
Prerequisites: FIN 641 Derivatives, MATH 605 Stochastic Calculus, or permission of the instructor. This course will explore the structure, analysis, and use of financial derivative instruments deployed in investment strategies and portfolio risk management. Topics include continuous time dynamics, arbitrage pricing, martingale methods, and valuation of European, American, and path dependent derivatives.

MATH 605. Stochastic Calculus. 3 credits, 3 contact hours.
This course provides an introduction to stochastic calculus. Topics include conditioning, Poisson processes, martingales, Brownian motion, Ito integrals, Ito's formula, stochastic differential equations, Feynman-Kac formula, Girsanov's theorem, and the martingale representation theorem. Financial applications include pricing, hedging, and interest rate models.

MATH 606. Term Structure Models. 3 credits, 3 contact hours.
Prerequisites: MATH 605, or permission of the instructor. Corequisite: MATH 608. This course will develop the mathematical structure of interest rate models and explore the considerable hurdles involved in practical implementation. Short rate models, single and multifactor; the Heath-Jarrow-Morton framework; and modern Libor market models will be examined.

MATH 607. Credit Risk Models. 3 credits, 3 contact hours.
Prerequisites: MATH 604, MATH 605, MATH 606 or permission of the instructor. This course explores mathematical models and methods for credit risk measurement and rating. The nature of credit risk is reviewed through examination of credit instruments, including credit default swaps, collateralized debt obligations, and basket credit derivatives. These instruments, through which risk exposure opportunities and hedging possibilities are created and managed, are explored with respect to dynamics and valuation techniques, applying PDE methods and stochastic processes.

MATH 608. Partial Differential Equations for Finance. 3 credits, 3 contact hours.
This course presents the subject of partial differential equations (PDE's) with a strong emphasis on the PDE's arising in the study of stochastic processes and finance. The focus is on analytical and numerical methods for obtaining solutions in a form useful for solving problems in financial engineering. Topics include modeling with PDE's, classification of PDE's, analytical and numerical methods for PDE's and application to finance.

MATH 609. Projects in Mathematical and Computational Finance. 3 credits, 3 contact hours.
Prerequisites: MATH 604 Mathematical Finance, MATH 605 Stochastic Calculus, MATH 606 Term Structure Models, or permission of the instructor. This project course requires students to demonstrate attained mastery of the material studies in the prerequisite courses. Projects also extend students' knowledge of specific areas beyond that covered in earlier courses into areas such as particle filtering or optimization techniques for term structure model calibration. The aim is to broaden the students' classroom focus to the more unconstrained, open ended and less well defined contexts that are frequently encountered in practice.
MATH 610. Graduate Research Methods. 3 credits, 0 contact hours.
Prerequisites: MATH 614, MATH 671, and MATH 690. Acquaints second-year graduate students with the techniques and vocabulary of a field in applied mathematics. Each student contacts a designated faculty member and is given several basic papers or books on a research topic of current interest. The student prepares two lectures on his/her topic to be given at the end of the semester. A sample list of active fields of research includes acoustics, electromagnetic theory, elasticity, fluid dynamics, combustion, and mathematical biology.

MATH 611. Numerical Methods for Computation. 3 credits, 3 contact hours.
This course provides a practical introduction to numerical methods. Numerical solution of linear systems. Interpolation and quadrature. Iterative solution of nonlinear systems. Computation of eigenvalues and eigenvectors. Numerical solution of initial and boundary value problems for ODE’s. Introduction to numerical solution of PDE’s. Applications drawn from science, engineering, and finance.

MATH 613. Advanced Applied Mathematics I: Modeling. 3 credits, 3 contact hours.
Prerequisites: MATH 331 and MATH 337, or departmental approval. Concepts and strategies of mathematical modeling are developed by investigation of case studies in a selection of areas. Consistency of a model, nondimensionalization and scaling, regular and singular effects are discussed. Possible topics include continuum mechanics (heat and mass transfer, fluid dynamics, elasticity), vibrating strings, population dynamics, traffic flow, and the Sommerfeld problem.

MATH 614. Numerical Methods I. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 337, MATH 340, and proficiency in a computer language (FORTRAN, C, or C++), or departmental approval. Theory and techniques of scientific computation, with more emphasis on accuracy and rigor than MATH 611. Machine arithmetic. Numerical solution of a linear system and pivoting. Interpolation and quadrature. Iterative solution of nonlinear systems. Computation of eigenvalues and eigenvectors. Numerical solution of initial- and boundary-value problems for systems of ODEs. Applications. The class includes examples requiring student use of a computer.

MATH 615. Approaches to Quantitative Analysis in the Life Sciences. 3 credits, 3 contact hours.
A graduate seminar-style course based around case studies of common data analytic methods used in the life sciences. The case studies are designed to help students who are interested in applications of statistical thinking to biological sciences appreciate the scope of quantitative methods, their underlying concepts, assumptions and limitations. While the mathematics of specific methods are not covered, students of the course will get an understanding of the diverse approaches to statistical inference in the life sciences.

MATH 630. Linear Algebra and Applications. 3 credits, 3 contact hours.
Prerequisites: MATH 211 or MATH 213, and MATH 222. This course is not intended for students in the Master's in Applied Mathematics program or in the doctoral program in Mathematical Sciences. Development of the concepts needed to study applications of linear algebra and matrix theory to science and engineering. Topics include linear systems of equations, matrix algebra, orthogonality, eigenvalues and eigenvectors, diagonalization, and matrix decomposition.

MATH 631. Linear Algebra. 3 credits, 3 contact hours.
Prerequisites: MATH 222 and MATH 337, or departmental approval. Similar in aim and content to MATH 630 but with more emphasis on mathematical rigor. Linear systems of equations, matrix algebra, linear spaces, orthogonality, eigenvalues and eigenvectors, diagonalization, and matrix decomposition. Applications.

MATH 635. Analytical Computational Neuroscience. 3 credits, 3 contact hours.
Prerequisites: MATH 211 or 213, MATH 337, and CS 113 or MATH 240, or departmental approval. This course will provide an intermediate-level mathematical and computational modeling background for small neuronal systems. Models of biophysical mechanisms of single and small networks of neurons are discussed. Topics include voltage-dependent channel gating mechanisms, the Hodgkin-Huxley model for membrane excitability, repetitive and burst firing, single- and multi-compartmental modeling, synaptic transmission, mathematical treatment of 2-cell inhibitory or excitatory networks. In this course, the students will be required to build computer models of neurons and networks and analyze these models using geometric singular-perturbation analysis and dynamical systems techniques.

MATH 636. Systems Computational Neuroscience. 3 credits, 3 contact hours.
Prerequisite: MATH 635. This course covers mathematical and computational modeling of neuronal networks. Topics covered include central pattern generators, models of visual processes, models of learning and memory, neural coding and mathematics of neural networks, models of oscillations in sensory, thalamic and thalamo-cortical networks, neuronal wave propagation.

MATH 637. Foundations of Mathematical Biology. 3 credits, 3 contact hours.
Prerequisites: MATH 222 and MATH 337, or departmental approval. This course provides an introduction to the use of mathematical techniques applied to solve problems in biology. Models discussed fall into 3 categories: discrete, continuous, and spatially distributed. Biological topics discussed range from the subcellular molecular systems and cellular behavior to physiological problems, population biology and developmental biology.

MATH 639. Mathematical Modeling II. 3 credits, 3 contact hours.
Continuation of MATH 613 (Advanced Applied Mathematics I, Modeling). Concepts and strategies of Mathematical modeling are developed by case studies in a selection of areas. Topics will be complementary to those presented in MATH 613, and include for example, the mathematical theory of elasticity and electromagnetic.

MATH 644. Regression Analysis Methods. 3 credits, 3 contact hours.
MATH 645. Analysis I. 3 credits, 3 contact hours.
Prerequisite: MATH 546 or departmental approval. Review and extension of the fundamental concepts of advanced calculus: the real number system, limit, continuity, differentiation, the Riemann integral, sequences and series. Point set topology in metric spaces. Uniform convergence and its applications.

MATH 646. Time Series Analysis. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or departmental approval. Time series models, smoothing, trend and removal of seasonality. Naive forecasting models, stationarity and ARMA models. Estimation and forecasting for ARMA models. Estimation, model selection, and forecasting of nonseasonal and seasonal ARIMA models.

MATH 647. Time Series Analysis II. 3 credits, 3 contact hours.
Prerequisite: MATH 646. Continuation of MATH 646. Covers methods of time series analysis useful in engineering, the sciences, economics, and modern financial analysis. Topics include spectral analysis, transfer functions, multivariate models, state space models and Kalman filtering. Selected applications from topics such as intervention analysis, neural networks, process control, financial volatility analysis.

MATH 651. Methods for Statistical Consulting. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or departmental approval. Time series models, smoothing, trend and removal of seasonality. Naive forecasting models, stationarity and ARMA models. Estimation and forecasting for ARMA models. Estimation, model selection, and forecasting of nonseasonal and seasonal ARIMA models.

MATH 654. Clinical Trials Design and Analysis. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or equivalent with Departmental approval. Statistical methods and issues in the design of clinical trials and analysis of their data. Topic include clinical trial designs for phases 1-4, randomization principle and procedures, analysis of pharmacokinetic data for bioequivalence, multi-center trials, categorical data analysis, survival analysis, longitudinal data analysis, interim analysis, estimation of sample size and power, adjustment for multiplicity, evaluation of adverse events, and regulatory overview.

MATH 656. Complex Variables I. 3 credits, 3 contact hours.
Prerequisite: MATH 545 or MATH 645 or departmental approval. The theory and applications of analytic functions of one complex variable: elementary properties of complex numbers, analytic functions, elementary complex functions, conformal mapping, Cauchy integral formula, maximum modulus principle, Laurent series, classification of isolated singularities, residue theorem, and applications.

MATH 659. Survival Analysis. 3 credits, 3 contact hours.
Prerequisite: MATH 660. Continuation of MATH 659. Topics include survival and hazard functions, censoring and truncation, parametric and nonparametric models for survival data, competing-risks, regression models including Cox proportional hazards model and time-dependent covariates, one and two sample tests, and use of appropriate statistical software for computations.

MATH 660. Introduction to Statistical Computing with SAS and R. 3 credits, 3 contact hours.
Prerequisite: Basic knowledge in statistical concepts or instructor approval. This course will study SAS and R programming and emphasize the SAS and R data steps including getting data into the SAS and R environments, working and combining data using control flows, merge and subsets, etc. as well as learning to export data and to generate high resolution graphics. Several SAS and R statistical procedures or functions will also be discussed and illustrated. Finally, interactive statistical software JMP and Minitab are briefly introduced.

MATH 661. Applied Statistics. 3 credits, 3 contact hours.
Prerequisite: MATH 112. Role and purpose of applied statistics. Data visualization and use of statistical software used in course. Descriptive statistics, summary measures for quantitative and qualitative data, data displays. Modeling random behavior: elementary probability and some simple probability distribution models. Normal distribution. Computational statistical inference: confidence intervals and tests for means, variances, and proportions. Linear regression analysis and inference. Control charts for statistical quality control. Introduction to design of experiments and ANOVA, simple factorial design and their analysis. MATH 661 and MATH 663 cannot both be used toward degree credits at NJIT.

MATH 662. Probability Distributions. 3 credits, 3 contact hours.
Prerequisite: MATH 341 or MATH 333, and departmental approval. Probability, conditional probability, random variables and distributions, independence, expectation, moment generating functions, useful parametric families of distributions, transformation of random variables, order statistics, sampling distributions under normality, the central limit theorem, convergence concepts and illustrative applications.

MATH 663. Introduction to Biostatistics. 3 credits, 3 contact hours.
Prerequisite: Undergraduate Calculus. Introduction to statistical techniques with emphasis on applications in health related sciences. This course will be accompanied by examples from biological, medical and clinical applications. Summarizing and displaying data; basic probability and inference; Bayes' theorem and its application in diagnostic testing; estimation, confidence intervals, and hypothesis testing for means and proportions; contingency tables; regression and analysis of variance; logistic regression and survival analysis; basic epidemiologic tools; use of statistical software. Math 661 and Math 663 cannot both be used toward degree credits at NJIT.

MATH 664. Methods for Statistical Consulting. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or departmental approval. Communicating with scientists in other disciplines. Statistical tools for consulting. Using statistical software such as JMP, SAS, and S-plus. Case studies which illustrate using statistical methodology and tools are presented by the instructor and guest speakers from academia and industry. Assignments based on case studies with use of statistical software is required.
MATH 665. Statistical Inference. 3 credits, 3 contact hours.
Prerequisite: MATH 662 or departmental approval. Review of sampling distributions. Data reduction principles: sufficiency and likelihood. Theory and methods of point estimation and hypothesis testing, interval estimation, nonparametric tests, introduction to linear models.

MATH 666. Simulation for Stochastic Systems. 3 credits, 3 contact hours.
Covers the use of Monte Carlo stochastic simulation for data science, finance, and other applications. Topics include generation of various random variables and stochastic processes (e.g., point processes, Brownian motion, diffusions), simulation methods for estimating quantiles of interest (e.g., probabilities, expected values, quantiles), input modeling, and variance-reduction techniques. Simulation programming assignments will be included. Students cannot receive credit for both CS 661 and CS 666/MATH 666.

MATH 671. Asymptotic Methods I. 3 credits, 3 contact hours.
Prerequisites: MATH 645 or MATH 545, and MATH 665, or departmental approval. Asymptotic sequences and series. Use of asymptotic series. Regular and singular perturbation methods. Asymptotic methods for the solution of ODEs, including: boundary layer methods and asymptotic matching, multiple scales, the method of averaging, and simple WKB theory. Asymptotic expansion of integrals, including: Watson's lemma, stationary phase, Laplace's method, and the method of steepest descent.

MATH 672. Biomathematics I: Biological Waves and Oscillations. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 331, and MATH 337, or departmental approval. Models of wave propagation and oscillatory phenomena in nerve, muscle, and arteries: Hodgkin-Huxley theory of nerve conduction, synchronization of the cardiac pacemaker, conduction and rhythm abnormalities of the heart, excitation-contraction coupling, and calcium induced waves, wave propagation in elastic arteries, models of periodic human locomotion.

MATH 673. Biomathematics II: Pattern Formation in Biological Systems. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 331, and MATH 337, or departmental approval. Emergence of spatial and temporal order in biological and ecological systems: Hopf and Turing bifurcation in reaction-diffusion systems, how do zebras get their stripes, patterns on snake skins and butterfly wings, spatial organization in the visual cortex, symmetry breaking in hormonal interactions, how do the ovaries count. Basic techniques of mathematics are introduced and applied to significant biological phenomena that cannot be fully understood without their use.

MATH 675. Partial Differential Equations. 3 credits, 3 contact hours.

MATH 676. Advanced Ordinary Differential Equations. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 337, and MATH 545 or MATH 645. A rigorous treatment of the theory of systems of differential equations: existence and uniqueness of solutions, dependence on initial conditions and parameters. Linear systems, stability, and asymptotic behavior of solutions. Nonlinear systems, perturbation of periodic solutions, and geometric theory of systems of ODEs.

MATH 677. Calculus of Variations. 3 credits, 3 contact hours.
Prerequisite: MATH 545 or MATH 645 or departmental approval. Necessary conditions for existence of extrema. Variation of a functional, Euler's equation, constrained extrema, first integrals, Hamilton-Jacobi equation, quadratic functionals. Sufficient conditions for the existence of extrema. Applications to mechanics.

MATH 678. Stat Methods in Data Science. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or MATH 663, or permission by instructor. This course introduces students to concepts in statistical methods used in data science, including data collection, data visualization and data analysis. Emphasis is on model building and statistical concepts related to data analysis methods. The course provides the basic foundational tools on which to pursue statistics, data analysis and data science in greater depth. Topics include sampling and experimental design, understanding the aims of a study, principles of data analysis, linear and logistic regression, resampling methods, and statistical learning methods. Students will use the R statistical software.

MATH 680. Advanced Statistical Learning. 3 credits, 3 contact hours.
Prerequisites: MATH 478 or MATH 678, or permission by instructor. This course builds on the material in MATH 478 or MATH 678 and serves as a second graduate course in data science with emphasis on statistics. It covers many topics in high dimensional data analysis, including LASSO, SCAD and other regularization procedures, sparse PCA, sparse k-means, and asymptotic theory for high dimensional models. This course will provide students with necessary theoretical and computational skills to understand, design, and implement modern statistical learning methods, including ensemble learning (bagging, random forest, and boosting). Students will use the R statistical software.

MATH 683. High Dimensional Stat Inferenc. 3 credits, 3 contact hours.
Prerequisite: MATH 665 or permission by instructor. This course introduces modern statistical inference theory and methods developed as a result of the influence of computing. The course covers statistical thinking, ideas and theory that underlie many of the statistical learning algorithms used in data science, such as bootstrap, EM algorithm, cross-validation, large-scale hypothesis test, false discovery rates, sparse modeling, support vector machines and ensemble learning.

MATH 687. Quantitative Analysis for Environmental Design Research. 3 credits, 3 contact hours.
Prerequisites: MATH 333 and departmental approval. Fundamental concepts in the theory of probability and statistics including descriptive data analysis, inferential statistics, sampling theory, linear regression and correlation, and analysis of variance. Also includes an introduction to linear programming and nonlinear models concluding with some discussion of optimization theory.
MATH 688. Mathematical and Statistical Methods in Materials Science. 3 credits, 3 contact hours.
Prerequisites: MATH 111, MATH 112 and (MATH 211 or MATH 213). The course introduces mathematical methods necessary for materials science with emphasis on practical applications. Topics include power series, complex numbers, linear algebra, partial differentiation, multiple integrals, vector analysis, Fourier series and transformation, ordinary and partial differential equations, functions of complex variables, probability, and statistics.

MATH 689. Advanced Applied Mathematics II: Ordinary Differential Equations. 3 credits, 3 contact hours.
Prerequisites: MATH 545 or MATH 645, MATH 613, and MATH 631. A practical and theoretical treatment of boundary-value problems for ordinary differential equations: Green's functions, spectral theory, variational principles, and allied numerical procedures. Examples will be drawn from applications in science and engineering.

MATH 690. Advanced Applied Mathematics III: Partial Differential Equations. 3 credits, 3 contact hours.
Prerequisite: MATH 689. A practical and theoretical treatment of initial- and boundary-value problems for partial differential equations: Green's functions, spectral theory, variational principles, transform methods, and allied numerical procedures. Examples will be drawn from applications in science and engineering.

MATH 691. Stochastic Processes with Applications. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Renewal theory, renewal reward processes and applications. Homogeneous, non-homogeneous, and compound Poisson processes with illustrative applications. Introduction to Markov chains in discrete and continuous time with selected applications.

MATH 692. MSMCF Forum. 0 credits, 0 contact hours.
Forum comprises informal discussions and debates engaging students in the realities of living and working in the world, with a focus on economics and finance. These realities include broad awareness of contemporary events, ethical implications of decisions, proper implementation and use of models, the research process and the critical skills of communication. Forum meetings are designed to promote understanding and build experience in all these areas.

MATH 698. Sampling Theory. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Role of sample surveys. Sampling from finite populations. Sampling designs, the Horowitz-Thompson estimator of the population mean. Different sampling methods, simple random sampling, stratified sampling, ratio and regression estimates, cluster sampling, systematic sampling.

MATH 699. Design and Analysis of Experiments. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Statistically designed experiments and their importance in data analysis, industrial experiments. Role of randomization. Fixed and random effect models and ANOVA, block design, latin square design, factorial and fractional factorial designs and their analysis.

MATH 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied mathematics or applied statistics. A written report must be submitted to the project advisor. The student cannot register in MATH 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MATH 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied mathematics or applied statistics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in MATH 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MATH 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied mathematics or applied statistics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (MATH 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

MATH 707. Advanced Applied Mathematics IV: Special Topics. 3 credits, 3 contact hours.
Prerequisite: Departmental approval. A current research topic of interest to departmental faculty. Typical topics include: computational fluid dynamics, theoretical fluid dynamics, acoustics, wave propagation, dynamical systems, theoretical and numerical aspects of combustion, mathematical biology, and various topics in statistics.

MATH 712. Numerical Methods II. 3 credits, 3 contact hours.
Prerequisites: MATH 614, MATH 331 or departmental approval, and proficiency in a computer programming language (FORTRAN, C, or C++). Numerical methods for the solution of initial- and boundary-value problems for partial differential equations, with emphasis on finite difference methods. Consistency, stability, convergence, and implementation are considered.
MATH 713. Advanced Scientific Computing: Multi-Dimensional Finite-Difference Schemes and Spectral Methods. 3 credits, 3 contact hours. Prerequisites: MATH 712 and proficiency in a computer programming language (FORTRAN, C, or C++). Derivation and analysis of finite difference schemes for systems of partial differential equations in two and three spatial dimensions and time. Issues pertaining to efficient implementation of algorithms and to stability of physical and numerical boundary conditions. Pseudo-spectral and spectral methods to solve partial differential equations. Approximation properties of Fourier and Chebyshev series and techniques based on the Fast Fourier Transform (FFT) and on matrix multiplication to numerically compute partial derivatives. Time-discretization techniques suitable for use with pseudo-spectral and spectral methods. Model systems arising in wave propagation, fluid dynamics, and mathematical biology will be considered.

MATH 715. Mathematical Fluid Dynamics I. 3 credits, 3 contact hours. Introduction to the basic ideas of fluid dynamics, with an emphasis on rigorous treatment of fundamentals and the mathematical developments and issues. The course focuses on the background and motivation for recent mathematical and numerical work on the Euler and Navier-Stokes equations, and presents a mathematically intensive investigation of various model equations of fluid dynamics (e.g., the Korteweg-de-Vries equations).

MATH 716. Mathematical Fluid Dynamics II. 3 credits, 0 contact hours. Continuation of MATH 715. Further development of the ideas of fluid dynamics, with an emphasis on mathematical developments and issues. A selection of topics will be developed in some detail, for example: Stokes flow and low-Reynolds-number hydrodynamics; flow at high Reynolds number and boundary layers; shock waves and hyperbolic systems; dynamics of interfacial flows; hydrodynamic stability; rotating fluids.

MATH 717. Inverse Problems and Global Optimization. 3 credits, 3 contact hours. Introduction to inverse problems and global optimization. Linear, quasi-linear, and nonlinear inverse problems are studied with emphasis on regularization techniques. Bayesian statistical approaches and Monte Carlo methods are introduced and discussed in the context of inverse problems. The mathematical foundations of simulated annealing, genetic algorithms, and TABU are presented.

MATH 720. Tensor Analysis. 3 credits, 3 contact hours. Prerequisites: MATH 613 and MATH 631, or departmental approval. Review of vector analysis in general curvilinear coordinates. Algebra and differential calculus of tensors. Applications to differential geometry, analytical mechanics, and mechanics of continuous media. The choice of applications will be determined by the interests of the class.

MATH 725. Independent Study I. 3 credits, 3 contact hours. Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

MATH 726. Independent Study II. 3 credits, 3 contact hours. Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for MATH 726 if they have taken MATH 725 in a prior semester.

MATH 727. Independent Study III. 3 credits, 3 contact hours.

MATH 756. Complex Variables II. 3 credits, 3 contact hours. Prerequisite: MATH 656. Selected topics from: conformal mapping and applications of the Schwarz-Christoffel transformation, applications of calculus of residues, singularities, principle of the argument, Rouche's theorem, Mittag-Leffler's theorem, Casorati-Weierstrass theorem, analytic continuation, and applications, Schwarz reflection principle, monodromy theorem, Wiener-Hopf technique, asymptotic expansion of integrals; integral transform techniques, special functions.

MATH 761. Statistical Reliability Theory and Applications. 3 credits, 3 contact hours. Prerequisite: MATH 662 or departmental approval. Survival distributions, failure rate and hazard functions, residual life. Common parametric families used in modeling life data. Introduction to nonparametric aging classes. Coherent structures, fault tree analysis, redundancy and standby systems, system availability, repairable systems, selected applications such as software reliability.

MATH 763. Generalized Linear Models. 3 credits, 3 contact hours. Prerequisites: MATH 662 and MATH 665 or departmental approval. Theoretical and applied aspects of generalized linear models. Classical linear models, nonlinear regression models, and generalized estimating equations.
MATH 767. Fast Numerical Algorithms. 3 credits, 3 contact hours.
The course covers state-of-the-art, analysis-based, fast numerical algorithms for computing discrete summations/transforms and for solving differential/ integral equations. In particular, this course presents fast multiple methods and their descendants, including fast Fourier transform for nonequispaced data, fast Gauss transform, fast iterative solver and direct solver for elliptic boundary value problems.

MATH 768. Probability Theory. 3 credits, 3 contact hours.
Prerequisite: MATH 645 or departmental approval. Measure theoretic introduction to axiomatic probability. Probability measures on abstract spaces and integration. Random variables and distribution functions, independence, 0-1 laws, basic inequalities, modes of convergence and their interrelationships, Laplace-Stieltjes transforms and characteristic functions, weak and strong laws of large numbers, conditional expectation, discrete time martingales.

MATH 771. Asymptotic Methods II. 3 credits, 3 contact hours.
Prerequisite: MATH 671. Continuation of MATH 671. Asymptotic methods for the solution of PDEs, including: matched asymptotic expansions, multiple scales, the WKBJ method or geometrical optics, and near-field far-field expansions. Applications to elliptic, parabolic, and hyperbolic problems. Further topics in the asymptotic expansion of integrals and the WKB method. Emphasis on examples drawn from applications in science and engineering.

MATH 786. Large Sample Theory and Inference. 3 credits, 3 contact hours.

MATH 787. Non-Parametric Statistics. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Wilcoxon signed-ranks test, Mann-Whitney U test, binomial sign test for single sample and two dependent samples, McNemar's test, Cochran Q test, Wilcoxon matched-pairs signed-ranks test, Kruskal-Wallis one-way analysis of variance, Friedman two-way analysis of variance, Siegel-Tukey test for equal variability, chi-squared goodness-of-fit test, test for homogeneity and independence, single-sample runs test and other tests of randomness, correlation tests: Spearman's rank-order correlation, coefficient and Kendall's tau, Kendall's coefficient of concordance, and Goodman and Kruskal's gamma, comparing power efficiency.

MATH 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Prerequisite: Excellent performance on the doctoral qualifying examination. A minimum of 36 credits is required of all candidates for the Ph.D. degree. Candidates must register for 6 to 12 credits per semester, to be determined by a designated dissertation advisor. After reaching 36 credits, students must continue to register for 3 credits each semester until degree completion.

MATH 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: MATH 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mathematical sciences. For PhD students who have successfully defended their dissertation proposal. The student must register in MATH 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre- Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

MATH 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: MATH 791. Since the MATH 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mathematical sciences. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

MATH 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: MATH 791. Since the MATH 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in mathematical sciences. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

MATH 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.
Prerequisite: Excellent performance on the doctoral qualifying examination. A minimum of 36 credits is required of all candidates for the Ph.D. degree. Candidates must register for 6 to 12 credits per semester, to be determined by a designated dissertation advisor. After reaching 36 credits, students must continue to register for 3 credits each semester until degree completion.

MATH 790E. Doctoral Dissertation. 12 credits, 12 contact hours.
Prerequisite: Excellent performance on the doctoral qualifying examination. A minimum of 36 credits is required of all candidates for the Ph.D. degree. Candidates must register for 6 to 12 credits per semester, to be determined by a designated dissertation advisor. After reaching 36 credits, students must continue to register for 3 credits each semester until degree completion.

MATH 791. Graduate Seminar. 0 credits, 1 contact hour.
All master's and doctoral students receiving departmental or research-based awards must register for this course each semester.
of phase transformations including nucleation, growth, and spinodal decomposition are discussed.

Prerequisite: MTSE 630. The atomic theory of diffusion and mathematical derivation of the diffusion equations. Diffusion phenomena in dilute alloys as MTSE 655. Diffusion and Solid State Kinetics. 3 credits, 3 contact hours.

solidification, phase phenomena, solid state diffusion, nucleation and growth kinetics, as well as transformation and deformation processes.

Prerequisite: MTSE 605. Processing-structure-property relationships in metallic alloys. Materials based on polymer, ceramic, and metal matrices are discussed. Properties of the constitutive materials, their structure, methods of structural arrangements, as well as properties and characterization of the final products are described. The different perspectives, examples, and problems in composite applications are outlined.

MTSE 615. Composite Materials. 3 credits, 3 contact hours.
Prerequisites: MTSE 605 and MTSE 610. Introduction to fundamental principles of design and technology of composite materials. Materials based on polymer, ceramic, and metal matrices are discussed. Properties of the constitutive materials, their structure, methods of structural arrangements, as well as properties and characterization of the final products are described. The different perspectives, examples, and problems in composite applications are outlined.

MTSE 616. Mechanical Properties of Materials. 3 credits, 3 contact hours.
Prerequisite: MTSE 605. Mechanical, thermal, electrical, magnetic, and optical properties of crystalline and glassy ceramics are discussed from a structural viewpoint. Important processing methods, design and evaluation of properties, and modern applications of ceramic materials are emphasized.

MTSE 625. Glass Science and Engineering. 3 credits, 3 contact hours.
Prerequisites: MTSE 605 and MTSE 630. Formation and structure of inorganic, polymeric, and metallic glasses. Transport phenomena, kinetics of crystallization, glass transition, and phase separation; chemical, mechanical and optical properties of glasses.

MTSE 627. Thermodynamics of Materials. 3 credits, 3 contact hours.
Prerequisite: MTSE 605. Introduction to nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy, near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.

MTSE 650. Physical Metallurgy. 3 credits, 3 contact hours.
Prerequisite: MTSE 605. Processing-structure-property relationships in metallic alloys. Alloy systems covered include carbon steels, stainless steels, aluminum and titanium alloys, and super alloys. Topics to be presented include elementary theory of metals, defects and related phenomena, solidification, phase phenomena, solid state diffusion, nucleation and growth kinetics, as well as transformation and deformation processes.

MTSE 655. Diffusion and Solid State Kinetics. 3 credits, 3 contact hours.
Prerequisite: MTSE 630. The atomic theory of diffusion and mathematical derivation of the diffusion equations. Diffusion phenomena in dilute alloys as well as in ionic and covalent solids are considered. High atom mobility effects at defect sites and surfaces are examined. Chemical kinetics and kinetics of phase transformations including nucleation, growth, and spinodal decomposition are discussed.
MTSE 681. Composite Materials. 3 credits, 3 contact hours.
Prerequisites: MTSE 601 and MTSE 610. Introduction to fundamental principles of design and technology of composite materials. Materials based on polymer, ceramic, and metal matrices are discussed. Properties of the constitutive materials, their structure, methods of structural arrangements, as well as properties and characterization of the final products are described. The different perspectives, examples, and problems in composite applications are outlined.

MTSE 682. Introduction to Ceramics. 3 credits, 3 contact hours.
Prerequisite: MTSE 601. Mechanical, thermal, electrical, magnetic, and optical properties of crystalline and glassy ceramics are discussed from a structural viewpoint. Important processing methods, design and evaluation of properties, and modern applications of ceramic materials are emphasized.

MTSE 685. Physical Metallurgy. 3 credits, 3 contact hours.
Prerequisite: MTSE 601. Processing-structure-property relationships in metallic alloys. Alloy systems covered include carbon steels, stainless steels, aluminum and titanium alloys, and super alloys. Topics to be presented include elementary theory of metals, defects and related phenomena, solidification, phase phenomena, solid state diffusion, nucleation and growth kinetics, as well as transformation and deformation processes.

MTSE 687. Glass Science and Engineering. 3 credits, 3 contact hours.
Prerequisites: MTSE 601 and MTSE 602. Formation and structure of inorganic, polymeric, and metallic glasses. Transport phenomena, kinetics of crystallization, glass transition, and phase separation; chemical, mechanical and optical properties of glasses.

MTSE 688. Mathematical and Statistical Methods in Materials Science. 3 credits, 3 contact hours.
Prerequisites: MATH 111, MATH 112 and (MATH 211 or MATH 213). The course introduces mathematical methods necessary for materials science with emphasis on practical applications. Topics include power series, complex numbers, linear algebra, partial differentiation, multiple integrals, vector analysis, Fourier series and transformation, ordinary and partial differential equations, functions of complex variables, probability, and statistics.

MTSE 690. Directed Study in Materials Science and Engineering. 3 credits, 3 contact hours.
Prerequisite: As specified by the instructor. Directed study at the Master's level under the guidance of a faculty member on a topic in materials science and engineering.

MTSE 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. A written report must be submitted to the project advisor. The student cannot register in MTSE 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTSE 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in MTSE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTSE 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (MTSE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

MTSE 702. Characterization of Solids. 3 credits, 3 contact hours.
Current methods for characterizing the chemical composition, crystallographic structure, electrical mapping, and morphology of solid materials. Principles and application of Auger Electron Spectroscopy (AES), Secondary Ion Mass Spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS), X-ray Emission Spectroscopy (XES), and Rutherford Backscattering Spectroscopy (RBS) for chemical analysis, X-ray Diffraction (XRD) and electron diffraction for crystallographic analysis, Electron Beam Induced Current (EBIC) microscopy, voltage contrast microscopy, Cathodoluminescence for electrical mapping, and Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Nomarski interference contrast microscopy (DIC) for morphology.

MTSE 719. Physical Principles of Characterization of Solids. 3 credits, 3 contact hours.

MTSE 722. Science and Technology of Thin Films. 3 credits, 3 contact hours.
Prerequisite: graduate standing. Methods of preparing thin films by physical and chemical means are examined. Topics pertinent to nucleation and growth mechanism of single and polycrystalline films, structure determination, film thickness and compositional evaluation properties are discussed. The electrical, magnetic, optical, and mechanical properties of metallic, semiconductor, and insulating thin films are studied with particular relevance to integrated circuit applications.

MTSE 723. Defects in Solids. 3 credits, 3 contact hours.
Prerequisites: MTSE 601 and MTSE 725. Crystallographic defects in solids, namely point defects such as vacancies and interstitial, line defects such as dislocations, and planar defects such as grain boundaries. Correlation of these defects to the mechanical, electrical and optical behavior of materials is examined in particular. Experimental methods for observation and characterization of defects including TEM, EBIC, DLTS are described.
MTSE 724. Transport of Electrons and Phonons in Solids. 3 credits, 3 contact hours.
Prerequisite: PHYS 687 or R755 687. Basic transport processes involving electrons and phonons in solids. Topics include transport-related phenomena such as Hall effect, quantum Hall effect, magneto-resistance, size effects, thermal conductivity, thermoelectric effects, phonon drag, ballistic phonons, and ballistic electrons. Applications of transport to the characterization of new electronic materials including thin films are stressed.

MTSE 725. Independent Study I. 1 credit, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

MTSE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for MTSE 726 if they have taken MTSE 725 in a prior semester.

MTSE 737. Transport of Electrons and Phonons in Solids. 3 credits, 3 contact hours.
Prerequisite: PHYS 687 or R755 687. Basic transport processes involving electrons and phonons in solids. Topics include transport-related phenomena such as Hall effect, quantum Hall effect, magneto-resistance, size effects, thermal conductivity, thermoelectric effects, phonon drag, ballistic phonons, and ballistic electrons. Applications of transport to the characterization of new electronic materials including thin films are stressed.

MTSE 757. Defects in Solids. 3 credits, 3 contact hours.
Prerequisites: MTSE 605 and MTSE 725. Crystallographic defects in solids, namely point defects such as vacancies and interstitial, line defects such as dislocations, and planar defects such as grain boundaries. Correlation of these defects to the mechanical, electrical and optical behavior of materials is examined in particular. Experimental methods for observation and characterization of defects including TEM, EBIC, DLTS are described.

MTSE 765. Science and Technology of Thin Films. 3 credits, 3 contact hours.
Prerequisite: graduate standing. Methods of preparing thin films by physical and chemical means are examined. Topics pertinent to nucleation and growth mechanism of single and polycrystalline films, structure determination, film thickness and compositional evaluation properties are discussed. The electrical, magnetic, optical, and mechanical properties of metallic, semiconductor, and insulating thin films are studied with particular relevance to integrated circuit applications.

MTSE 780. Current Topics in Materials Science and Engineering. 3 credits, 3 contact hours.
Prerequisites: As specified by the program for the semester's offering. Topics of current interest in materials science and engineering.

MTSE 788. Appl Comp Meth-Phys & Matls II. 3 credits, 3 contact hours.

MTSE 790. Doc Dissertation & Res. 0 credits, 0 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.

MTSE 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Co-requisite: MTSE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. For PhD students who have successfully defended their dissertation proposal. The student must register in MTSE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

MTSE 790B. Doc Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: MTSE 791. Since the MTSE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

MTSE 790C. Doc Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: MTSE 791. Since the MTSE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in materials science. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

MTSE 790D. Doc Dissertation & Resch. 9 credits, 9 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.

MTSE 790E. Doct Dissertation & Restrch. 12 credits, 12 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.
More emphasis on analytical methods and statistics. Course will be required for Ph.D. students in Materials Science.

PHYS 688. Mathematical and Statistical Methods in Materials Science. 3 credits, 3 contact hours.

Properties of materials; thermal properties, heat capacity, and thermal expansion in solids; electrical conduction in metals and alloys, semiconductors; optical properties of materials; quantum mechanical treatment of optical properties; magnetic properties of materials; thermal properties, heat capacity, and thermal expansion in solids.

More emphasis on analytical methods and statistics. Course will be required for Ph.D. students in Materials Science.
PHYS 690. Directed Study Appl Phys. 3 credits, 3 contact hours.

PHYS 698. ST-. 3 credits, 3 contact hours.

PHYS 700. Master's Project. 3 credits, 3 contact hours.
Prerequisite: Written approval from graduate advisor. For students admitted to the Master of Science program in applied physics who do not take Phys 701 Master's Thesis. An extensive paper involving experimental or theoretical investigation of a topic in microelectronics or other applied physics area is required. Cooperative projects with industry or government agencies may be acceptable. The project is carried out under the supervision of a designated physics graduate faculty member.

PHYS 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics. A written report must be submitted to the project advisor. The student cannot register in PHYS 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PHYS 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in PHYS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PHYS 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (PHYS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

PHYS 721. Classical Electrodynamics II. 3 credits, 3 contact hours.
Prerequisite: PHYS 621 or equivalent; basic knowledge of tensor analysis. Simple radiating systems, scattering and diffraction; special theory of relativity; dynamics of relativistic particles and electromagnetic fields; collisions between charged particles, energy loss, and scattering; radiation from accelerated charge, synchrotron radiation, and bremsstrahlung.

PHYS 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

PHYS 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for PHYS 726 if they have taken PHYS 725 in a prior semester.

PHYS 728. Radio Astronomy. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 and PHYS 641 or the equivalent, or approval of the instructor. An introduction to radio emission processes, radiative transfer, radio diagnostics, and radio instrumentation. Topics include radio flux measurements with single antenna, radio imaging with interferometer arrays (Fourier Transform imaging), and image reconstruction techniques (CLEAN, MEM). Application is to astronomical objects with special emphasis on the Sun.

PHYS 731. Quantum Mechanics II. 3 credits, 3 contact hours.
Prerequisite: PHYS 631 or equivalent. Review of quantum mechanics and theory of special relativity; second quantization; relativistic one-particle problem; Klein-Gordon equation and Dirac equation; canonical field theory; relativistic scattering theory; introduction to quantum electrodynamics and quantum field theory; Feynman diagrams and applications.

PHYS 741. Basic Plasma Phys w Space, Lab. 3 credits, 3 contact hours.
Prerequisites: PHYS 611, PHYS 621, other equivalent, or approval of the instructor. Corequisites: PHYS 611, PHYS 621. The course will introduce students to basic concepts of plasma physics and its applications to laboratory experiments and space research. The course will cover the following topics: particle motions in magnetic field, adiabatic invariants, magnetic traps, radiation belts, electromagnetic waves in plasma, electrostatic oscillations, waves in magnetized plasma, collisional processes in plasma, kinetic effects on plasma waves, Landau damping, wave instabilities, plasma as fluid, magnetohydrodynamics, magnetic configurations of laboratory and space plasma, MHD instabilities, reconnection, helicity, dynamo theories, the origin of cosmic magnetic fields, stochastic processes, Fermi process, particle acceleration, and cosmic rays.
PHYS 747. Intro to Helioseismology. 3 credits, 3 contact hours.
Prerequisites: PHYS 611, PHYS 621 or other equivalent. The course will introduce the physical principles and methods to study wave oscillations, and the interior structure of the Sun. The course covers processes of acoustic and gravity wave excitation and propagation, interaction with turbulence and magnetic fields, oscillation spectrum, sunquakes, inferences of the structure and composition, the differential rotation, large-scale flows and meridional circulation. It includes the theory of normal modes, inversion techniques, wave dispersion analysis, acoustic tomography and holography, applications to the solar dynamo and magnetic activity.

PHYS 751. Applied Optics. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 (Classical Electricity and Magnetism I) The course will introduce students to basic concepts of applied optics, light propagation and light and matter interactions. The course will cover the following topics: light propagation through mirrors and lenses, matrix optics, basic concepts of wave optics, reflection, refraction and transmission, equations governing wave propagation, Gaussian beams, Maxwell’s equations, absorption, dispersion, light polarization states, temporal and spatial coherences.

PHYS 753. Light Sources & Photodetectors. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 and PHYS 631. This is a survey course on theory and practical aspects of light sources and photodetectors. The specific light sources covered will be: black body, discharge tubes, X-ray, light.

PHYS 774. Fundamentals of Spectroscopy. 3 credits, 3 contact hours.
The major objectives of this course are to integrate theory and practice and to bring together different branches of Academic Studies and Industrial Research through the presentation of critical aspects of modern Spectroscopy. The course will provide a valuable theoretical introduction and an overview of modern topics in spectroscopy, which are of current interest and importance in Semiconductor Industry and Biomedicine. A wide range of techniques is considered, including optical Near field spectroscopy, X-ray, Raman, Neutron scattering, and FT-IR spectroscopy.

PHYS 780. Curr Topics Applied Phys. 3 credits, 3 contact hours.

PHYS 787. New Concepts of Semiconductor. 3 credits, 3 contact hours.
Prerequisite: PHYS 687 and ECE 657. This is an advanced course on semiconductor physics targeted at describing polycrystalline materials, e.g. cadmium telluride or copper indium diselenide, that are currently used in thin-film photovoltaic panels. An overview of classical semiconductor and solar cell theory is followed by topics such as non-shallow dopants, multi-level defects, defect transition energy level, and metastability. These concepts are applied to examine minority carrier lifetime and carrier collection in devices, and to extend the theories of admittance and deep level transient spectroscopy.

PHYS 789. Physics of Advanced Semiconductor Device Processing. 3 credits, 3 contact hours.
Prerequisites: NJIT: EE 657, R755 687; or equivalent. Intended for doctoral students in applied physics, electrical engineering, and materials science. (Rutgers = R755 789) Silicon and GaAs technologies: crystal growth methods, epitaxy, oxidation, lithography, dry and wet etching techniques, polysilicon, diffusion, ion implantation, metallization (including silicidation), process integration, analytical characterization techniques, assembly and packaging, and yield and reliability.

PHYS 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Corequisite: PHYS 791. Passing grade on departmental qualifying examination and approval of doctoral candidacy. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester. Registration for additional credits, up to 12 per semester, is permitted with the approval of the department graduate advisor. Experimental or theoretical investigation of a topic in applied physics, including microelectronics, materials science, and laser physics. Cooperative projects with industry or government agencies may be acceptable. Research and writing are carried out under the supervision of a designated graduate faculty member. The completed written dissertation should be a substantial contribution to the knowledge of the topic under research, and should be of sufficient merit to warrant publication in a leading scientific or technical journal.

PHYS 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: PHYS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics. For PhD students who have successfully defended their dissertation proposal. The student must register in PHYS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

PHYS 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: PHYS 791. Since the PHYS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

PHYS 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: PHYS 791. Since the PHYS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in applied physics. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC 601</td>
<td>Advanced Professional and Technical Communication</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 602</td>
<td>Working in Teams: Collaborative and Interpersonal Communications</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 603</td>
<td>Identity, Technology, and Communication</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 604</td>
<td>Communication Theory and Research</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 606</td>
<td>Advanced Information Design</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 607</td>
<td>Research Methods for Information Design</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 608</td>
<td>Theory and Practice of Text Encoding</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 609</td>
<td>Proposal Writing</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 610</td>
<td>Professional and Technical Editing</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 611</td>
<td>Identity, Technology, and Communication</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PTC 612</td>
<td>Communication Media Design Studio</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
PTC 628. Analyzing Social Networks. 3 credits, 3 contact hours.
Prerequisite: PTC 601 for MSPTC students; approval of instructor for non-MSPTC students. This course will provide students with an overview of social networks by introducing them to the unique terminology of social networks (centrality, boundary spanners, directional ties, etc.) Positive and negative characteristics of social networks will be discussed, followed by visualizations and analyses of those characteristics. Students will read selected journal articles explaining how social networks relate to communication and the flow of information within organizations. The culmination of the course will be a project in which students will create and analyze their own social network, most likely drawing their data from the popular social media site Facebook and using ORA, a freeware social network analysis application created by Carnegie Mellon University.

PTC 629. Theory and Practice of Social Media. 3 credits, 3 contact hours.
Introduces social media strategies for reading and writing in today's multi-cultural, screen-oriented, networked culture. Students study relationship between mediated communication and human community and gain hands-on experience with chatting, blogging, tagging, wiki writing, tweeting and social media presentation. Students strategize, plan, design and produce social media projects of their own.

PTC 630. Communication and Environmental Problem Solving. 3 credits, 3 contact hours.
Prerequisite or corequisite: PTC 601. Develops critical thinking on ecological issues for problem solving by integrating technical information, human values, and communication with environmental change. Students combine theory, research and models, case studies, visual thinking, and scientific inquiry for application in individual decision-making course project.

PTC 631. Content Management and Information Architecture. 3 credits, 3 contact hours.
Prerequisite or Corequisite: PTC 601. Today's complex systems often produce complex information needs that require new technical communication methods and tools. This course will focus on the use of Information Architecture methodologies (such as, DITA or DocBook) to develop a structure for presenting technical information and on Content Management tools for creating a single source repository for this information. Students will also use theory and practical applications to design and develop a structured online Help module.

PTC 640. Health Communications. 3 credits, 3 contact hours.
This course will focus on the use of communication strategies to inform and influence individual and community decisions regarding health. The course will cover: the multidimensional nature of health communication, research in health communication, behavioral theories in health communication, rhetorical theories in health communication, legal and ethical concerns in health communication, the communication of risk and uncertainty, and the design of health campaigns. Students will be required to (a) research and prepare a health communication strategy for use in a specific context and (b) to design an accompanying print or hypertext document to be used in that context.

PTC 642. Corporate Media and Communication. 3 credits, 3 contact hours.
Introduces the dynamics of communication within complex organizations. Develops communication skills for contemporary global corporate and business markets. Focuses on the efforts of businesses and organizations to communicate and persuade in target audiences. Covers translation issues in developing corporate media.

PTC 644. Communication in Technology Transfer and Innovation. 3 credits, 0 contact hours.
Examine roles of communication in innovation development and technology transfer. Students review models of communication in technology transfer in global contexts. Issues such as audience analysis, user experience, participatory design, and knowledge transfer will be investigated.

PTC 650. eLearning Design for Mobile. 3 credits, 3 contact hours.
Designing eLearning for mobile platforms is a critical skill for today's technical communicator. Specific skills and tools are required to ensure a successful implementation. Based on proven user centered design concepts, this course provides the student with the skills necessary to create effective mobile training programs.

PTC 660. Medical Ethics. 3 credits, 3 contact hours.
This course is an examination of the ethical problems and moral foundations of medicine. Among the issues explored are the changing nature of the doctor/patient relationship, increased patient autonomy, advance directives, the rationing of care, doctor-assisted suicide, and "the right to die".

PTC 672. Design Instruction Assess Meth. 3 credits, 3 contact hours.
Prerequisite: Students must have a graduate standing and should be enrolled in MSPTC program or the Instructional Design and Educational Assessment certificate. Student must meet these requirements, approval of instructor is required. Examines planning and implementation of instruction to facilitate learning and analysis of methods of data gathering on learner progress and mastery, lessons and learning objects so appropriate instructional strategies with associated methods of formative and summative assessments that can yield data for learner assessment and course evaluation can be selected or develop to suit the instructional style, learner needs, and instructional situations.

PTC 681. Tech in Class & Learning Envir. 3 credits, 3 contact hours.
Prerequisite: Students must have a graduate standing and should be enrolled in MSPTC program or the Instructional Design and Educational Assessment certificate. Student must meet these requirements, approval of instructor is required. This course examines the various types of technology necessary to develop, use, and process the results of assessments as well as facilitate and augment instructional design. This course examines the integration of present and likely future technology into instruction to foster community, collaboration, conceptual development, and exceptional academic performance as well as a more effective and well-understood assessment system.

PTC 691. ePortfolio Capstone Seminar. 0 credits, 0 contact hours.
This course is taken in the student's final semester before graduation. Students complete final revisions of the ePortfolio of work completed in MSPTC seminars (may also include professional and service projects). Student ePortfolios must successfully demonstrate MSPTC core competencies and be presented in an oral presentation for faculty and other students.
PTC 698. Selected Topics in Professional and Technical Communication. 3 credits, 3 contact hours.
Prerequisite or corequisite: PTC 601 This is a Special Topics course (does not require CGE approval). It was presented to CGE in an effort to attract more students. Students will learn approaches to understanding and producing the forms of writing central to academic research. They will review literature, peer-review the work of others, prepare conference material, and produce a submission-quality journal or conference paper in their field of study. The current plan is to run the course every Spring.

PTC 700B. Master's Project. 3 credits, 3 contact hours.
Prerequisites: Approval of graduate advisor, and completion of core courses. Requires demonstration of student’s ability to conceive and execute an extended writing project with professional graphics and to make an oral and visual presentation of the work. Based on experiential research (internship, co-op, work experience) student submits a proposal, develops a project (e.g., guidebook, manual, online documentation, website, video, podcast) and completes a paper describing the theory and methodology supporting the project application. Submission of the MSPTC ePortfolio demonstrating proficiency is required for graduation. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PTC 701B. Master’s Thesis. 3 credits, 3 contact hours.
Prerequisite: approval of graduate advisor; completion of core courses. Demonstrates ability to conceive and execute an extended writing project with professional graphics and to make an oral and visual presentation of the work. The completed written thesis should warrant publication in a technical journal. Thesis Committee consists of program-approved faculty advisor, one other faculty member, and external reviewer. A student must register continuously for a minimum of 3 credits per semester until thesis in completed. Total will be limited to 6 credits. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PTC 701C. Master’s Thesis. 6 credits, 3 contact hours.
Prerequisite: approval of graduate advisor; completion of core courses. Demonstrates ability to conceive and execute an extended writing project with professional graphics and to make an oral and visual presentation of the work. The completed written thesis should warrant publication in a technical journal. Thesis Committee consists of program-approved faculty advisor, one other faculty member, and external reviewer. A student must register continuously for a minimum of 3 credits per semester until thesis in completed. Total will be limited to 6 credits. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PTC 725. Independent Study in Professional and Technical Communication. 3 credits, 3 contact hours.
Prerequisite: approval of graduate advisor and supervising faculty. Allows development of areas of specialization for Master's Project or for areas of study in communication in which one or more students may be interested but which are not of sufficiently broad interest to warrant a regular course offering.

PTC 726. Independent Study II. 3 credits, 3 contact hours.
R215 520. Landscape Ecology. 3 credits, 3 contact hours.
R215 565. Community Dynamics. 4 credits, 4 contact hours.
R215 575. Quant Ecol & Evol. 3 credits, 3 contact hours.
R215 590. Population Ecology. 4 credits, 4 contact hours.
R215 597. Concp & Meth Evolution. 4 credits, 4 contact hours.
R215 599. Special Topics. 3 credits, 3 contact hours.
R215 600. ST:. 3 credits, 3 contact hours.
R215 604. ST:. 3-12 credits, 3-12 contact hours.
R460 606. Envir. Geophysics. 3 credits, 0 contact hours.

Biological Sciences

Master of Science in Biology

Master of Science Graduate Program in Biology Course of Study and Program Requirements

Advisement

In the first year of study, students are advised on all academic matters by the MS Program Coordinator. During the first year of full-time study (or part-time equivalent), students complete sufficient course work to fulfill most core curricular requirements and to develop a potential research project (library or laboratory) that will serve as the basis of the capstone Thesis requirement. By the start of the second year, students must choose a faculty member to serve as advisor during their laboratory or bibliographic thesis research project.

Other Source of Information Regarding the Program’s Regulations

The Rutgers-Newark Graduate School Catalog (http://catalogs.rutgers.edu/generated/nwk-grad_current/pg127.html) and the NJIT Graduate Catalog http://catalog.njit.edu/graduate/ should be consulted for University regulations. The new department regulations outlined above for the Masters program in Biology apply to all students who enter the Program as of September 2010.
Doctor of Philosophy in Biology
Program Procedures and Requirements

I. Graduate Standards Committee

The Graduate Standards Committee is responsible for monitoring and advising all graduate students through completion of the Thesis Prospectus stage of the program. The Committee meets with students each semester to evaluate coursework and research progress in an effort to provide advisement on course selections, first-semester mentoring, laboratory rotations, and potential thesis advisors. Records of Standards Committee meeting are kept on file via the Standards Committee Report form. Whenever necessary, the Committee will discuss student progress with faculty mentors and advisors to ensure proper and successful progress within the program. The ultimate charge of the Committee is to assist and guide the student toward successful completion of the Qualifying Exam and Thesis Prospectus.

NJIT Faculty

B
Barden, Phillip M, Assistant Professor
Bucher, Dirk M., Associate Professor
Bunker, Daniel E., Assistant Professor

D
Devan, Caroline M, University Lecturer

F
Flammang-Lockyer, Brooke E., University Lecturer
Fortune, Eric S., Associate Professor

G
Garnier, Simon J., Assistant Professor
Golowasch, Jorge P., Professor

H
Haspel, Gal, Assistant Professor

K
Konsolaki, Mary, University Lecturer

N
Nadim, Farzan, Professor

R
Russell, Gareth J., Associate Professor

S
Severi, Kristen E., Assistant Professor
Soares, Daphne F., Assistant Professor
Stanko, Maria L., University Lecturer

T
Tai, Xiaonan

Y
Yarotsky, John J., University Lecturer
• Biology - M.S. (p. 302)
• Biology of Health - M.S (p. 303).
• Biology - Ph.D. (p. 305)

Biological Sciences Courses

BIOL 590. Grad Coop Work Experience I. 1 credit, 1 contact hour.

BIOL 591. Graduate Coop Work Exper II. 1 credit, 1 contact hour.

BIOL 593. Graduate Co-Op Work Exp IV. 0 credits, 0 contact hours.

BIOL 601. Computational Biology I. 3 credits, 3 contact hours.
This course will describe mathematical and simulation techniques used in modeling a variety of biological systems. Students will learn stability analysis, phase space analysis, basic bifurcation theory and numerical simulation techniques with examples from neuroscience, cell and molecular biology as well as ecology and evolution. Students enrolling in this course are expected to have basic knowledge of calculus, linear algebra and some programming abilities.

BIOL 605. Prin of Bioscience Processing. 3 credits, 3 contact hours.
This course covers the main concepts of cell physiology, molecular biology, and cell biology. The fundamental aspects of biochemistry that relate directly to pharmaceutical developments are discussed and include basic organic chemistry, blood and buffers, protein based enzymes, complex carbohydrates, nucleic acids, and fats. Those topics will then be integrated into a thorough understanding of Bioprocessing in pharmaceutical industries. This course is for Professional Science Master's Biotechnology students with limited knowledge of Biology.

BIOL 606. App Bioproc & Immun Based Ther. 3 credits, 3 contact hours.
Prerequisite: BIOL 605 or permission of the instructor. This course provides foundational knowledge about immunology and immunological applications relevant to bioprocessing science including immunoglobulin genetics, leukocyte activation and migration, transplant immunology, and immunotherapy and vaccines.

BIOL 610. Comparative Vertebrate Anatomy. 3 credits, 3 contact hours.
This course introduces students to the groups of vertebrates and explores the anatomical evolution of vertebrates within the context of the functional interrelationships of organs and the changing environments to which vertebrates have adapted. An ideal entry point into the ways living creatures interact with their immediate physical world, we examine how the forms and activities of animals reflect the materials available to nature and consider rules for structural design under environmental forces.

BIOL 612. Comparative Animal Physiology. 3 credits, 3 contact hours.
This course will explore how animals, from invertebrates to vertebrates, function from the cellular to the organism level. The study of the structure and function of the various organs provides insight into how animals survive extreme environments and how they respond to changes in their environment. The comparative approach shows that the underlying physiological principles that govern life are common to all animals and yet animals have evolved unique and sometimes startling physiological solutions to problems posed by their particular environments.

BIOL 621. Ecology. 3 credits, 3 contact hours.
Prerequisites: Graduate student status or permission of the instructor. Ecological patterns and processes shape global biodiversity. From the community of microbes under your fingernail to entire continents and the planet, the field of ecology seeks to understand complex interactions among biological species and the environment. These themes are increasingly important; humans are reliant on functioning ecosystems even as anthropogenic factors alter our planet in profound ways. This course introduces graduate students to ecology at multiple conceptual and geographic scales.

BIOL 622. Evolution. 3 credits, 3 contact hours.
This course will provide a comprehensive overview of research in the field of evolutionary biology. Topics will include: the development of evolutionary theory, the history of the evolution of life on Earth, the genetic bases of variation and heredity, natural selection, evolution and development, and speciation. The format will be brief lectures to review topics covered in text, followed by class discussions of relevant primary literature. Students will write two papers on the topic of their choice and will be required to lead a minimum of one class discussion.

BIOL 628. Cell Biology of Disease: Cells Gone Bad. 3 credits, 3 contact hours.
This course will briefly review normal physiological function of humans and will then extensively explore the basis of many human diseases at cellular level. The goal is to understand how alterations in normal cell functions affect human physiology by reviewing current research in the field of cell biology.

BIOL 630. Critical Thinking for the Life Sciences. 3 credits, 3 contact hours.
Researchers in the biological sciences must understand and be able to effectively apply the scientific method, and they must also be able to clearly communicate their ideas and results. This course will involve heavy student participation and discuss the scientific method, analyze and discuss data gathering and organizing, and will analyze existing grant proposals with the goal of enabling graduate students to write a clear and convincing grant proposal.

BIOL 635. Intro to Comp Neuroscience. 3 credits, 3 contact hours.
Prerequisite: Permission by instructor. Introduction to the modeling, computational and analysis techniques for single neurons and small neuronal networks. The course work is designed so that students can develop an independent modeling/computational project by the end of the semester. The required knowledge of neurobiology, electric circuits and numerical tools for the solution of differential equations will be introduced as needed.
BIOL 636. Advanced Comp Neuroscience. 3 credits, 3 contact hours.
Prerequisites: BIOL 635 or permission by the instructor. Modeling and computational analysis of biological neuronal networks. The course consists of lectures, scientific paper presentations and computational work. Students are expected to develop an independent modeling/computational project by the end of the semester.

BIOL 638. Computational Ecology. 3 credits, 3 contact hours.
An overview of computational approaches to the study of mathematical models in ecology. Topics include one-, two-, and multi-species models, life history analysis, spatial dynamics, epidemiology. The course is taught as a hands-on computer lab in which students explore models, perform simulations and solve problems.

BIOL 640. Cellular Neurophysiology. 3 credits, 3 contact hours.
Prerequisites: Graduate student status or permission of the instructor. This course will examine the nervous system from a functional perspective. The goal is to understand how ion channels and other components of nerve cells give rise to electrical excitability and synaptic function, and how those properties are then used for coding information and higher order function in the nervous system.

BIOL 641. Systems Neuroscience. 3 credits, 3 contact hours.
This course will examine neurophysiological phenomena from a systems perspective. The course will review basic concepts of cellular neuroscience, such as excitability, impulse conduction, and integration of activity at the cellular, before focusing on network level physiology of the nervous system and its role in the generation of behavior. The goal is to provide students with the basic knowledge to understand neurobiological processes at all levels of complexity.

BIOL 643. Biology of Addiction. 3 credits, 3 contact hours.
Prerequisites: Graduate status. This course will explore Substance Use Disorder from a biological viewpoint. The psychological, epidemiological, social and economical aspects of addiction will be touched upon as needed. The course will consist of several Modules that would be taught in parallel. The Modules include: ‘Psychopharmacology’, ‘The Structure and Function of the Nervous System’, ‘Neurotransmitters and Neuromodulators’, ‘Substances of Abuse’, and ‘What is Addiction?’ The goal is to provide students with a comprehensive understanding of biological mechanisms, both in the body and in the brain, that lead to and underlie Substance Use Disorder.

BIOL 644. Physiological Mechanisms. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology and cell biology. This course utilizes clinical (pathological) case studies to reinforce and extend physiological knowledge, and provides students a strong basis for future studies in biomedical and health related fields.

BIOL 645. Biological Imaging Techniques. 3 credits, 3 contact hours.
Prerequisites: Graduate student status or permission of the instructor. This combined lecture and lab course will introduce the students to a variety of approaches to examine biological structures at different microscopic scales: conventional light microscopy, fluorescent microscopy, modern high resolution light microscopy, and electron microscopy. In addition, the course will cover optical approaches to study the dynamics of cellular function, including calcium and voltage imaging, and molecular interactions.

BIOL 646. Endocrinology. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology, biochemistry, and cell biology. The course will cover the entire human endocrine system from both an anatomical and physiological perspective. The development, gross anatomy, regulation and interaction between various endocrine components will be discussed. Emphasis will be placed on student learning through detailed examinations of endocrine disorders in a clinical setting in order to apply critical thinking about the endocrine system in a real world context.

BIOL 648. Neuropathology. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology and neurobiology. This course will utilize clinical (pathological) case studies to reinforce and extend Neuropathological knowledge, providing students a strong basis for future studies in biomedical and health related fields.

BIOL 650. Human Anatomy. 3 credits, 3 contact hours.
Prerequisites: Undergraduate level background in basic physiology and cell biology. This course in an introduction to human anatomy and physiology from an integrative perspective. Students learn the structure and function of human tissues, skeletal system, nervous system, endocrine system, and muscular system from the cellular to organismal levels.

BIOL 653. Medical Genetics and Genomics. 3 credits, 3 contact hours.
Prerequisites: Understanding of basic undergraduate-level classic genetics. The objective of this course is to offer students an opportunity to explore how the field of Genetics has been shaped after the completion of the sequencing of the genomes of humans and a variety of other organisms. Students will be able to describe new technologies that are available in medicine, diagnostics, genetic testing and the generation of genetically modified organisms and evaluate the advantages and current obstacles of these technologies. Through the analysis of case studies and primary literature, students will acquire a real-life knowledge of applications of Genomics in the 21st century.

BIOL 660. College Teaching. 3 credits, 3 contact hours.
College Teaching helps students in STEM fields who teach or plan to teach in colleges or universities develop important professional knowledge, skills, values, and dispositions that can enable them to help undergraduate and graduate students develop societally and personally significant abilities. The course emphasizes research-based methods demonstrated to be effective for enhancing learning in diverse people.

BIOL 668. Evolutionary Medicine. 3 credits, 3 contact hours.
Restrictions: Students should have a background that includes basic biology, including evolutionary mechanisms. This course addresses the evolutionary principles and processes underlying many types of disease (both infectious and hereditary/genetic). The class is a mixture of lecture and discussion of case studies. Material covered includes biology, epidemiological models, and some aspects of human behavior.
BiOL 672. Computational Systems Biology. 3 credits, 3 contact hours.
Prerequisite: Permission by the instructor. Introduction to the mathematical and computational modeling of biological systems with a focus on chemical, biochemical, metabolic and genetic networks. The course work is designed so that students can develop an independent modeling/computational project by the end of the semester. The required knowledge of biology and numerical tools for the solution of differential equations will be introduced as needed.

BiOL 698. Selected topics in Biology. 3 credits, 3 contact hours.
Survey of recent research topics in Biology at the Master’s level.

BiOL 699. Selected Topics in Biology. 3 credits, 3 contact hours.
Survey of recent research topics in Biology at the Masters level.

BiOL 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. A written report must be submitted to the project advisor. The student cannot register in BiOL 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BiOL 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in BiOL 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BiOL 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (BiOL 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

BiOL 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

BiOL 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for BiOL 726 if they have taken BiOL 725 in a prior semester.

BiOL 731. Proposal Prep for Extln Fundin. 3 credits, 3 contact hours.
Prerequisite: BiOL 630. This course is intended for doctoral students in their first or second year who intend to apply for external funding for their research. The course is hands-on and students are required to identify sources of funding and to write and submit a grant proposal. Topics covered include developing research questions and hypotheses, organization of specific aims, components of the proposal, including significance, innovation, expected outcomes, potential pitfalls and broader impact. The course also emphasizes practices of good grantsmanship and provides an overview of how proposals are reviewed at NSF and NIH.

BiOL 788. Selected Topics in Biology. 3 credits, 3 contact hours.
Survey of recent research topics in Biology at the doctoral level.

BiOL 790. Doct Dissertation & Resrch. 0 credits, 0 contact hours.

BiOL 790A. Doct Dissertation & Resrch. 1 credit, 1 contact hour.
Co-requisite: BiOL 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. For PhD students who have successfully defended their dissertation proposal. The student must register in BiOL 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

BiOL 790B. Doct Dissertation & Resrch. 3 credits, 3 contact hours.
Co-requisite: BiOL 791. Since the BiOL 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in biology. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).
BIOL 790C. Doctoral Dissertation & Resrch. 6 credits, 6 contact hours.
Co-requisite: BIOL 791. Since the BIOL 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in biology. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

BIOL 790D. Doct Dissertation & Resrch. 9 credits, 0 contact hours.

BIOL 790E. Doctoral Dissertation. 12 credits, 12 contact hours.

BIOL 791. Biology Seminar. 0 credits, 0 contact hours.
This seminar includes student and faculty presentations on current papers, student presentations related to their research and occasional outside speakers. It will acquaint students with possible topics for dissertation search, and provide an opportunity to present and receive feedback on current work.

BIOL 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: BIOL 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in biology. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

BIOL 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

BIOL 792D. Pre-Doctoral Research. 12 credits, 12 contact hours.

BIOL 794. Computational Biology Colloquium. 1 credit, 1 contact hour.
Restriction: graduate standing. Students and outside speakers present and discuss current research activities in computational biology and related scientific areas.
Rutgers-Newark Courses

R120 503. Plant Morphology. 3 credits, 3 contact hours.
R120 504. Plant Physiology. 3 credits, 3 contact hours.
R120 505. Bio Stat And Compt Meth. 3 credits, 3 contact hours.
R120 507. Computational Ecology. 3 credits, 3 contact hours.
R120 509. Adv Problems In Biology. 3-5 credits, 3-5 contact hours.
R120 510. Adv Prob In Biol. 3 credits, 3 contact hours.
R120 512. Cell Biology: Methods & Appl. 3 credits, 0 contact hours.
R120 513. Epigenetics. 3 credits, 3 contact hours.
R120 515. Molecular Bio Of Eukaryotes. 3 credits, 3 contact hours.
R120 516. Microbial Ecology. 3 credits, 3 contact hours.
R120 517. Developmental Neurobiology. 3 credits, 3 contact hours.
R120 518. Neuroimmunology. 3 credits, 3 contact hours.
R120 519. Microbial Metal. 3 credits, 0 contact hours.
R120 520. Analyt & Comp Neurosci. 3 credits, 3 contact hours.
R120 522. Resource Sustainability. 3 credits, 3 contact hours.
R120 523. Scale Of Biodiversity. 3 credits, 3 contact hours.
R120 524. Cell Molec Dev. 3 credits, 3 contact hours.
R120 526. Topics in Cell Biology. 3 credits, 0 contact hours.
R120 530. Cell Surface Recept. 3 credits, 3 contact hours.
R120 532. Evolution. 3 credits, 3 contact hours.
R120 534. Biological Invasion. 3 credits, 3 contact hours.
R120 536. Multivariate Biostatistics. 3 credits, 3 contact hours.
R120 538. Topics In Molecular Genetics. 3 credits, 3 contact hours.
R120 539. Adv Human Physio I. 3 credits, 0 contact hours.
R120 540. Adv Human Physio & Patho II. 3 credits, 3 contact hours.
R120 543. Envr Microbiology. 3 credits, 3 contact hours.
R120 545. Plant Molecular Bio. 3 credits, 3 contact hours.
R120 547. Pathophysiology. 3 credits, 3 contact hours.
R120 548. Biology Of Cancer. 3 credits, 3 contact hours.
R120 551. Biology Of Pollution. 3 credits, 3 contact hours.
R120 552. Paleobotany. 3 credits, 3 contact hours.
R120 560. College Teaching. 3 credits, 3 contact hours.
R120 563. Topics in Modern Plant Biology. 3 credits, 3 contact hours.
R120 568. Neuroendocrinology. 3 credits, 0 contact hours.
R120 571. Biochemistry I. 3 credits, 3 contact hours.
R120 572. Concepts in Pharm Drug Dev. 3 credits, 3 contact hours.
R120 573. Pharmacology. 3 credits, 3 contact hours.
R120 580. Topic Marine Ecology. 3 credits, 3 contact hours.
R120 587. Systems Ecology. 3 credits, 0 contact hours.
R120 588. Topics Adv Ecology. 3 credits, 0 contact hours.
R120 590. Intro to Env Biophys. 3 credits, 3 contact hours.
R120 593. Physiological Ecol. 3 credits, 0 contact hours.
R120 594. Systematics. 3 credits, 3 contact hours.
R120 601. Human Molecular Genetics. 3 credits, 3 contact hours.
R120 604. Microbio: Prin & Appl. 3 credits, 3 contact hours.
R120 616. Topics In Biology. 3 credits, 3 contact hours.
R120 624. Cell Biol:Signal Transduction. 3 credits, 3 contact hours.
M.S. in Biology

Curriculum-Course and Credit Requirements

The program requires successful completion of a minimum of 30 credits of graduate-level work. These must include at least one 3-credit course in each of four of the following five core areas:

1. cell biology/biochemistry,
2. molecular biology,
3. computational biology,
4. ecology/evolution,
5. plant biology.

A partial list of courses offerings in each of these areas is appended. When nearing completion of the minimum 30 required credits for the MS, Rutgers students must submit an Application for Admission to Candidacy for the Degree of Master of Science to the Graduate Program Director listing courses complete (totaling 30 credits) and offered toward the degree. NJIT students must complete an application for graduation and submit it to the Graduate Program Director for signature.

Curriculum-Thesis Requirements

Students can fulfill the written thesis requirement either by conducting laboratory or library research. Important to successful completion of the thesis requirement is early identification of a thesis advisor such that proper planning is in place to complete research requirements in a timely and effective manner. The basic requirement and process for these two thesis pathways is laboratory or field research thesis option; or bibliographic thesis option.

Laboratory or Field Research Thesis Option

Students selecting the experimentally-based research thesis option must successfully complete a minimum of 24 credits of coursework and 6 credits in research (R120 701 Research in Biology, R120 702 Research in Biology for RU-N students, BIOL 700, BIOL 701 for NJIT students) with a graduate faculty member of the department. Under the guidance of this faculty member the student will perform original research. The thesis resulting from this research is expected to be presented as an hypothesis-driven scholarly work, with conclusions clearly derived from the experimental research and published background information. Students will write a scholarly thesis demonstrating the ability to write clearly and scientifically and based on experimental laboratory and/or field project research.

Upon completion of the written thesis, the student will defend the thesis publicly on the topic of their research, followed by a Q&A session with the examination committee. The thesis committee must be approved by the Graduate Program Director and will consist of the primary advisor and at least one other faculty reader who are full members of the Graduate Faculty. If a research plan requires the expertise of a non-graduate faculty advisor the committee will consist of three members-two from the graduate faculty and the advisor. Format and style of the final document must be in accordance with the guidelines set by an available at the office of graduate studies of the respective institutions.

Bibliographic Thesis Option

Students selecting the bibliographic-based research thesis option must successfully complete a minimum of 27 credits of coursework and 3 credits of Independent Study (BIOL 725 Independent Study I for NJIT students, R120 844 Research Internship for Rutgers students) with a graduate faculty member of the department. Under the guidance of this faculty member, the student will write a scholarly review of the literature on a scientific topic of interest. The thesis resulting from this research is expected to be a scholarly work, with conclusions clearly derived from the published information referred to by the author. This thesis should demonstrate the ability of the student to write scientifically, bringing together facts interpretations relevant to that topic, in a clear, scholarly manner. Upon completion of the written thesis, the student will defend it publicly, followed by a Q&A session with the examination committee. The thesis committee must be approved by the Graduate Program Director and will consist of the primary advisor and at least one other faculty reader who are full members of the Graduate Faculty. If a research plan requires the expertise of a non-graduate faculty advisor the committee will consist of three members-two from the graduate faculty and the advisor. Format and style of the final document must be in accordance with the guidelines set by and available at the office of graduate studies of the respective institutions.

Additional Curriculum Options

RU-N students

- After completing 12 graduate credits in the program, a student may solicit the Graduate Program Director to transfer up to 9 relevant graduate credits from another institution toward the 30 credits need for MS.
- No undergraduate credits are allowed for credit towards the MS degree.

NJIT students

- Credits already taken: Up to nine (9) credits may be transferred for credit toward the 30 credits need for the MS provided that they were taken at an accredited college or university in the United States or Canada, were not used in fulfillment of a previous degree awarded, earned a final grade of 3.0 or above on a scale whose maximum is 4.0, were earned in graduate level course(s) for which full academic credit was awarded, were in units of
at least three (3) credits and were not earned more than seven years ago. Credits earned in quarter system will be converted to equivalent semester credits.

- **Credits Not Yet Taken:** Up to nine (9) credits may be transferred for credit provided that they are taken at an accredited college or university in the United States or Canada, earn a final grade of 3.0 or above on a scale whose maximum is 4.0, are in graduate level course(s) for which full academic credit is awarded, and are in units of at least three (3) credits. Credits earned in quarter systems will be converted to equivalent semester credits. Prior approval required.

Part-Time Students

Part-time students are expected to fulfill exactly the same requirements as full-time students.

M.S. in Biology of Health

The Master of Science in Biology of Health (MSBH) program is a postbaccalaureate premedical program designed to provide graduate-level health sciences and basic biomedical training. It is intended for students who intend to transition to medical and other health professions schools (e.g., dentistry, physical therapy, physician assistant, podiatry, etc.), and enables them to complete additional coursework in the foundational sciences, demonstrate the ability to succeed in graduate-level studies, and prepare for national admissions examinations.

Students participating in the MSBH Program will be advised by the NJIT Pre-Health Advisory Committee, which provides mentorship on course selection, professional school applications, and national admissions examinations (MCAT or similar). It is also the formal entity behind the 'committee letter' of recommendation that most health professional schools prefer to receive.

Students are expected to complete a total of 30 university course credits (usually 10 courses). This includes 18 credits from 6 required courses, at least 3 credits (1 course) from the list of neuroscience electives, and 9 credits (3 courses) from the list of other elective courses. Required courses can be substituted with good justification and permission by the program advisor, and a second neuroscience elective can count towards the other elective requirements. Students may choose an elective outside the list with approval of the program advisor.

In order to graduate, students must have achieved a minimum 3.0 grade point average on a 4.0 scale for 24 credits, with no more than 6 credits of C grades and no failing grades. Courses in which a student received a failing grade must be repeated and can only be satisfied by earning a grade of B or better.

The expected most common study period for each student is one academic year consisting of two semesters, with the possibility of early registration to take two courses in the summer semester. Students who start in the spring semester and students who elect to register for a lighter course load per semester will be advised on the best sequence of courses to show significant advancement for early applications to medical or other professional programs. The sequence of course work for each students will be planned with the Pre-Health Committee and targeted to the dates of specific professional program application deadlines and admissions tests (MCAT or similar).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 650</td>
<td>Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 644</td>
<td>Physiological Mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 646</td>
<td>Endocrinology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 628</td>
<td>Cell Biology of Disease: Cells Gone Bad</td>
<td>3</td>
</tr>
<tr>
<td>PTC 660</td>
<td>Medical Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

Neuroscience Elective

Select one
- R120 517 | Developmental Neurobiology | 3 |
- BIOL 648 | Neuropathology | |
- BIOL 635 | Intro to Comp Neuroscience | |
- BIOL 636 | Advanced Comp Neuroscience | |
- BIOL 640 | Cellular Neurophysiology | |
- BIOL 641 | Systems Neuroscience | |

Other Electives

Select three
- R120 515 | Molecular Bio Of Eukaryotes | |
- R120 524 | Cell Molec Dev | |
- BIOL 610 | Comparative Vertebrate Anatomy | |

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R120 517</td>
<td>Developmental Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 648</td>
<td>Neuropathology</td>
<td></td>
</tr>
<tr>
<td>BIOL 635</td>
<td>Intro to Comp Neuroscience</td>
<td></td>
</tr>
<tr>
<td>BIOL 636</td>
<td>Advanced Comp Neuroscience</td>
<td></td>
</tr>
<tr>
<td>BIOL 640</td>
<td>Cellular Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 641</td>
<td>Systems Neuroscience</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R120 515</td>
<td>Molecular Bio Of Eukaryotes</td>
<td></td>
</tr>
<tr>
<td>R120 524</td>
<td>Cell Molec Dev</td>
<td></td>
</tr>
<tr>
<td>BIOL 610</td>
<td>Comparative Vertebrate Anatomy</td>
<td></td>
</tr>
</tbody>
</table>
Neuroscience

(12 credits)

Offered by the Department of Biology, the Graduate Certificate in Neuroscience is an exciting program with new courses launched in the Fall of 2018. The program bridges many levels of nervous system organization and function, from single nerve cells to behavior and cognition. Students will be introduced to the cell and molecular biology, biophysics, and electrophysiology of nerve cells and synapses. They will learn how these properties give rise to neural circuit and systems function, and how computational and signal processing approaches are used to understand neural coding and information processing in the brain. The fundamental biological and computational principles that govern brain function can then be applied to understand diagnostic and therapeutic approaches and instrumentation, including functional electrical stimulation, optical and functional imaging techniques, and neural prosthetics.

Who would be suited to take this program?

As many aspects of neuroscience are rooted in the basic biology of the nervous system, the program is well suited to students with a biology background. However, neuroscience is inherently multidisciplinary in both fundamental and applied approaches. Therefore, students with backgrounds in computational and mathematical principles of coding and information processing, or engineering applications, are also well matched.

Related MS degree: Biology.

Curriculum

Choose at least two courses from this list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 640</td>
<td>Cellular Neurophysiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 641</td>
<td>Systems Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 645</td>
<td>Biological Imaging Techniques</td>
<td>3</td>
</tr>
<tr>
<td>BME 661</td>
<td>Neural Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 668</td>
<td>Medical Imaging Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose course(s) from this list after accumulating at least six credits:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 635</td>
<td>Intro to Comp Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 636</td>
<td>Advanced Comp Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 672</td>
<td>Computational Systems Biology</td>
<td>3</td>
</tr>
</tbody>
</table>
Ph.D. in Biology

Grade Requirements

Students are expected to successfully complete all of the Core and Elective credits taken within the Graduate Program. Course work provides the formal foundation upon which a successful research project and Dissertation Defense is built. To remain in good standing, a GPA of 3.0 or better must be maintained for all courses taken as part of the graduate course of study. Courses cannot be repeated in order to improve on poor performance. Furthermore, while in the program, a student can receive grades of C or C+ in a maximum of two courses, only one of which may be in the Program and Track Core courses.

There is no stipulated minimum requirement for the number of dissertation research credits. The program follows the university’s milestone system, according to which students must register for three credits of pre-doctoral research after they pass the qualifying exam, and one dissertation research credit per semester after they defend the dissertation proposal.

Biology Colloquium

The Biology Colloquium is held weekly during the semester and consists of research presentations by invited speakers, students, and faculty, as well as professional development/career advice events and organizational meetings. All students, including post-qualifying students, are required to attend while being matriculated in the program.

Laboratory Rotations

Laboratory rotations provide opportunities for laboratory research and independent study with Graduate Faculty members. Students are required to complete two semester-long rotations. The main objective of the lab rotations is to identify a lab in which to complete dissertation work. Additional anticipated outcomes of the rotations include the development of laboratory and/or computational research skills, development of analytical and critical thinking skills, and appreciation of a specific research field.

Selection of Dissertation Lab

Following completion of the laboratory rotations, students must select a Graduate Faculty member who will serve as their Dissertation Advisor during the research phase of the doctoral program. Once completed, the student will commence developing a project and accumulating preliminary data for the dissertation. The program accommodates joint or interdisciplinary projects supervised by two or more faculty members. One faculty member serves as the Primary Advisor and provides the work space for the student, others can serve as Co-Advisors.

Qualifying Exam

Following the successful completion of all course requirements, rotations, and identification of the Dissertation Advisor, each student must pass a Qualifying Exam to remain in the program. After successful completion of the Qualifying Exam, the student becomes a Ph.D. candidate. The exam is typically held in June of the second year, unless the coursework was completed earlier. The exam will be administered by a Qualifying Exam Committee of three Graduate Faculty members. The overall purpose of the Qualifying Exam is to assess the student’s preparation and ability to plan an original, scholarly scientific investigation. The Qualifying Exam consists of a written research proposal and an oral exam.

Dissertation Committee

Within 9 months of the completion of the Qualifying Exam, the student assembles a Dissertation Committee, under the guidance of the Dissertation Advisor. The Dissertation Committee will be composed of the student’s Dissertation Advisor, one external member from outside the NJIT-Rutgers scholarly community, and three members of the Biology Graduate Faculty. It is the primary advisory group responsible for supervision and guidance of the Student during the research phase of the dissertation. The Dissertation Committee also serves as the examination committee for the Dissertation Defense. The Dissertation Committee regularly meets with the student in 6-12 months intervals to discuss research progress, experimental challenges, and potential changes to the original plan. The ultimate charge of the Dissertation Committee before the Dissertation Defense is to ensure that the student is making appropriate progress towards a timely and successful defense.

Thesis Proposal

Within a year of the Qualifying Exam, the student presents and defends the Thesis Proposal (the dissertation research proposal) to the Dissertation Committee. The written Thesis Proposal should follow the format of NIH or NSF postdoctoral fellowship applications. The Thesis Proposal meeting is an oral exam that will determine the student’s ability to conceive, design, and conduct the proposed research project. It is a required milestone in the program, and approval by the Dissertation Committee should be viewed as a statement that the scope and originality of the proposal is sufficient to earn a Ph.D. degree upon successful completion.

Dissertation Defense

Completing the program and earning a doctoral degree requires a written Thesis, a public Dissertation Defense, and an oral examination by the Dissertation Committee. Approximately six months prior to the planned Dissertation Defense, the Dissertation Committee will evaluate if sufficient progress has been made to warrant final preparation of a thesis and to establish an approximate timetable for the thesis public presentation and private
defense. The completed Thesis document must be submitted to all members of the Dissertation Committee at least one month prior to the scheduled Dissertation Defense. The Dissertation Defense must be advertised in advance, with a minimum of 10 days’ notice, and open to anyone wishing to attend.

Course Requirements

General Credit/Course Distribution

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Biology Graduate Program Core Courses</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Two or Three Track Specific Core Courses, dependent on track</td>
<td></td>
<td>6-9</td>
</tr>
<tr>
<td>Two Semester Long Laboratory Rotations</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Five or six Elective Courses, dependent on track</td>
<td></td>
<td>15-18</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

Ph.D. in Biology (Track: Cell and Molecular Biology)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Track Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R120 524</td>
<td>Cell Molec Dev</td>
<td>3</td>
</tr>
<tr>
<td>R120 515</td>
<td>Molecular Bio Of Eukaryotes</td>
<td>3</td>
</tr>
<tr>
<td>R160 581</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved electives ¹</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Two Lab Rotations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R120 509</td>
<td>Adv Problems In Biology</td>
<td>3</td>
</tr>
<tr>
<td>or R120 510</td>
<td>Adv Prob In Biol</td>
<td></td>
</tr>
<tr>
<td>BIOL 725</td>
<td>Independent Study I</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 726</td>
<td>Independent Study II</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

¹ Equivalent course may be substituted if approved.
² Elective courses can be any graduate level courses offered by the program, including track core courses from the other tracks. In addition, courses may be taken from a variety of graduate level offerings in different programs at Rutgers University-Newark, NJIT, Rutgers NJMS, Rutgers University-Camden, Rutgers University-New Brunswick, and others. Enrollment in courses offered by graduate programs outside of the Graduate Program in Biology requires permission from the program.

Ph.D. in Biology (Track: Ecology and Evolution)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Track Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 622</td>
<td>Evolution</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 621</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved electives ²</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Two Lab Rotations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R120 509</td>
<td>Adv Problems In Biology</td>
<td>3</td>
</tr>
<tr>
<td>or R120 510</td>
<td>Adv Prob In Biol</td>
<td></td>
</tr>
<tr>
<td>BIOL 725</td>
<td>Independent Study I</td>
<td>3</td>
</tr>
</tbody>
</table>
Ph.D. in Biology (Track: Neurobiology)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 640</td>
<td>Cellular Neurophysiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 641</td>
<td>Systems Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>MATH 635</td>
<td>Analytical Computational Neuroscience</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Approved electives 3

Two Lab Rotations

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R120 509</td>
<td>Adv Problems In Biology</td>
<td>3</td>
</tr>
<tr>
<td>or R120 510</td>
<td>Adv Prob In Biol</td>
<td></td>
</tr>
<tr>
<td>BIOL 725</td>
<td>Independent Study I</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 726</td>
<td>Independent Study II</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 36

1 Equivalent course may be substituted if approved.
2 Appropriate course may be substituted for students with stronger interests in Cellular and Molecular Neuroscience or Neuroethology and Behavior.
3 Elective courses can be any graduate level courses offered by the program, including track core courses from the other tracks. In addition, courses may be taken from a variety of graduate level offerings in different programs at Rutgers University-Newark, NJIT, Rutgers NJMS, Rutgers University-Camden, Rutgers University-New Brunswick, and others. Enrollment in courses offered by graduate programs outside of the Graduate Program in Biology requires permission from the program.
inorganic, and physical chemistry. Chemistry doctoral students address real problems, have strong interactions with their advisors and are expected to solve pertinent chemical and environmental problems.

Qualified students may be accepted directly into the program with a bachelor's degree or after they have completed a master's degree in chemistry. A GPA in previous work of 3.5 or better is expected, and international students must submit a TOEFL score of at least 550 (214 on the computer based test). General GRE scores are also required for admission. GRE subject scores are not required. Although the program is intended for full-time students, courses many be taken on a part-time basis initially. A minimum of one year in full-time residency required for completion of the dissertation. Teaching assistantships (TAs) and Research Assistantships (RAs) are available on a competitive basis. In addition to tuition remission, assistantships include stipends for Ph.D. students.

Environmental Science

The environmental science graduate programs are offered through several departments at New Jersey Institute of Technology and at Rutgers Newark, collaborating in an interdisciplinary program of research and teaching. These are the departments of Chemistry and Environmental Science, Environmental Engineering and Environmental Policy at NJIT, the Federated Department of Biological Sciences, and the Rutgers-Newark Department of Earth & Environmental Sciences. The strong research program is supported by major grants from federal and state agencies, and industry. Environmental science plays a major role in several NJIT research centers, including the Otto York center for Environmental Engineering and Science.

Master of Science in Environmental Science

This is an interdisciplinary program intended for individuals with backgrounds in science or engineering who want advanced education in the identification, management, treatment and effects of hazardous and toxic materials in the environment. It may be taken on a part-time or full-time basis.

Admission Requirements

Applicants should have undergraduate degrees in chemistry, biology, chemical engineering, environmental engineering, environmental science, or related fields who have taken a minimum of one year of college chemistry and mathematics through calculus. Students who lack an appropriate background may be considered for admission and required to take a program of courses that is designed in consultation with the graduate advisor. These may include undergraduate courses which are not counted toward degree credit.

A minimum undergraduate GPA of 3.0 on a 4.0 scale, or equivalent, is typically required for admission. Those applying for financial support and those whose last prior degree was from outside the United States must submit GRE scores. International students must achieve a minimum TOEFL score of 550 (pencil and paper) and 213 (computer-based).

Doctor of Philosophy in Environmental Science

This is a research-oriented degree intended for full-time students. Although courses may be taken on a part-time basis, a minimum of one year of full-time residency is typically required for completion of the doctoral dissertation.

Admission Requirements for Students Entering with a Master's Degree

A master's degree in chemistry, biology, chemical engineering, environmental engineering, environmental science, or related fields is usually required. Highly qualified students with bachelor's degrees in these fields may also be accepted directly into the doctoral program.

A minimum master's GPA of 3.5 on a 4.0 scale, or equivalent, is typically required for admission. GRE scores must be submitted. International students must achieve a minimum TOEFL score of 550.

Admission Requirements for Students Entering with a Bachelor's Degree

Exceptional students with appropriate undergraduate degrees may apply directly for admission to the doctoral program. Applicants are evaluated on a case-by-case basis. A minimum undergraduate GPA of 3.5 on a 4.0 scale, or equivalent, is typically required for admission. GRE scores must be submitted. International students must achieve a minimum TOEFL score of 550.

Environmental and Sustainability Policy

The Graduate Program in Environmental and Sustainability Policy focuses on the role of the social sciences in the development, implementation, and evaluation of environmental policy. Building on the strengths of a technological university, students take a series of foundation courses (Tier One) in environmental social science, environmental science, research methods, and economics. Advanced courses (Tier Two) build on this initial framework and provide extensions in specific applications in environmental law, energy policy, and a selection of advanced topics.

The faculty is multidisciplinary with strengths in environmental social science, economics, geography, and law. Graduates of the program have secured employment in both the public and private sectors including with the United States Environmental Protection Agency, the New Jersey Department of Environmental Protection, regional planning commissions, local community development programs, and engineering and planning firms. Graduates have also entered doctoral-level programs in environmental science, policy, and law.

The Ph.D. in Environmental Science (Policy Concentration) is offered by the Department of Chemistry and Environmental Science of which the Graduate Program in Environmental Policy is a constituent part. Successful environmental policies must rest on the development of reliable models for assessing change to the biophysical environment in the presence of human action. The Department offers a research-oriented doctoral degree in Environmental
Science with a concentration in Environmental Policy. The program emphasis is on the integration of environmental and social sciences to develop more effective responses to contemporary problems of resource management. For more information about degree requirements, please visit the website of the Department of Chemistry and Environmental Science.

Admission Requirements

The following criteria are applied when considering an applicant for admission to the program:

- An undergraduate degree in earth sciences (e.g. physical geography, geology, meteorology, ecology), social sciences (e.g. human geography, economics, sociology), engineering (e.g. environmental, civil, chemical) or another related discipline.
- An undergraduate GPA of at least 3.0 and at least 3.5 in major field (on a scale of 4.0).
- A minimum of one semester of statistics at the undergraduate level; an advanced statistics course at the undergraduate level is highly desirable.
- A combined GRE score (verbal and quantitative) of at least 1100

The following materials must be submitted to be considered for admission:

- Application for Admission to Graduate Study form
- MS-EPS Supplemental Materials form
- Official transcripts of all prior work and certificate of graduation
- Personal statement (two to three pages)
- Three letters of recommendation
- Graduate Record Examination (GRE) scores
- International students are required to pass the TOEFL at 550 (pencil and paper), 213 (computer based) or above.

NJIT Faculty

B

Belfield, Kevin D., Professor

Bonchonsky, Michael P., University Lecturer

C

Casado-Zapico, Sara, Assistant Professor

Champagne, Pier Alexandre, Assistant Professor

Chen, Hao, Professor

Conley, Robert J., Emeritus

D

DeSantis, Christopher, University Lecturer

F

Farinas, Edgardo T., Associate Professor

Fisher, David R., Professor of Practice

G

Getzin, Donald, Associate Professor Emeritus

Gulotta, Miriam, University Lecturer

Gund, Tamara M., Professor

K

Kebbekus, Barbara B., Professor Emeritus

Khalizov, Alexei, Associate Professor

Kim, Yong I., Assistant Professor
L
Lambert, Donald G., Associate Professor Emeritus
Lei, George Y., Associate Professor Emeritus
Li, Mengyan, Assistant Professor

M
Mitra, Somenath, Distinguished Professor
Momennatohrani, Mohammadreza, University Lecturer

P
Pacheco, Carlos N., Senior University Lecturer
Petrova, Roumiana S., Senior University Lecturer

Q
Qiu, Zeyuan, Professor

S
Sadik, Omowunmi A., Distinguished Professor
Shakib, Farnaz A., Assistant Professor

V
Venanzi, Carol A., Distinguished Professor Emeritus

W
Warner, Genoa, Assistant Professor

Z
Zhang, Lijie, Assistant Professor
Zhang, Yuanwei, Assistant Professor

Programs
• Chemistry - M.S. (p. 323)
• Environmental Science - M.S. (p. 324)
• Pharmaceutical Chemistry - M.S. (p. 326)

Chemistry and Environmental Science Courses
CHEM 590. Graduate Co-Op Work Exper I. 1 credit, 1 contact hour.
CHEM 591. Graduate Co-Op Work Exper II. 1 credit, 1 contact hour.
CHEM 592. Graduate Co-Op Work Exper III. 1 credit, 1 contact hour.
CHEM 593. Graduate Co-Op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.
CHEM 595. Practicum in Cell & Gene Therapy Sciences. 3 credits, 3 contact hours.
The practicum is designed to give students supervised practical experience that will apply the skills and knowledge gained as part of the master’s program in Pharmaceutical Chemistry/PSM Cell and Gene Therapy Sciences.

CHEM 599. Methods for Teaching Assistants and Graduate Assistants. 3 credits, 3 contact hours.
Restriction: graduate standing. Required for all chemistry teaching assistants and graduate assistants. Covers techniques of teaching, interaction with students, and safety. Does not count as degree credit.

CHEM 601. Special Topics in Chemistry I. 3 credits, 3 contact hours.
Restriction: graduate standing and permission of the instructor. Topics of current interest in chemistry.

CHEM 605. Advanced Organic Chemistry I: Structure. 3 credits, 3 contact hours.
Prerequisite: undergraduate organic chemistry. Structure of organic molecules. Topics include atomic and molecular structure, stereochemistry, reactive intermediates (cations, anions, radicals, and carbenes), orbital symmetry, and spectroscopy.

CHEM 606. Physical Organic Chemistry. 3 credits, 3 contact hours.
Prerequisite: CHEM 502 or equivalent. Emphasis is placed on the physical aspects of the subject. Determination of reaction mechanisms, equilibria, and kinetics using simple molecular orbital theory and absolute reaction rate theory.

CHEM 610. Advanced Inorganic Chemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate physical chemistry or permission of the instructor. Theories of observed chemical and physical properties of the elements and their compounds; prediction of reactivity and properties of proposed new compounds.

CHEM 617. Mass Spectrometry and Interpretation of Mass Spectra. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. Historical background, fundamentals and mechanics of operation for components incorporated into modern Mass Spectrometers: vacuum system, ion sources, mass filter, ion detection, plus computer operation and data collection. Explanation and interpretation of mass spectra and fragmentation patterns are a fundamental theme throughout the course. Lecture material includes principles of operation and appropriate applications for modern types of mass spectrometers: magnetic sector, quadrupole, time of flight, ion trap, FT-ICR. Theory and applications of electron impact, chemical, electrospray, and other ionization techniques including atmospheric sampling are covered. High resolution analysis using magnetic sector and FT - ion cyclotron instruments. Analytical applications in environmental, petroleum and biochemical analysis and applications and coupling of mass spectrometry with other instruments (GC, LC, AES,) are illustrated.

CHEM 658. Advanced Physical Chemistry. 3 credits, 3 contact hours.
Prerequisite: one year of undergraduate physical chemistry. Principles and applications of quantum chemistry; the wave equation, its properties and mathematics; the Schrodinger equation and wave functions; the harmonic oscillator; variational and perturbational methods; atomic theory, structure, and properties; simple molecules, LCAO and valence bond theories; semi-empirical methods; time dependence, and introduction to electronic and vibration-rotation spectroscopy.

CHEM 661. Instrumental Analysis Laboratory. 3 credits, 3 contact hours.
Prerequisite: one year of undergraduate physical chemistry. Instruments for chemical analysis are discussed in class and used in the laboratory; basic theory; sample preparation; use of instruments and interpretation of data are covered for spectroscopy including UV0VIS, FTIR, AA, and NMR; HPLC, GC, ion chromatography, mass spectrometry. Applications to food science, pharmaceuticals, polymers, and other chemical areas.

CHEM 662. Air Pollution Analysis. 3 credits, 4 contact hours.
Prerequisite: undergraduate physical chemistry. Chemical and physical principles of gaseous species and trace level measurement techniques for airborne vapors and particulates. Emphasis on analyzing real air samples at the parts-per-billion level, meteorological dispersion and life times of pollutants are covered. Laboratory work in air pollution sampling methods for vapor and particulate species. Determination of primary air pollutants using wet chemical and instrumental techniques.

CHEM 664. Advanced Analytical Chemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate physical chemistry. The principles of chemical analysis as they apply to chromatography, electrochemistry, and spectroscopy. Sampling considerations, separations, and sample preparation steps. This course is a useful adjunct to CHEM 661, where these analytical techniques are considered in a more practical way.

CHEM 673. Biochemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate organic and physical chemistry, or suitable background in these subjects. Fundamentals of biochemistry related to physical organic chemistry for students who have an interest in biomedical engineering, chemistry, chemical engineering, or environmental science.

CHEM 698. Selected Topics in Chemistry. 3 credits, 3 contact hours.
Survey of recent research topics in Chemistry at the Master’s level.

CHEM 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry. A written report must be submitted to the project advisor. The student cannot register in CHEM 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.
CHEM 701B. Masters Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CHEM 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CHEM 701C. Masters Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CHEM 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CHEM 702. Special Topics in Chemistry II. 3 credits, 3 contact hours.
Restriction: Graduate standing. Topics of current interest in chemistry.

CHEM 714. Pharmaceutical Analysis. 3 credits, 3 contact hours.
The objective of this course is to provide an overview of instrumental techniques used in the analysis of different pharmaceutical products. Many different types of analysis are carried out in the pharmaceutical industry pertaining to active ingredients, formulations as well as impurities and degradation. The focus will be on instrumentation such as chromatography, mass spectroscopy, different types of spectroscopy, quality assurance and GMP.

CHEM 716. Integrated Drug Dev & Discover. 3 credits, 3 contact hours.
Prerequisites: Strong background in organic chemistry This course offers an overview of the drug development process combined with hands-on experience in computer-aided drug design. Topics include pharmacokinetics, bioavailability, drug formulation, and structure-based drug design.

CHEM 717. Mass Spectrometry and Mass Spectral Interpretation. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. CHEM 717 and EVSC 617 are comprised of CHEM 717 and EVSC 617 plus a research project: Research projects usually comprise experimental and mass spectrometry interpretation studies. These can be performed at NJIT or in the students corporate mass spectrometry facility. Projects may also include theory, data interpretation or literature reviews pertinent to a current active area in mass spectrometry research. Projects should be approved or in consult with the instructors.

CHEM 718. Organic Synthesis. 3 credits, 3 contact hours.
Organic Synthesis is widely used in the production of organic materials and pharmaceutical drugs. The course introduces modern synthetic methods to the graduate students of NJIT. The first part of the course teaches organic reactions categorized by their roles in synthesis. Topics include substitution and addition of carbon nucleophiles, functional group conversion, oxidation, reduction, concerted cycloadditions, aromatic substitutions, and organometallic catalysis. The second part of the course teaches general strategies to develop synthetic plans, special considerations for difficult synthetic targets, and examples of natural product synthesis.

CHEM 719. Drug Delivery Systems. 3 credits, 3 contact hours.
Prerequisites: Strong background in organic chemistry This course emphasizes the importance of effective drug delivery to achieve specific therapeutic outcomes. Students learn current trends in research on the design of drug delivery systems to release drug content in a controllable and targeted manner.

CHEM 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CHEM 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for CHEM 726 if they have taken CHEM 725 in a prior semester.

CHEM 727. Independent Study III. 3 credits, 3 contact hours.
Restriction: written permission from the Associate Chairperson for Environmental Science plus courses prescribed by the supervising faculty member (who is not the student's thesis advisor). This special course covers areas of study in which one or more students may be interested, but which are not sufficiently broad to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

CHEM 734. Thermochemical Kinetics-Detailed Mechanistic Modeling. 3 credits, 3 contact hours.
Prerequisite: graduate level course in either kinetics or reactor design, or permission of instructor. Quantitative estimation of thermochemical data and chemical reactions in the vapor phase, and to some extent in the liquid phase; theories of transition state, RRKM, and Quantum RRK; and detailed chemical modeling concepts for reactor design. Applied computer project is required.
CHEM 735. Combustion. 3 credits, 3 contact hours.
Prerequisite: thermodynamics and kinetics or equivalent, or permission of instructor. Thermodynamic properties of stable molecules and free radical species in combustion and oxidation of aliphatic hydrocarbons; reactions occurring in high temperature combustion systems; and related kinetic principles.

CHEM 737. Applications of Computational Chemistry and Molecular Modeling. 3 credits, 3 contact hours.
Students are exposed to hands-on applications and fundamental aspects of computational chemistry and molecular modeling in organic, inorganic, bio- and physical chemistry. The course provides methods to determine the thermochemistry of a reaction, and strength (energy) of interactions by organic drug-like molecules with proteins. The course teaches the student to evaluate relative energy of different structures plus chemical species stability, reactivity and equilibrium ratios in chemical environments.

CHEM 748. Nanomaterials. 3 credits, 3 contact hours.
New feature of the 700 level course will be hands-on small projects carried out by groups of two students in Professor Iqbal's laboratories during the second half of the semester. The projects will be selected from the topics covered in the course. A second feature will involve a lecture on a specialized nanomaterial topic given by an invited outside lecturer. This 3 credit interdisciplinary course is designed to teach and provide hands-on project experience to M.S. and Ph.D. graduate students in chemistry, physics/materials science, and chemical/biomedical/electrical engineering on the fundamentals, synthesis, characterization and applications of nanomaterials. 75% of the course will comprise of lectures-one or two of which will be given by invited outside lecturers. 25% of the course will involve small projects based on the syllabus and conducted in the research laboratories of the instructor.

CHEM 764. Advanced Analytical Chemistry. 3 credits, 3 contact hours.
Prerequisites: undergraduate General and Analytical Chemistry. The principles of chemical analysis as they apply to chromatography, electrochemistry, and spectroscopy. Sampling considerations, separations, and sample preparation steps. This course is a useful adjunct to CHEM 661, where these analytical techniques are considered in a more practical way.

CHEM 777. Principles Pharm Chemistry. 3 credits, 3 contact hours.
Teaches about drug design, and the molecular mechanisms by which drugs act in the body. Covers pharmacodynamics, pharmacokinetics, molecular targets used by drugs, the interaction of a drug with a target, and the consequences of this interaction. Covers strategies used in discovering and designing new drugs, and surveys the "tools of the trade" involved, e.g., QSAR, combichem and computer aided design. Covers special topics like chlorinergics, analgesics, opiates, antibacterials, antivirals, and antiulcer agents.

CHEM 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Co-requisite: CHEM 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry. For PhD students who have successfully defended their dissertation proposal. The student must register in CHEM 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

CHEM 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
Co-requisite: CHEM 791. Since the CHEM 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in chemistry. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

CHEM 790C. Doctoral Dissertation. 6 credits, 6 contact hours.
Co-requisite: CHEM 791. Since the CHEM 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in chemistry. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

CHEM 790D. Doctoral Dissertation. 9 credits, 3 contact hours.

CHEM 790E. Doctoral Dissertation. 12 credits, 3 contact hours.

CHEM 790F. Doctoral Dissertation. 15 credits, 15 contact hours.

CHEM 790G. Doctoral Dissertation. 18 credits, 18 contact hours.

CHEM 791. Graduate Seminar. 0 credits, 0 contact hours.
Required of all chemistry graduate students receiving departmental or research-based awards and all doctoral students. The student must register each semester until completion of the degree. Outside speakers and department members present their research for general discussion.

CHEM 792. Pre-Doctoral Research. 3 credits, 3 contact hours.

CHEM 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: CHEM 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in chemistry. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.
CHEM 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

EPS 601. Research Methods for Environment and Sustainability Policy. 3 credits, 3 contact hours.
Introduces the research methods necessary to conduct studies in environmental and sustainability policy. Topics covered include literature review, problem identification, hypothesis testing, and quantitative methods of data analysis and problem solving. Students are required to implement and present their independently designed projects.

EPS 602. Research Analysis for the Social and Policy Sciences. 3 credits, 3 contact hours.
Prerequisite: EPS 601. Distribution of social, political, economic and health-related data in both samples and populations using a general linear model with residuals. Test hypotheses using both the Fisher and Neyman-Pearson criteria. Use of software such as SPSS, Microsoft Excel and Resampling Stats. to develop and test models using correlation, regression and ANOVA techniques.

EPS 609. Environmental Risk Assessment. 3 credits, 3 contact hours.
Methodology to assess the social and economic risks to present-day environmental resources of air and water; cost-benefit and trade-off analysis; technical characteristics of materials such as half-life, decomposition rates, and temperature sensitivity; and probabilities of various environmental situations.

EPS 612. Introduction to Environmental Policy Studies. 3 credits, 3 contact hours.
Introduction to six areas essential to a comprehensive understanding of environmental policy: concept of environmental policy; tools (law, economics, planning, science, engineering, ethics) for environmental policy; the U.S. perspective (NEPA, clean air and water acts, CERCLA); the international perspective (Club of Rome models, 1972 UNEP, 1992 Rio); industrial perspective (pollution prevention/life cycle engineering, privatization); and the local perspective (New Jersey DEP, NGOs, local industry, shoreline.) Same as MIP 612.

EPS 613. Environmental History and Policy. 3 credits, 3 contact hours.
Explores the dialogue between humanity and the environment in the United States, as well as its global implications. Surveys fundamental themes of history and policy from an environmental perspective: colonial development, independence, western expansion, industrialization, urbanization, and the rise of a consumer society. Gives special attention to the emergence of an environmental perspective: wilderness appreciation, the conservation movement, public health, the rise of the environmental movement since the 1960s, environmental science, and the legislative and regulatory process.

EPS 614. Environmental Economics and Management. 3 credits, 3 contact hours.
Overviews the complex and dynamic interactions between the economy and the environment from biological, economic, and institutional perspectives and investigates various strategies for resolving conflicts in resource management and pollution control. Topics include the basic principles of risk assessment, cost benefit analysis, and cost-effectiveness analysis in environment management and assessment of contemporary environment politics in air and water pollution control and waste and toxics management.

EPS 622. Sustainable Politics and Policy. 3 credits, 3 contact hours.
Identifies the origins of the concept of sustainability development and institutional efforts to implement strategies at various geopolitical scales: international, national, regional, and local. The course introduces tools to measure progress toward sustainability through the use of metrics such as ecological footprint analysis and life-cycle analysis. Other topics include steady-state economics, sustainable systems of production and consumption, and sustainability transitions.

EPS 638. Physical Geography. 3 credits, 3 contact hours.
Understanding the interaction between humans and the physical environment is important to the formulation of sound environmental policy. The course examines processes that shape the physical environment, the influence of human activities on these processes and the physical environment, and the application of this information to solving environmental problems.

EPS 644. The Rhetoric of Environmental Policy. 3 credits, 3 contact hours.
Introduces students to the major types of rhetorical analysis as well as assures that students can analyze and write technology policy that is informed by core rhetorical principles of that analysis.

EPS 651. Introduction to Urban and Environmental Health. 3 credits, 3 contact hours.
Health problems associated with the social and psychological factors found in urban areas and health problems stemming from contamination of air, water, food, the work place and other special environments. Policies required to promote healthful living behavior and those required to regulate negative externalities.

EPS 660. Ethics and Environmental Policy. 3 credits, 3 contact hours.
Contemporary environmental problems from the perspective of ethics or moral philosophy. Is there a moral obligation to preserve or protect the natural environment? What are the ethical presumptions and values underlying environmental policy? Are traditional theories of moral philosophy applicable to contemporary environmental problems, or is a new conception of the relationship between humanity and nature needed?

EPS 698. ST:. 3 credits, 3 contact hours.
Course considers advanced topics of special or current interest related to environmental and sustainability policy.

EPS 699. ST:. 3 credits, 3 contact hours.
Course considers advanced topics of special or current interest related to environmental and sustainability policy.

EPS 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental and sustainability policy. A written report must be submitted to the project advisor. The student cannot register in EPS 700B more than once and the incomplete (I) grade is not allowed.
EPS 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental and sustainability policy that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in EPS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EPS 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental and sustainability policy that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (EPS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EPS 702. Special Topics. 3 credits, 3 contact hours.
Restriction: Approval of graduate advisor in Environmental Science. Topics of current interest in the field of environmental policy. Doctoral level course.

EPS 712. Advanced Studies in Environmental and Sustainability Policy. 3 credits, 3 contact hours.
Evaluates strategies to reduce energy and material throughput including eco-efficiency relocalization of production and consumption, and green consumerism. Also considered are debates surrounding innovative policies to foster work-time reduction, to develop alternative measures of well-being, and to include societal values shifts.

EPS 714. Environmental and Natural Resources Economics. 3 credits, 3 contact hours.
Examines environmental regulation of firms and natural resource use with emphasis on the theoretical foundations required for public policy. Students focus primarily on the application of economic tools to improve environmental quality.

EPS 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

EPS 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for EPS 726 if they have taken EPS 725 in a prior semester.

EVSC 591. Graduate Work Experience I. 1 credit, 1 contact hour.
Restriction: permission of the associate chairperson for environmental science and the Division of Career Development Services. Provides on-the-job reinforcement of environmental science assignments. Projects are developed by the co-op office in consultation with the associate chairperson for environmental science. Cannot be used for degree credit.

EVSC 592. Graduate Work Experience II. 1 credit, 1 contact hour.
Restriction: permission of the associate chairperson for environmental science and the Division of Career Development Services. Provides on-the-job reinforcement of environmental science assignments. Projects are developed by the co-op office in consultation with the associate chairperson for environmental science. Cannot be used for degree credit.

EVSC 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

EVSC 600. Environmental Science Seminar. 0 credits, 3 contact hours.
Restriction: graduate standing. Current environmental topics of interest to the environmental professional are presented. Required every semester for environmental science graduate students receiving departmental or research-based awards and for all doctoral students.

EVSC 602. Special Topics in Environmental Science I. 3 credits, 3 contact hours.
Restriction: approval of graduate advisor in environmental science. Topics of current interest in the environmental field.

EVSC 603. Hazardous Waste Operations and Emergency Response. 3 credits, 3 contact hours.
Explores the safe operation of hazardous waste sites as well as emergency responses to hazardous releases. Overview of OSHA regulations and NIOSH standards concerning toxicological hazards and medical surveillance requirements. Emphasis on recognition and monitoring of site hazards. A written health and safety plan, and participation in a group problem involving a simulated hazardous site entry using actual protective equipment is required. Course satisfies the regulatory compliance mandates to meet 29 CFR 1910.120 for OSHA, with certification valid for one year.

EVSC 610. Environmental Chemical Science. 3 credits, 3 contact hours.
Restriction: graduate standing. Principles of physical, inorganic and organic chemistry are applied to understanding the origins of environmental pollutants, their transport, distribution and decomposition pathways.

EVSC 611. Hazardous Waste Management. 3 credits, 3 contact hours.
Restriction: graduate standing. An overview of hazardous waste management; case histories; legislation and regulations; treatment, disposal and cleanup technologies; sampling and analysis methodology; persistence and fate in the environment; emergency response procedures.
EVSC 612. Environmental Analysis. 3 credits, 4 contact hours.
Restriction: graduate standing. The analysis of environmental samples is studied from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis, and data treatment.

EVSC 613. Environmental Problem Solving. 3 credits, 3 contact hours.
Restriction: graduate standing. This course is designed to study solutions for current environmental problems. Students are asked to respond to an imaginary Request for Proposal (RFP) in writing and before a team of technical experts at an oral presentation. Solutions proposed in student RFPs must reflect knowledge of environmental science and technology in current use.

EVSC 614. Quantitative Environmental Risk Assessment. 3 credits, 3 contact hours.
Restriction: graduate standing. Applications of quantitative risk assessment concepts to the management of environmental problems.

EVSC 615. Global Environmental Problems. 3 credits, 3 contact hours.
Restriction: graduate standing. With an understanding that environmental problems are not restricted by geographical boundaries, relationships of the earth’s temperature balance, global air circulation patterns, global energy needs, and control and remediation technologies are studied.

EVSC 616. Toxicology. 3 credits, 3 contact hours.
Restriction: graduate standing. The general principles of toxicology are presented and applied to the assessment of acute, subacute and chronic effects of hazardous and toxic chemicals. Qualitative and quantitative measures of toxicity and testing protocols are addressed. The role of toxicology in risk assessment and risk management is discussed.

EVSC 617. Mass Spectrometry and Interpretation of Mass Spectra. 3 credits, 3 contact hours.
Prerequisite: CHEM 125 and CHEM 126 or equivalent. Historical background, fundamentals and mechanics of operation for components incorporated into modern Mass Spectrometers: vacuum system, ion sources, mass filter, ion detection, plus computer operation and data collection. Explanation and interpretation of mass spectra and fragmentation patterns are a fundamental theme throughout the course. Lecture material includes principles of operation and appropriate applications for modern types of mass spectrometers: magnetic sector, quadrupole, time of flight, ion trap, FT-ICR. Theory and applications of electron impact, chemical, electrospray, and other ionization techniques including atmospheric sampling are covered. High resolution analysis using magnetic sector and FT - ion cyclotron instruments. Analytical applications in environmental, petroleum and biochemical analysis and applications and coupling of mass spectrometry with other instruments (GC, LC, AES,) are illustrated.

EVSC 621. Ecological Risk Assessment. 3 credits, 3 contact hours.

EVSC 622. Bioremediation. 3 credits, 3 contact hours.

EVSC 623. Environmental Health. 3 credits, 3 contact hours.

EVSC 624. Environmental Analysis Methods and Laboratory. 3 credits, 4 contact hours.
Basic theory, methods, instruments, and data interpretation for chemical analysis of environmental samples are described in lectures and used in the laboratory; sampling; sample preparation; quality assurance, chain of custody. Instrument methods and uses include: UV-VIS, FTIR, AA, HPLC, GC, Ion Chromatography, and Mass Spectrometry as applied to environmental samples.

EVSC 625. Social Dimensions of Risk. 3 credits, 3 contact hours.
Low-probability/high consequence events involving terrorism, food safety, and extreme weather offer ample evidence the prevalent approaches of economics and statistics are not able to deal with the complex ways that risk permeates modern societies. This course treats risk analysis as a broad interdisciplinary activity and draws on the full range of the social sciences to explore the multifaceted way that risk infuses itself into the fabric of contemporary affairs.

EVSC 626. Hydrogeology. 3 credits, 3 contact hours.
This course covers the principles of ground water flow, advanced water cycle properties, aquifer flow and aquifer recharge. Contaminant migration and remediation methods are discussed. Basic groundwater chemistry and quality is covered.

EVSC 627. Environmental Microbiology. 3 credits, 3 contact hours.
Prerequisite: R120 101, R120 102, (General Biology I and II) or permission of instructor. This course offers an overview of 1) basic microbiology; biochemical principles, cell structure organization, microbial nutrition and growth, 2) the important microbes involved in environmental microbiology and address the environments where they are found, and 3) how they are detected and monitored, and their effects on humans, and the environment. Traditional lectures and exams are supplemented with discussions of current research articles.

EVSC 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science. A written report must be submitted to the project advisor. The student cannot register in EVSC 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EVSC 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in EVSC 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.
EVSC 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (EVSC 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EVSC 702. Special Topics in Environmental Science II. 3 credits, 3 contact hours.
Restriction: approval of graduate advisor in environmental science. Topics of current interest in the environmental field.

EVSC 711. Advanced Environmental Analysis. 3 credits, 3 contact hours.
Prerequisite: EVSC 612 or equivalent. Analysis of complex environmental samples is studied, from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis and data handling. Collection and analysis of samples from air, water, soil, and biological systems will be discussed. Emphasis on the study of current literature.

EVSC 712. Hazardous Substance Management. 3 credits, 3 contact hours.
Restriction: Graduate standing. The course material comprises an overview of hazardous materials and hazardous waste management and control in an industrial setting. The course examines the technical approaches utilized in the control, remediation, and prevention of hazardous substances and waste. It also includes the major technical elements of federal regulations that govern operations involving the handling of hazardous materials.

EVSC 715. Energy and Sustainability. 3 credits, 3 contact hours.
This course comprises an interdisciplinary review of energy fundamentals including the basic principles necessary to understand energy systems. The technological and engineered systems for processing and using different energy non-renewable and renewable sources. The social and environmental consequences of energy production, distribution, and use, including a comparison of socioeconomic models of global energy applications.

EVSC 717. Mass Spectrometry and Mass Spectral Interpretation. 3 credits, 3 contact hours.
Prerequisites: CHEM 125 and CHEM 126 or equivalent. CHEM 717 and EVSC 617 are comprised of CHEM 717 and EVSC 617 plus a research project: Research projects usually comprise experimental and mass spectrometry interpretation studies. These can be performed at NJIT or in the students' corporate mass spectrometry facility. Projects may also include theory, data interpretation or literature reviews pertinent to a current active area in mass spectrometry research. Projects should be approved or in consultation with the instructors.

EVSC 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

EVSC 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for EVSC 726 if they have taken EVSC 725 in a prior semester.

EVSC 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Co-requisite: EVSC 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science. For PhD students who have successfully defended their dissertation proposal. The student must register in EVSC 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

EVSC 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
Co-requisite: EVSC 791. Since the EVSC 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

EVSC 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: EVSC 791. Since the EVSC 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in environmental science. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

EVSC 790D. Doct Dissertation & Res. 9 credits, 9 contact hours.
Required of all students working toward the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Candidates must register for at least 6 credits of dissertation per semester until 36 credits are reached, and 3 credits per semester thereafter until a written dissertation is approved.
EVSC 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.
Required of all students working toward the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Candidates must register for at least 6 credits of dissertation per semester until 36 credits are reached, and 3 credits per semester thereafter until a written dissertation is approved.

EVSC 790F. Doctoral Dissertation. 15 credits, 15 contact hours.
Required of all students working toward the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Candidates must register for at least 6 credits of dissertation per semester until 36 credits are reached, and 3 credits per semester thereafter until a written dissertation is approved.

EVSC 791. Graduate Seminar. 0 credits, 1 contact hour.
Required of all environmental science graduate students receiving departmental or research-based awards and all doctoral students. The student must register each semester until completion of the degree. Outside speakers and department members present their research for general discussion.

EVSC 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: EVSC 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in environmental science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

Cell & Gene Therapy Sciences

Cell & Gene Therapy Sciences Certificate

Bioprocessing and biotechnology are a specialized forms of chemical and biological science and engineering that encompasses agriculture, food, pharmaceuticals, chemicals, paper, and other materials. It also covers large scale industry production for yield optimization and end product quality. From the NJIT Department of Chemistry and Environmental Science, the Graduate Certificate in Cell and Gene Therapy Sciences will cover these topics in depth, with a particular focus on the rapidly growing applications and processing aspects of cell therapy and gene therapy.

Who would be suited to take this program?

Typical students in this program could be from the pharmaceutical/biopharmaceutical world or strictly come from a biological or chemical science background, but could also come from an environmental science or engineering background as well. Such occupations may be pharmaceutical biologics scientists, food/drug development specialists, agricultural scientists, biomedical scientists, bacteriologists, and others.

What will I learn?

- **Principles in Bioscience Processing** - The main concepts of cell physiology, molecular biology, and cell biology. The fundamental aspects of biochemistry that relate directly to pharmaceutical developments are discussed and include basic organic chemistry, blood and buffers, protein based enzymes, complex carbohydrates, nucleic acids, and fats.

- **Applied Bioprocessing and Immunological Based Therapies** - The foundational knowledge of immunology and immunological applications relevant to bioprocessing science including immunoglobulin genetics, leukocyte activation and migration, transplant immunology, and immunotherapy and vaccines.

- **Biochemistry** - Fundamentals of biochemistry related to physical organic chemistry for students who have an interest in biomedical engineering, chemistry, chemical engineering, or environmental science.

- **Toxicology** - The general principles of toxicology are presented and applied to the assessment of acute, subacute and chronic effects of hazardous and toxic chemicals. Qualitative and quantitative measures of toxicity and testing protocols are addressed. The role of toxicology in risk assessment and risk management.

- **Pharmaceutical Analysis** - Instrumental techniques used in the analysis of different pharmaceutical products. Many different types of analysis are carried out in the pharmaceutical industry pertaining to active ingredients, formulations as well as impurities and degradants. The focus will be on instrumentation such as chromatography, mass spectrometry, different types of spectroscopy, quality assurance and GMP.

- **Principles of Pharmaceutical Chemistry** - Drug design and the molecular mechanisms by which drugs act in the body. Pharmacodynamics, pharmacokinetics, molecular targets used by drugs, the interaction of a drug with a target, and the consequences of this interaction. Strategies used in discovering and designing new drugs, and surveys the "tools of the trade" involved, e.g., QSAR, combichem and computer aided design. Special topics like chlorinergics, analgesics, opiates, antibacterials, antivirals, and anti-ulcer agents.

- **Practicum in Cell & Gene Therapy Sciences** - The practicum is designed to give students supervised practical experience that will apply the skills and knowledge gained as part of the masters program in Pharmaceutical Chemistry/PSM Cell and Gene Therapy Sciences.

Why Study Cell & Gene Therapy Sciences at NJIT?
NJIT is uniquely situated among the greatest concentration of biotechnology and pharmaceutical activities in the world, with over 400 private and public biopharmaceutical companies thriving around the NJ Area. Opportunity is right outside our door. The mission of NJIT’s Cell and Gene Therapy Sciences Graduate Certificate program is to prepare scientists and engineers for dynamic careers in biopharmaceutical industry. The program will focus on providing integrated coursework and training in current biotechnology industry practices. Our approach, relying on the input of our industrial advisory board, will ensure that our program will keep students up-to-date on the latest biopharmaceutical industry changes and challenges and prepare them to work in this growing and exciting industry. NJIT’s Graduate Certificate in Cell and Gene Therapy Sciences will provide a solid grounding in science and engineering, with an industry focus, facilitating the tailoring of coursework to meet individual career goals.

“This program complements NJIT’s programs in pharmaceutical chemistry and pharmaceutical engineering and was deliberately developed in partnership with biopharmaceutical companies to address unmet workforce needs,” said Kevin Belfield, dean of NJIT’s College of Science and Liberal Arts. “We anticipate our graduates will be in high demand in the state’s biopharmaceutical industry.”

Into what industries might holders of this program find employment?

Bioprocessing and Biopharmaceutical companies, such as Celgene, Amicus Therapeutics, Chromocell, Soligenix, GE Life Sciences, Vicus, Genzyme, Pall Corp., Roka Biosciences and PTC Therapeutics.

Prerequisites

Applicants should have a bachelor’s degree in the chemical or biological sciences or engineering preferred.

Related Degree Programs

All courses in this program related entirely to the NJIT MS in Pharmaceutical Chemistry and the Professional Science Masters (PSM) option in Cell and Gene Therapy Sciences.

Take Note

Check the course descriptions for more information. Some courses have prerequisites and must be taken in order.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 605</td>
<td>Prin of Bioscience Processing</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 595</td>
<td>Practicum in Cell & Gene Therapy Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 601</td>
<td>Special Topics in Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 702</td>
<td>Special Topics in Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 714</td>
<td>Pharmaceutical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Principles Pharm Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Science

It may sound surprising, but the environment is much cleaner today that it used to be 50 years ago. Thick smog is gone from the air and the rivers do not catch fire anymore. How did the co-existence of continuous economic development and cleaner environment become possible? The Graduate Certificate in Environmental Science will help students to develop an understanding of real-world environmental issues from an integrated science-technology-regulatory practice prospective. The program includes in depth understanding of local, regional, and global events, ranging from lead contamination of the Flint, MI water supply, to the environmental implications of climate change and stratospheric ozone depletion. Methods of gaining scientific understanding of the causes of these problems and developing policy regulations for their amelioration are described. Furthermore, examples are given of how the successful science-policy-technology approach can be applied to resolve other outstanding problems that the world is facing today, such as the unprecedented climate change caused by the release of carbon dioxide from combustion of fossil fuels. The curriculum provides an in depth understanding of environmental chemistry, pollution issues, toxicity of pollutants, methods for waste treatment and environmental law.

Who would be suited to take this program?

This program is designed for professionals, particularly of Chemistry, Environmental Science, Biology, or Engineering-based backgrounds, in the areas of Water Quality, Marine, Environmental Health, Air Pollution Control, Natural Resource Conservation, Waste Treatment or Environmental Health. Example occupations may include Environmental Consultants, Environmental Health and Safety Professional, Chemical and Pharmaceutical Industry Professionals, Health Practitioners, Estate Managers, Landscape Architect, Town Planners, Toxicologists, and Transportation Planners.
What will I learn?

- **Environmental Chemical Science** - Principles of physical, inorganic and organic chemistry are applied to understanding the origins of environmental pollutants, their transport, distribution and decomposition pathways.

- **Environmental Analysis** - The analysis of environmental samples is studied from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis, and data treatment.

- **Environmental Problem Solving** - Solutions for current environmental problems. Students are asked to respond to an imaginary Request for Proposal (RFP) in writing and before a team of technical experts at an oral presentation. Solutions proposed in student RFPs must reflect knowledge of environmental science and technology in current use.

- **Global Environmental Problems** - Relationships of the earth's temperature balance, global air circulation patterns, global energy needs, and control and remediation technologies.

- **Toxicology** - The assessment of acute, sub-acute and chronic effects of hazardous and toxic chemicals. Qualitative and quantitative measures of toxicity and testing protocols are addressed. The role of toxicology in risk assessment and risk management is discussed.

- **Environmental Microbiology** - 1) basic microbiology: biochemical principles, cell structure organization, microbial nutrition and growth, 2) the important microbes involved in environmental microbiology and address the environments where they are found, and 3) how they are detected and monitored, and their effects on humans, and the environment.

- **Energy and Sustainability** - Energy fundamentals including the basic principles necessary to understand energy systems. The technological and engineered systems for processing and using different energy non-renewable and renewable sources. The social and environmental consequences of energy production, distribution, and use, including a comparison of socioeconomic models of global energy applications.

- **Legal Aspects in Environmental Engineering** - Control of air, water, and solid waste pollution by federal, state, and local government statutes and international law. Preparation of environmental impact statements and the right of private citizens to bring suit under federal clean air and water pollution legislation are discussed, as well as limitations on these rights.

- **Sustainable Politics and Policy** - Sustainability development and institutional efforts to implement strategies at various geopolitical scales: international, national, regional, and local. The course introduces tools to measure progress toward sustainability through the use of metrics such as ecological footprint analysis and life-cycle analysis.

Why study Environmental Science at NJIT?

Not only do these courses help students to earn credits toward a Master's Degree in Environmental Science at NJIT, but they enable students to quickly engage in research in this field. From this academic department, Distinguished Professor Dr. Somenath Mitra is one of NJIT’s most decorated faculty after receiving the 2017 Benedetti Pichler Award following his research on carbon nanotube water filtration in the desalination process, earning NJIT a patent. Students in this program may be able to work with him directly.

Into what industries might holders of this program find employment?

- Federal/State/Local Department of Environmental Protection (e.g., USDEP, NJDEP)
- Private consulting company conducting audits/reviews in environmental science
- Medical Centers

Prerequisites

Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in a related field (biology, chemistry, environmental science, environmental engineering, mathematics, etc.).

Related Degree Programs

The Graduate Certificate in Environmental Science relates entirely to the NJIT MS in Environmental Science (https://catalog.njit.edu/graduate/science-liberal-arts/chemistry-environmental-science/environmental-science-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td>12</td>
</tr>
</tbody>
</table>
Environmental Science and Engineering

A combination of both science and engineering, the Graduate Certificate in Environmental Science and Engineering at NJIT helps students solve environmental issues from both a scientific point of view as well as from an engineering point of view. The program will ultimately force a mathematical mindset to employ the scientific method when monitoring and solving real world environmental issues.

Who would be suited to take this program?

Due to the nature of engineering courses, one would want to possess an engineering background in order to be eligible for this program. Participants are typically employees of major corporations, government agencies, private consulting and construction firms, and universities.

What will I learn?

- **Environmental Chemical Science** - Principles of physical, inorganic and organic chemistry are applied to understanding the origins of environmental pollutants, their transport, distribution and decomposition pathways.

- **Environmental Analysis** - The analysis of environmental samples is studied from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis, and data treatment.

- **Environmental Problem Solving** - Solutions for current environmental problems. Students are asked to respond to an imaginary Request for Proposal (RFP) in writing and before a team of technical experts at an oral presentation. Solutions proposed in student RFPs must reflect knowledge of environmental science and technology in current use.

- **Global Environmental Problems** - Relationships of the earth’s temperature balance, global air circulation patterns, global energy needs, and control and remediation technologies.

- **Toxicology** - The assessment of acute, sub-acute and chronic effects of hazardous and toxic chemicals. Qualitative and quantitative measures of toxicity and testing protocols are addressed. The role of toxicology in risk assessment and risk management is discussed.

- **Environmental Microbiology** - 1) basic microbiology: biochemical principles, cell structure organization, microbial nutrition and growth, 2) the important microbes involved in environmental microbiology and address the environments where they are found, and 3) how they are detected and monitored, and their effects on humans, and the environment.

- **Energy and Sustainability** - Energy fundamentals including the basic principles necessary to understand energy systems. The technological and engineered systems for processing and using different energy non-renewable and renewable sources. The social and environmental consequences of energy production, distribution, and use, including a comparison of socioeconomic models of global energy applications.

- **Legal Aspects in Environmental Engineering** - Control of air, water, and solid waste pollution by federal, state, and local government statutes and international law. Preparation of environmental impact statements and the right of private citizens to bring suit under federal clean air and water pollution legislation are discussed, as well as limitations on these rights.

- **Sustainable Politics and Policy** - Sustainability development and institutional efforts to implement strategies at various geopolitical scales: international, national, regional, and local. The course introduces tools to measure progress toward sustainability through the use of metrics such as ecological footprint analysis and life-cycle analysis.
• **Physical Processes of Environmental Systems** - Physical processes in various media (open water, porous media) under various hydraulic regimes (laminar and turbulent). Transport by diffusion, convection, and dispersion is considered along with absorption.

• **Environmental Microbiology** - Microbiology of natural and human impacted environment, fundamental microbiology in water treatment engineering, microbial detection methodologies, waterborne disease outbreaks, microbial risk assessment, biotechnologies for renewable energy, and other emerging topics

• **Site Remediation** - Regulations, cleanup standards, remedial investigations, feasibility studies, risk assessment, and safety. Established and innovative cleanup technologies such as incineration, containment, bioremediation, vapor extraction and ground water recovery.

• **Physical and Chemical Treatment** - Physical and chemical operations and processes employed in the treatment of water and wastewater. Gas transfer, coagulation, flocculation, solid-liquid separation, filtration, and disinfection.

• **Biological Treatment** - Principles of evaluation and control of water pollution that describe aerobic treatment processes such as oxidation ponds, trickling filters, and activated sludge; and anaerobic processes, and sludge handling and disposal as well as biodegradability study techniques for various wastes.

• **Environmental Impact Analysis** - Environmental problems, federal and state standards, methodology for developing impact statements, case studies based on recent experience, basis for assessment and decision making.

• **Stormwater Management** - With an emphasis on design practices, you will learn regulatory framework, an overview of structural and non-structural BMPs, groundwater recharge analysis, estimate of runoff, and design of detention basin and drainage systems.

• **Geotechnical Aspects of Solid Waste** - municipal landfill, dredged materials, coal and incinerator ashes, identification and classification of waste materials, geological criteria for siting, laboratory and field testing, design for impoundment and isolation of waste, methods of stability analyses of landfill sites, techniques for stabilizing waste sites, leachate and gas collection and venting systems.

Why study Environmental Science and Engineering at NJIT?

This hybrid program allows for individuals to learn from both a theoretical point of view as well as a practical one. Students will learn to develop sustainable solutions to environmental problems, preparing to work with regional, national and global communities to protect the environment and improve water quality. Jobs in this field are essential in planning, designing and constructing water and wastewater treatment plants, solid waste disposal systems, site remediation approaches and emission control measures.

Into what industries might holders of this program find employment?

- Federal/State/Local Department of Environmental Protection (e.g., USDEP, NJDEP)
- Private consulting company conducting audits/reviews in environmental science
- Medical Centers
- Junior Civil Engineer
- Sr. Transportation Engineering Manager
- Hydrologist

Prerequisites

Applicants should have a bachelor’s degree from an accredited institution with some undergraduate background in a related field (biology, chemistry, environmental science, environmental engineering, mathematics, etc.).

Related Degree Programs

Depending on the courses selected, coursework would apply to either the NJIT MS in Environmental Science (https://catalog.njit.edu/graduate/science-liberal-arts/chemistry-environmental-science/environmental-science-ms/) or the NJIT MS in Environmental Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/environmental-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 612</td>
<td>Environmental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 613</td>
<td>Environmental Problem Solving</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Courses: choose four (4) courses in total, two (2) courses from each group.

Select two (2) of the following:

- EVSC 610 (https://catalog.njit.edu/search/?P=EVSC%20610)
- EVSC 612 (https://catalog.njit.edu/search/?P=EVSC%20612)
- EVSC 613 (https://catalog.njit.edu/search/?P=EVSC%20613)
EVSC 615 (http://catalog.njit.edu/search/?P=EVSC%20615) Global Environmental Problems
EVSC 616 (http://catalog.njit.edu/search/?P=EVSC%20616) Toxicology
EVSC 627 (http://catalog.njit.edu/search/?P=EVSC%20627) Environmental Microbiology
EVSC 715 (http://catalog.njit.edu/search/?P=EVSC%20715) Energy and Sustainability
EM 631 (http://catalog.njit.edu/search/?P=EM%20631) Legal Aspects in Environmental Engineering
EPS 622 (http://catalog.njit.edu/search/?P=EPS%20622) Sustainable Politics and Policy

Select two (2) of the following: 6
ENE 630 (http://catalog.njit.edu/search/?P=ENE%20630) Physical Processes of Env Syst.
ENE 661 (http://catalog.njit.edu/search/?P=ENE%20661) Environmental Microbiology
ENE 662 (http://catalog.njit.edu/search/?P=ENE%20662) Site Remediation
ENE 664 (http://catalog.njit.edu/search/?P=ENE%20664) Physical and Chemical Treatment
ENE 665 (http://catalog.njit.edu/search/?P=ENE%20665) Biological Treatment
ENE 671 (http://catalog.njit.edu/search/?P=ENE%20671) Environmental Impact Analysis
ENE 672 (http://catalog.njit.edu/search/?P=ENE%20672) Stormwater Management
CE 647 (http://catalog.njit.edu/search/?P=CE%20647) Geotechnical Aspects of Solid Waste
EM 631 (http://catalog.njit.edu/search/?P=EM%20631) Legal Aspects in Environmental Engineering

M.S. in Chemistry

Degree Requirements
A minimum of 30 degree credits is required. Students must attain a cumulative GPA of 3.0 or better in the core courses listed below, and a minimum overall GPA of 3.0.

Seminar: In addition to the minimum 30 degree credits required, all students who receive departmental or research-based awards must enroll each semester in CHEM 791 Graduate Seminar.

M.S. in Chemistry (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Required Courses
Take four of the following five core courses:

CHEM 605 Advanced Organic Chemistry I: Structure
CHEM 610 Advanced Inorganic Chemistry
CHEM 658 Advanced Physical Chemistry
CHEM 661 Instrumental Analysis Laboratory
CHEM 673 Biochemistry

If a student successfully completes all five core courses, one course will count towards fulfilling the electives requirement. Students must maintain a 3.0 GPA or higher.

Elective Courses
Two 600- or 700-level chemical engineering or chemistry courses 6
A maximum of 6 elective credits may be taken from outside chemistry or chemical engineering; a maximum of 3 credits may be at the 500 level.

M.S. in Chemistry (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
<td></td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Advanced Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 661</td>
<td>Instrumental Analysis Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>

If a student successfully completes all five core courses, one course will count towards fulfilling the electives requirement. Students must maintain a 3.0 GPA or higher.

Thesis 1

<table>
<thead>
<tr>
<th>Track 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 700B</td>
<td>Masters Project</td>
</tr>
<tr>
<td>CHEM 701B</td>
<td>Masters Thesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 701B & 701B</td>
<td>Masters Thesis and Masters Thesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 701C</td>
<td>Masters Thesis</td>
</tr>
</tbody>
</table>

Elective Courses 2

Four electives 12

Total Credits 30

1 With permission of their research advisor, students intending to do an MS thesis may first register in the 700B MS Project course. They must receive a satisfactory (S) grade in CHEM 700B before CHEM 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in CHEM 700B. Alternatively, students may be allowed to register in the 3-credit MS thesis course CHEM 701B in two consecutive semesters, or in the 6-credit MS thesis course CHEM 701C in a single semester with permission of their research advisor.

2 A maximum of 6 elective credits may be taken from outside chemistry or chemical engineering; a maximum of 3 credits may be at the 500 level.

M.S. in Environmental Science

Degree Requirements

A minimum of 30 degree credits is required. Candidates must consult with the graduate advisor (not thesis advisor) in designing appropriate programs of study.

Students must attain a minimum GPA of 3.0 in the core courses listed below, and a minimum overall GPA of 3.0.

Seminar: In addition to the minimum 30 degree credits required, all students who receive departmental or research-based awards must enroll each semester in EVSC 600 Environmental Science Seminar.

M.S. in Environmental Science (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 631</td>
<td>Legal Aspects in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 612</td>
<td>Environmental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 627</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>
Elective ¹
Select five of the following: 15

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 602</td>
<td>Special Topics in Environmental Science I</td>
</tr>
<tr>
<td>EVSC 611</td>
<td>Hazardous Waste Management</td>
</tr>
<tr>
<td>EVSC 613</td>
<td>Environmental Problem Solving</td>
</tr>
<tr>
<td>EVSC 614</td>
<td>Quantitative Environmental Risk Assessment</td>
</tr>
<tr>
<td>EVSC 615</td>
<td>Global Environmental Problems</td>
</tr>
<tr>
<td>EVSC 702</td>
<td>Special Topics in Environmental Science II</td>
</tr>
<tr>
<td>EVSC 711</td>
<td>Advanced Environmental Analysis</td>
</tr>
<tr>
<td>EVSC 725</td>
<td>Independent Study I</td>
</tr>
<tr>
<td>EVSC 726</td>
<td>Independent Study II</td>
</tr>
<tr>
<td>ENE 673</td>
<td>Sustainability and Life Cycle Analysis</td>
</tr>
<tr>
<td>ENE 672</td>
<td>Stormwater Management</td>
</tr>
<tr>
<td>ENE 660</td>
<td>Introduction to Solid and Hazardous Waste Problems</td>
</tr>
<tr>
<td>ENE 662</td>
<td>Site Remediation</td>
</tr>
<tr>
<td>ENE 664</td>
<td>Physical and Chemical Treatment</td>
</tr>
<tr>
<td>ENE 665</td>
<td>Biological Treatment</td>
</tr>
<tr>
<td>CE 602</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>CHEM 664</td>
<td>Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>R120 551</td>
<td>Biology Of Pollution</td>
</tr>
<tr>
<td>R120 522</td>
<td>Resource Sustainability</td>
</tr>
<tr>
<td>R120 534</td>
<td>Biological Invasion</td>
</tr>
<tr>
<td>R120 523</td>
<td>Scale Of Biodiversity</td>
</tr>
<tr>
<td>IE 615</td>
<td>Industrial Hygiene and Occupational Health</td>
</tr>
<tr>
<td>EPS 612</td>
<td>Introduction to Environmental Policy Studies</td>
</tr>
<tr>
<td>EPS 622</td>
<td>Sustainable Politics and Policy</td>
</tr>
<tr>
<td>EPS 614</td>
<td>Environmental Economics and Management</td>
</tr>
<tr>
<td>EPS 638</td>
<td>Physical Geography</td>
</tr>
</tbody>
</table>

Total Credits: 30

¹ Courses are offered at NJIT and Rutgers-Newark and selected with the graduate advisors (not thesis advisors) approval.

M.S. in Environmental Science (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 631</td>
<td>Legal Aspects in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 612</td>
<td>Environmental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>EVSC 627</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>Thesis¹</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Track 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVSC 700B</td>
<td>Master's Project</td>
<td></td>
</tr>
<tr>
<td>EVSC 701B</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>Track 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVSC 701B& 701B & Master's Thesis and Master's Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVSC 701C</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>Elective ²</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVSC 602</td>
<td>Special Topics in Environmental Science I</td>
<td></td>
</tr>
<tr>
<td>EVSC 611</td>
<td>Hazardous Waste Management</td>
<td></td>
</tr>
</tbody>
</table>

¹ Courses are offered at NJIT and Rutgers-Newark and selected with the graduate advisors (not thesis advisors) approval.

² Select three of the following:
M.S. in Pharmaceutical Chemistry

The Master of Science in Pharmaceutical Chemistry provides advanced graduate training in the pharmaceutical and health sciences. The program provides professional training in quantitative methods that prepares graduates for careers in the medical, pharmaceutical, environmental, and biotechnology industries.

The M.S. in Pharmaceutical Chemistry requires 30 credits and includes 15 credit hours of core technical courses and 15 credit hours of technical electives. Co-op work experience and independent research may be used in place of certain technical electives, pending advisor approval.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 605</td>
<td>Prin of Bioscience Processing</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 714</td>
<td>Pharmaceutical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Principles Pharm Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Select five of the following:
BIOL 606 App Bioproc & Immun Based Ther
CHEM 610 Advanced Inorganic Chemistry

1. With permission of their research advisor, students intending to do an MS thesis may first register in the EVSC 700B MS Project course. They must receive a satisfactory (S) grade in EVSC 700B before EVSC 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in 700B. Alternatively, students may be allowed to register in the 3-credit MS thesis course EVSC 701B in two consecutive semesters, or in the 6-credit MS thesis course EVSC 701C in a single semester with permission of their research advisor.

2. Courses are offered at NJIT and Rutgers-Newark and selected with the graduate advisors (not thesis advisors) approval.

Total Credits: 30
CHEM 658 Advanced Physical Chemistry
CHEM 661 Instrumental Analysis Laboratory
CHEM 716 Integrated Drug Dev & Discover
CHEM 719 Drug Delivery Systems
CHEM 737 Applications of Computational Chemistry and Molecular Modeling
CHEM 748 Nanomaterials
EVSC 616 Toxicology
MATH 663 Introduction to Biostatistics
MATH 664 Methods for Statistical Consulting
PHEN 500 Pharmaceutical Engineering Fundamentals I
PHEN 601 Principles of Pharmaceutical Engineering
PHEN 604 Validation and Regulatory Issues in the Pharmaceutical Industry
PHEN 618 Principles of Pharmacokinetics and Drug Delivery
R120 572 Concepts in Pharm Drug Dev
R160 515 Chem Struct Determin
RBHS course - PATH N5209 Business of Science: Drug Development from Molecules to Medicines
RBHS course - PHPY N5021 Fundamentals of Pharmacology

Total Credits 30

M.S. in Pharmaceutical Chemistry PSM (Professional Science Master's) Cell & Gene Therapy Sciences Option

This program option is affiliated with the National PSM Office. The objective of the option is to create leaders with strong communication and management skills in addition to strong technical knowledge in cell and gene therapy sciences in order to meet the needs of the rapidly changing biopharmaceutical industry. This option is designed for working professionals or students who already have acquired some professional experience.

This option requires 30 credits and includes 15 credit hours of core technical courses, 9 credit hours of professional courses (technical and professional communications, project management, intellectual property, or organizational behavior), 3 credit hours of practicum, and 3 credit hours of a technical elective.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 605</td>
<td>Prin of Bioscience Processing</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 606</td>
<td>App Bioproc & Immun Based Ther</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 714</td>
<td>Pharmaceutical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Principles Pharm Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Professional Courses

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 631</td>
<td>Legal Aspects in Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 633</td>
<td>Legal Aspects of Health and Safety</td>
<td></td>
</tr>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Eng Management</td>
<td></td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>EVSC 613</td>
<td>Environmental Problem Solving</td>
<td></td>
</tr>
<tr>
<td>EVSC 614</td>
<td>Quantitative Environmental Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>EVSC 623</td>
<td>Environmental Health</td>
<td></td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td></td>
</tr>
<tr>
<td>IE 615</td>
<td>Industrial Hygiene and Occupational Health</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>PTC 601</td>
<td>Advanced Professional and Technical Communication</td>
<td></td>
</tr>
<tr>
<td>PTC 620</td>
<td>Proposal Writing</td>
<td></td>
</tr>
<tr>
<td>PTC 725</td>
<td>Independent Study in Professional and Technical Communication</td>
<td></td>
</tr>
</tbody>
</table>

Required Experiential Capstone
Ph.D. in Chemistry

Independent Learning

The grounding in scientific research methodology provided by the dissertation requirement is a central focus of the PhD program. One of the primary means of education and training in the PhD program is achieved through successful completion of an original research project in close mentorship by their research adviser and the presentation and defense of the PhD dissertation. This intense research experience provides the education and training necessary for the student to substantiate his/her expertise and develop the skills necessary to become an independent professional. By the end of the second semester, students will choose a dissertation adviser. Students will conduct research either on site at NJIT or at the professional laboratories where they work. In either case, a member of the NJIT Department of Chemistry and Environmental Science faculty will serve as research adviser and approve the research topic. This research culminates in the writing and presentation of the dissertation. The student will present his/her dissertation for examination by a committee consisting of a minimum of five members including the research adviser. One of the committee members will be from outside the department. A majority of the program committee members will hold tenure-earning faculty appointments in the Department of Chemistry and Environmental Science. The committee has to be approved by the director of the PhD chemistry graduate program, the department chair and the Office of Graduate Studies. With the exception of the outside member, the other committee members need to have graduate faculty status. The dissertation must be judged worthy of publication by the dissertation committee and may not be submitted for examination until so deemed. For students performing their dissertation research off campus, the dissertation adviser will visit the student’s laboratory, where their research is to be performed, before the research begins and on a regular basis until the work is complete.

Total Minimum Hours Required for PhD for students entering with Bachelor’s Degree (without MS degree) - 36 Credit Hours of 600/700-level Courses

Total Minimum Hours Required for PhD for students entering with MS degree - 12 Credit Hours of 700-level Courses

I. For Students Entering Without a MS Degree

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 595</td>
<td>Practicum in Cell & Gene Therapy Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 601</td>
<td>Special Topics in Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
<td></td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 661</td>
<td>Instrumental Analysis Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 700B</td>
<td>Masters Project</td>
<td></td>
</tr>
<tr>
<td>CHEM 702</td>
<td>Special Topics in Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 716</td>
<td>Integrated Drug Dev & Discover</td>
<td></td>
</tr>
<tr>
<td>CHEM 719</td>
<td>Drug Delivery Systems</td>
<td></td>
</tr>
<tr>
<td>CHEM 737</td>
<td>Applications of Computational Chemistry and Molecular Modeling</td>
<td></td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
<td></td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td></td>
</tr>
<tr>
<td>PHB 610</td>
<td>Biotechnology-Biopharmaceutical, Processes and Products</td>
<td></td>
</tr>
<tr>
<td>PHB 615</td>
<td>Bioseparation Processes</td>
<td></td>
</tr>
<tr>
<td>PHEN 500</td>
<td>Pharmaceutical Engineering Fundamentals I</td>
<td></td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td></td>
</tr>
<tr>
<td>PHEN 618</td>
<td>Principles of Pharmacokinetics and Drug Delivery</td>
<td></td>
</tr>
<tr>
<td>R120 572</td>
<td>Concepts in Pharm Drug Dev</td>
<td></td>
</tr>
<tr>
<td>R160 515</td>
<td>Chem Struct Determin</td>
<td></td>
</tr>
<tr>
<td>RBHS course - PATH N5209 Business of Science:Drug Dev from Molecules to Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBHS course - PHPY N5021 Fundamentals of Pharmacology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 30

Ph.D. in Chemistry

Ph.D. in Chemistry

Independent Learning

The grounding in scientific research methodology provided by the dissertation requirement is a central focus of the PhD program. One of the primary means of education and training in the PhD program is achieved through successful completion of an original research project in close mentorship by their research adviser and the presentation and defense of the PhD dissertation. This intense research experience provides the education and training necessary for the student to substantiate his/her expertise and develop the skills necessary to become an independent professional. By the end of the second semester, students will choose a dissertation adviser. Students will conduct research either on site at NJIT or at the professional laboratories where they work. In either case, a member of the NJIT Department of Chemistry and Environmental Science faculty will serve as research adviser and approve the research topic. This research culminates in the writing and presentation of the dissertation. The student will present his/her dissertation for examination by a committee consisting of a minimum of five members including the research adviser. One of the committee members will be from outside the department. A majority of the program committee members will hold tenure-earning faculty appointments in the Department of Chemistry and Environmental Science. The committee has to be approved by the director of the PhD chemistry graduate program, the department chair and the Office of Graduate Studies. With the exception of the outside member, the other committee members need to have graduate faculty status. The dissertation must be judged worthy of publication by the dissertation committee and may not be submitted for examination until so deemed. For students performing their dissertation research off campus, the dissertation adviser will visit the student’s laboratory, where their research is to be performed, before the research begins and on a regular basis until the work is complete.

Total Minimum Hours Required for PhD for students entering with Bachelor’s Degree (without MS degree) - 36 Credit Hours of 600/700-level Courses

Total Minimum Hours Required for PhD for students entering with MS degree - 12 Credit Hours of 700-level Courses

I. For Students Entering Without a MS Degree

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
<td></td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Advanced Inorganic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 12
CHEM 658 Advanced Physical Chemistry
CHEM 661 Instrumental Analysis Laboratory
CHEM 673 Biochemistry

If a student successfully completes all five core courses, one course will count towards fulfilling the electives requirement. Students must maintain a 3.0 GPA or higher.

Elective Courses

Students are required to take a minimum of eight 600- or 700-level courses (24 credit hours) with at least four (12 credit hours) of these at the 700-level. Courses are to be chosen from the departmental offerings while up to six credit hours may be selected from outside of the department. Up to six credit hours of Independent Study courses may be earned in fulfillment of the elective course requirement.

CHEM 714 Pharmaceutical Analysis
CHEM 716 Integrated Drug Dev & Discover
CHEM 719 Drug Delivery Systems
CHEM 725 Independent Study I
CHEM 726 Independent Study II
CHEM 737 Applications of Computational Chemistry and Molecular Modeling
CHEM 748 Nanomaterials
CHEM 764 Advanced Analytical Chemistry
CHEM 777 Principles Pharm Chemistry
CHE 781 Polymerization-Principles and Practice
CHE 724 Sustainable Energy
EVSC 622 Bioremediation
EVSC 712 Hazardous Substance Management
EVSC 715 Energy and Sustainability
BIOL 645 Biological Imaging Techniques
BME 651 Principles of Tissue Engineering
BME 653 Micro/Nanotechnologies for Interfacing Live Cells
BME 668 Medical Imaging Systems
BME 672 Biomaterials
BME 772 Adv Biomats for Lab and Clinic
MTSE 719 Physical Principles of Characterization of Solids
MTSE 722 Science and Technology of Thin Films
MTSE 724 Transport of Electrons and Phonons in Solids
MTSE 725 Independent Study I
MTSE 780 Current Topics in Materials Science and Engineering

Total Credits 36

Dissertation Research Credits

CHEM 792B Pre-Doctoral Research (after completing qualifying exam requirements)
CHEM 790A Doctoral Dissertation (after completing research proposal requirements)

Qualifying Examination

By the end of the second year, students must pass the PhD qualifying oral examination. A student is given two chances to clear the exam. The qualifying examination consists of writing and orally defending an original research proposal to the student’s dissertation committee in which the committee conducts an oral exam of the candidate (majority vote of the committee required). The original research proposal will focus on a topic not directly related to the student’s dissertation research and must be approved by the dissertation committee prior to development of the proposal. Failure to pass the PhD qualifying exam will result in dismissal from the program.

Dissertation Research Proposal

By the end of the first year of passing the qualifying exam, students must successfully present a proposal of their dissertation research to their dissertation committee and gain approval by a majority vote of the committee.

Dissertation Defense

The final requirement for the PhD degree is completion of a satisfactory written dissertation of the student’s research, along with successful presentation and defense of the dissertation to the student’s dissertation committee (majority vote of the committee).
II. For Students Entering With a MS Degree

Students with a recognized MS degree in the chemical sciences or closely related field may, with approval of the PhD Chemistry Graduate Committee, be admitted to pursue the PhD degree in chemistry and be required to earn a minimum of 12 credit hours of coursework at the 700-level. In cases where a student with a previous MS degree is not approved to pursue this (accelerated) program, they will follow the program outlined in I above and be eligible to transfer up to nine credit hours from previous graduate courses, similar to students that have prior graduate course credits but no MS degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elective Courses</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Students are required to take a minimum of four 700-level courses (12 credit hours). Courses are to be chosen from the departmental offerings while up to three credit hours may be selected from outside of the department.</td>
<td></td>
</tr>
<tr>
<td>CHEM 714</td>
<td>Pharmaceutical Analysis</td>
<td></td>
</tr>
<tr>
<td>CHEM 716</td>
<td>Integrated Drug Dev & Discover</td>
<td></td>
</tr>
<tr>
<td>CHEM 719</td>
<td>Drug Delivery Systems</td>
<td></td>
</tr>
<tr>
<td>CHEM 725</td>
<td>Independent Study I</td>
<td></td>
</tr>
<tr>
<td>CHEM 726</td>
<td>Independent Study II</td>
<td></td>
</tr>
<tr>
<td>CHEM 737</td>
<td>Applications of Computational Chemistry and Molecular Modeling</td>
<td></td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
<td></td>
</tr>
<tr>
<td>CHEM 764</td>
<td>Advanced Analytical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Principles Pharm Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHE 724</td>
<td>Sustainable Energy</td>
<td></td>
</tr>
<tr>
<td>EVSC 712</td>
<td>Hazardous Substance Management</td>
<td></td>
</tr>
<tr>
<td>EVSC 715</td>
<td>Energy and Sustainability</td>
<td></td>
</tr>
<tr>
<td>BME 772</td>
<td>Adv Biomats for Lab and Clinic</td>
<td></td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
<td></td>
</tr>
<tr>
<td>MTSE 722</td>
<td>Science and Technology of Thin Films</td>
<td></td>
</tr>
<tr>
<td>MTSE 724</td>
<td>Transport of Electrons and Phonons in Solids</td>
<td></td>
</tr>
<tr>
<td>MTSE 725</td>
<td>Independent Study I</td>
<td></td>
</tr>
<tr>
<td>MTSE 780</td>
<td>Current Topics in Materials Science and Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 12

Dissertation Research Credits

CHEM 792B Pre-Doctoral Research (after completing qualifying exam requirements)
CHEM 790A Doctoral Dissertation (after completing research proposal requirements)

Qualifying Examination

By the end of the third semester, students must pass the PhD qualifying oral examination. A student is given two chances to clear the exam. The qualifying examination consists of writing and orally defending an original research proposal to the student’s dissertation committee in which the committee conducts an oral exam of the candidate (majority vote of the committee). The original research proposal will focus on a topic not directly related to the student’s dissertation research and must be approved by the adviser and advisory committee prior to development of the proposal. Failure to pass the PhD proficiency exam will result in dismissal from the program.

Dissertation Research Proposal

Within a year of passing the qualifying exam, students must successfully present a proposal of their dissertation research to their dissertation committee and gain approval by a majority vote of the committee.

Dissertation Defense

The final requirement for the PhD degree is completion of a satisfactory written dissertation of the student’s research, along with successful presentation and defense of the dissertation to the student’s dissertation committee (majority vote of the committee).

Grades

All students must maintain a grade point average of at least 3.0.
Ph.D. in Environmental Science

Independent Learning

The grounding in scientific research methodology provided by the dissertation requirement is a central focus of the PhD program. One of the primary means of education and training in the PhD program is achieved through successful completion of an original research project in close mentorship by their research adviser and the presentation and defense of the PhD dissertation. This intense research experience provides the education and training necessary for the student to substantiate his/her expertise and develop the skills necessary to become an independent professional. By the end of the second semester, students will choose a dissertation adviser. Students will conduct research either on site at NJIT or at the professional laboratories/organizations where they work. In either case, a member of the NJIT Department of Chemistry and Environmental Science faculty will serve as research adviser and approve the research topic. This research culminates in the writing and presentation of the dissertation. The student will present his/her dissertation for examination by a committee consisting of a minimum of five members including the research adviser. One of the committee members will be from outside the department. A majority of the program committee members will hold tenure-earning faculty appointments in the Department of Chemistry and Environmental Science. The committee has to be approved by the director of the PhD Environmental Science graduate program, the department chair and the Office of Graduate Studies. With the exception of the outside member the other committee members need to have graduate faculty status. The dissertation must be judged worthy of publication by the dissertation committee and may not be submitted for examination until so deemed. For students performing their dissertation research off campus, the dissertation adviser will visit the student’s laboratory/organization, where their research is to be performed, before the research begins and on a regular basis until the work is complete.

Total Minimum Hours Required for PhD for students entering with Bachelor’s Degree (without MS degree) - 36 Credit Hours of 600/700-level Courses

Total Minimum Hours Required for PhD for students entering with MS degree - 12 Credit Hours of 700-level Courses

I. For Students Entering Without a MS Degree

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td>15</td>
</tr>
<tr>
<td>EVSC 612</td>
<td>Environmental Analysis</td>
<td></td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>EVSC 627</td>
<td>Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>EM 631</td>
<td>Legal Aspects in Environmental Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Students must take the following five core courses and maintain a 3.0 GPA or higher:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 622</td>
<td>Bioremediation</td>
<td>15</td>
</tr>
<tr>
<td>EVSC 613</td>
<td>Environmental Problem Solving</td>
<td></td>
</tr>
<tr>
<td>EVSC 614</td>
<td>Quantitative Environmental Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>EVSC 615</td>
<td>Global Environmental Problems</td>
<td></td>
</tr>
<tr>
<td>EVSC 702</td>
<td>Special Topics in Environmental Science II</td>
<td></td>
</tr>
<tr>
<td>EVSC 711</td>
<td>Advanced Environmental Analysis</td>
<td></td>
</tr>
<tr>
<td>EVSC 712</td>
<td>Hazardous Substance Management</td>
<td></td>
</tr>
<tr>
<td>EVSC 715</td>
<td>Energy and Sustainability</td>
<td></td>
</tr>
<tr>
<td>EVSC 725</td>
<td>Independent Study I</td>
<td></td>
</tr>
<tr>
<td>EVSC 726</td>
<td>Independent Study II</td>
<td></td>
</tr>
<tr>
<td>ENE 630</td>
<td>Physical Processes of Env Syst</td>
<td></td>
</tr>
<tr>
<td>ENE 660</td>
<td>Introduction to Solid and Hazardous Waste Problems</td>
<td></td>
</tr>
<tr>
<td>ENE 661</td>
<td>Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>ENE 662</td>
<td>Site Remediation</td>
<td></td>
</tr>
<tr>
<td>ENE 663</td>
<td>Water Chemistry</td>
<td></td>
</tr>
<tr>
<td>ENE 664</td>
<td>Physical and Chemical Treatment</td>
<td></td>
</tr>
<tr>
<td>ENE 665</td>
<td>Biological Treatment</td>
<td></td>
</tr>
<tr>
<td>ENE 672</td>
<td>Stormwater Management</td>
<td></td>
</tr>
<tr>
<td>ENE 673</td>
<td>Sustainability and Life Cycle Analysis</td>
<td></td>
</tr>
</tbody>
</table>
IE 615 Industrial Hygiene and Occupational Health
EPS 612 Introduction to Environmental Policy Studies
EPS 614 Environmental Economics and Management
EPS 622 Sustainable Politics and Policy
EPS 638 Physical Geography
CHEM 714 Pharmaceutical Analysis
CHEM 748 Nanomaterials
CHEM 764 Advanced Analytical Chemistry
CHE 724 Sustainable Energy
MTSE 719 Physical Principles of Characterization of Solids

Total Credits 36

Dissertation Research Credits
EVSC 792B Pre-Doctoral Research (after completing qualifying exam requirements)
EVSC 790A Doctoral Dissertation (after completing research proposal requirements)

Qualifying Examination
By the end of the second year, students must pass the PhD qualifying oral examination. A student is given two chances to clear the exam. The qualifying examination consists of writing and orally defending an original research proposal to the student’s dissertation committee in which the committee conducts an oral exam of the candidate (majority vote of the committee required). The original research proposal will focus on a topic not directly related to the student’s dissertation research and must be approved by the dissertation committee prior to development of the proposal. Failure to pass the PhD qualifying exam will result in dismissal from the program.

Dissertation Research Proposal
By the end of the first year of passing the qualifying exam (excluding summers), students must successfully present a proposal of their dissertation research to their dissertation committee and gain approval by a majority vote of the committee.

Dissertation Defense
The final requirement for the PhD degree is completion of a satisfactory written dissertation of the student’s research, along with successful presentation and defense of the dissertation to the student’s dissertation committee (majority vote of the committee).

II. For Students Entering With a MS Degree
Students with a recognized MS degree in environmental, chemical and biological sciences or closely related field such as engineering may, with approval of the PhD Graduate Committee be admitted to pursue the PhD degree in Environmental Science and be required to earn a minimum of 12 credit hours of coursework at the 700-level. Students entering the program without a MS in Environmental Science are required to take the core courses outlined in I along with the 700 level credits. Students with a MS in Environmental Science will be waived core requirements if they have taken similar courses before, and will complete only those among the core that they have not completed before.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 702</td>
<td>Special Topics in Environmental Science II</td>
<td></td>
</tr>
<tr>
<td>EVSC 711</td>
<td>Advanced Environmental Analysis</td>
<td></td>
</tr>
<tr>
<td>EVSC 712</td>
<td>Hazardous Substance Management</td>
<td></td>
</tr>
<tr>
<td>EVSC 715</td>
<td>Energy and Sustainability</td>
<td></td>
</tr>
<tr>
<td>EVSC 725</td>
<td>Independent Study I</td>
<td></td>
</tr>
<tr>
<td>EVSC 726</td>
<td>Independent Study II</td>
<td></td>
</tr>
<tr>
<td>CHEM 714</td>
<td>Pharmaceutical Analysis</td>
<td></td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
<td></td>
</tr>
<tr>
<td>CHEM 764</td>
<td>Advanced Analytical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Principles Pharm Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHE 724</td>
<td>Sustainable Energy</td>
<td></td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 12

Students are required to take a minimum of four 700-level courses (12 credit hours). Courses are to be chosen from the departmental offerings while up to three credit hours may be selected from outside of the department.
Dissertation Research Credits
EVSC 792B Pre-Doctoral Research (after completing qualifying exam requirements)
EVSC 790A Doctoral Dissertation (after completing research proposal requirements)

Qualifying Examination
By the end of the second year, students must pass the PhD qualifying oral examination. A student is given two chances to clear the exam. The qualifying examination consists of writing and orally defending an original research proposal to the student’s dissertation committee in which the committee conducts an oral exam of the candidate (majority vote of the committee). The original research proposal will focus on a topic not directly related to the student’s dissertation research and must be approved by the adviser and advisory committee prior to development of the proposal. Failure to pass the PhD proficiency exam will result in dismissal from the program.

Dissertation Research Proposal
Within a year of passing the qualifying exam, students must successfully present a proposal of their dissertation research to their dissertation committee and gain approval by a majority vote of the committee.

Dissertation Defense
The final requirement for the PhD degree is completion of a satisfactory written dissertation of the student’s research, along with successful presentation and defense of the dissertation to the student’s dissertation committee (majority vote of the committee).

Grades
All students must maintain a grade point average of at least 3.0.

History
The Federated History Department of NJIT and Rutgers-Newark offers the Master of Arts in History for generalists and for students interested in preparing for further graduate study in history, and the Master of Arts in Teaching for current and prospective secondary school teachers of history and social studies. The objective of the graduate history program is to furnish a broad yet rigorous course of study in preparation for careers in teaching, business, law, government, administration, and other fields related to history, as well as to enhance the professional experience and increase the opportunities for advancement of students who are already working as professionals in these fields.

Program administration and teaching are shared by faculty from both campuses, and the full resources of both universities are available to all history graduate students and faculty. Resources include access to the Rutgers University library system of more than three million volumes, to the outstanding collection in the history of medicine at UMDNJ, and to excellent history collections in the region. The program emphasizes hands-on learning and archival research in association with local institutions, such as the Thomas Edison National Historic Site in nearby West Orange and the Newark Museum and the New Jersey Historical Society in Newark.

The joint Rutgers-Newark/NJIT graduate history program is the largest and most diverse master's-level history program in New Jersey. Many of the graduate faculty have national or international reputations as scholars, representing a wide variety of time periods and fields of study. The program is particularly noted for its strengths in environmental history and the history of science, technology and medicine; the history of communication, cultural and intellectual history; diplomatic history; history of women; pre-Civil War and contemporary America; African and African-American history; legal history; and global and comparative history.

Master of Arts in History
The M.A. in History furnishes a broad yet rigorous training in history in preparation for a wide variety of careers in education, law, business, medicine, and administration.

Admission Requirements
Applicants must have an undergraduate degree from an accredited institution and favorable letters of recommendation from professors familiar with their work. An undergraduate GPA of at least 3.0 is normally required. Students must provide GRE scores.

Application
Students interested in the program should contact the NJIT history graduate coordinator (http://directory.njit.edu/PersDetails.aspx?persid=maher), and apply to Rutgers-Newark (https://sasn.rutgers.edu/academics-admissions/academic-departments/federated-department-history/graduate-programs-history/).

Major Fields
American History
See the Federated History Department (http://history.njit.edu/academics/graduate/ma-history.php#american) website for more information.
World History
See the Federated History Department website for more information.

History of Technology, Environment, and Medicine/Health
Based at NJIT, this concentration is a unique integration of three relatively new and increasingly important historical sub-disciplines. Students concentrating in the History of Technology, Environment, and Medicine/Health explore not only the interrelationships between environmental transformations, technology in society, and health and medicine, but also their social meanings, their cultural relations, their political, social, and gender histories, and their local, national, and global contexts. NJIT has a distinguished concentration of faculty in these areas, with particular strengths in American environmental and urban environmental history; the social and cultural history of medicine; and the history of technology and communication.

Students interested in pursuing this major field of concentration should contact the NJIT history graduate coordinator (http://directory.njit.edu/PersDetails.aspx?persid=maher). Additional information on the History of Technology, Environment, and Medicine/Health concentrations can also be found here (http://history.njit.edu/academics/graduate/ma-history.php#american).

Master of Arts in Teaching (History)
The Master of Arts in Teaching is a terminal degree for students who are preparing for, or are already engaged in, careers in secondary school teaching in history and social studies. See the Federated History Department (http://history.njit.edu/academics/graduate/mat-history.php) website and the Rutgers Graduate School-Newark catalog for more information.

NJIT History Faculty
C
Çelik, Zeynep, Distinguished Professor (NJIT College of Architecture and Design)

D
Dent, Rosanna, Assistant Professor

E
Esperdy, Gabrielle, Professor

H
Hamilton, Louis, Professor

K
Kostopoulou, Elektra. University Lecturer.

L
Lefkovitz, Alison L., Associate Professor

M
Maher, Neil M., Professor

P
Pemberton, Stephen, Associate Professor

R
Riismandel, Kyle, Senior University Lecturer

S
Schweizer, Karl W., Professor

Rutgers-Newark History Faculty
A
Amzi-Erdogdular, Leyla, Assistant Professor
Asen, Daniel, Assistant Professor

C
Caplan, Karen, Associate Professor
Chang, Kornel, Associate Professor
Cooper, Melissa, Assistant Professor
Cowans, Jon, Associate Professor

D
Diner, Steven J., University Professor

E
Esquilin, Marta, Assistant Professor

F
Farney, Gary D., Associate Professor
Feldstein, Ruth, Professor

G
Gili, Eva, Associate Professor
Goodman, James, Distinguished Professor

H
Habtamu Tegegne is Assistant Professor

K
Krasovic, Mark, Associate Professor

M
Monteiro, Lyra D., Assistant Professor
Murphy, Brian Phillips, Associate Professor
Mayte Green-Mercado, Assistant Professor

R
Rizzo, Mary, Assistant Professor

S
Satter, Beryl, Professor
Stewart-Winter, Timothy, Associate Professor
Strub, Whitney, Associate Professor

T
Habtamu Tegegne, Assistant Professor
Truschke, Audrey, Assistant Professor

V
Varlik, Nükhet, Associate Professor

• History - M.A. (p. 340)
History Courses

HIST 600. History Research Seminar. 3 credits, 3 contact hours.
This seminar course introduces students to various methods for conducting historical research using primary and secondary source materials, and teaches them how to write a formal research paper. The seminars are on a particular topic chosen by the professor, and can focus on a chronological period or geographic region, on an historical event, cultural movement, or social group, or on a type of history such as environmental history, the history of technology, or the history of health and medicine.

HIST 620. City and Disease in History. 3 credits, 3 contact hours.
Explores the dynamic interaction between the growth of cities and changes in the experience and location of disease. Presumes the intertwining of these two historical developments in the birth of a distinctly urban identity, one predicated on the notion that the modern city is somehow inherently diseased. Focuses on the New York and Newark metropolitan areas in the nineteenth and twentieth centuries. Among the topics considered are epidemic outbreaks, quarantines, the technology and organization of sanitation and hygiene, the professional formation of public, industrial and occupational medicine, and medical and popular responses to immigration.

HIST 622. Culture and Science in the History of American Medicine. 3 credits, 3 contact hours.
Provides an overview of American medical history and a familiarity with the theoretical and practical ramifications of different approaches to the complex relationships between medicine, science, and culture. Topics include: the extent to which medicine is or has been scientific; reasons why science has been considered so important to medicine's professional culture; and the degree to which medicine's professional culture has been shaped by science as well as other factors, such as economic and political self-interest, technology, class, race, gender, and other kinds of cultural values.

HIST 624. Technology, Environment and Medicine in World History, 1500-1900. 3 credits, 3 contact hours.
Examines the interrelationship between the emerging modern world system and changes in technology, environment, and medicine, with particular emphasis on European overseas expansion and its impact in non-Western regions.

HIST 626. Social History of American Medicine Since 1800. 3 credits, 3 contact hours.
Topics include the practices of 19th-century regular medicine; the relation between medical concepts and mainstream social thought; the treatment of women’s health; antebellum alternative healers and alternative politics; the triumphs of late 19th- and early 20th-century medical therapeutics; the emergence of medicine as big business; medicine and racism; the emergence of nursing as a profession; modern medicine in an international perspective; New Age healing; the AIDS crisis and AIDS activism; and contemporary debates on the future of health care in the United States.

HIST 628. Gender, Science and Technology in the Modern World. 3 credits, 3 contact hours.
Introduction to a wide range of political and cultural analyses of science and technology, with an emphasis on recent feminist critiques of science. Explores the questions of scientific neutrality; the gendering of scientific knowledge; the relationship between science, technology, and capitalism; the role of science in international politics; and why science has not freed women.

HIST 630. History of the Body in Modern Western Culture. 3 credits, 3 contact hours.
Considers medical or scientific history primarily in terms of implications for bodily experience in everyday life. Begins with grand narratives of historical shifts in bodily perceptions and practices, and proceeds to more focused narratives of changing bodily experience, engaging key distinctions between genders, classes, and species as well as perceptions of pain and internal bodily structure. Materials will be drawn from early modern and modern Europe, as well as more recent bodily experience in the United States.

HIST 632. Global Hist of Tech & Culture. 3 credits, 3 contact hours.
Treats the relationship between technology and cultural values in a variety of historical and geographical settings, from early modern Japan to twentieth-century America. Examines the ways in which cultural ideals, conceptions, and preconceptions serve to influence the rate and manner of technological change, as well as the ways in which technology affects social and cultural life.

HIST 634. Environmental History of North America. 3 credits, 3 contact hours.
Explores the dialogue between humankind and the environment in North America over the course of the last four centuries. Examines the latest and most interesting work done in the new field of environmental history to see what such a perspective has to offer.

HIST 635. History of Technology, Environment and Medicine: Theory and Method. 3 credits, 3 contact hours.
A team-taught course which surveys the methods employed in the three fields. Explores the interdisciplinary nature of each field, and the value of interdisciplinary scholarship.

HIST 637. Global Environmental History. 3 credits, 3 contact hours.
This course takes a global view of human interaction with the natural world, mixing broad themes such as colonialism and industrialization with detailed case studies in an effort to understand the ways that people and the environment have mutually shaped one another. Because environmental change often transcends national boundaries, this course places important subjects in environmental history such as disease, agriculture, pollution, and environmentalism into a global and transnational context.

HIST 638. Social History of Communication. 3 credits, 3 contact hours.
Treats selected themes in the history of communication in different social and cultural contexts, from the ancient world to the twentieth century. Topics include: orality, proto-literacy, and literacy in ancient and medieval cultures; printing and the development of print culture in the early modern world; the Communication revolution? of the late 19th and early 20th centuries; and historiographical debates over the role of communication technologies in society.
HIST 640. The Urban Environment. 3 credits, 0 contact hours.
Examines the role of the economy, culture, and technology in shaping the urban environment. Makes extensive use of Newark and the New York metropolitan area, including field observations and local research. In addition to other topics, explores in detail spatial relationships, the role of transportation, and the development of suburbia.

HIST 642. The History of Health and International Development. 3 credits, 3 contact hours.
This course examines the history of western efforts to promote health and nutrition in the "developing world" from the beginnings of tropical medicine. We will trace this history through its many permutations from the establishment of colonial health services to the development of the Global Programme on AIDS. In doing so, we will explore the various economic and political interests and underlying cultural assumptions that have shaped the development of ideas and practices associated with international health and development.

HIST 644. War, Technology and Society, 1500-1914. 3 credits, 3 contact hours.
Examines key themes in the interrelationship between warfare, technology and society from the beginnings of modern warfare until World War I. Primary emphasis placed on the historical connections between violent conflict, the technical means by which it is carried out, and the socio-political environment within which wars take place. The effect of technology upon war and considerations of the effect of war on technological change and development. Samples the rich tradition of thought and ideas produced by philosophers and theorists on these themes.

HIST 645. American Legal History to 1860. 3 credits, 3 contact hours.
Readings and discussion on the legacy of common law after the Revolution; the emergence of legal instrumentalism; and the evolution of tort, contract, and damages in the context of industrialism and economic growth.

HIST 650. History of American Conservatism. 3 credits, 3 contact hours.
This course examines postwar American conservatism through classic works and contemporary studies. Topics include the rise of conservatism, groups under the conservative umbrella, and the rise of the right as related to key events in postwar history (Cold War, McCarthyism, the '60s, the suburbs and urban change). Course interrogates postwar conservatism with respect to American political and intellectual history and in relation to histories of gender, race, class, sexuality, place and religion.

HIST 652. Topics in the History of Technology. 3 credits, 3 contact hours.
Selected topics in the history of technology.

HIST 653. Topics in European Intellectual and Cultural History. 3 credits, 3 contact hours.
Examination of issues and methods in European intellectual and cultural history, with a consideration of some leading problems in the field.

HIST 654. Topics in American Intellectual and Cultural History. 3 credits, 3 contact hours.
Examination of issues and methods in American intellectual and cultural history, with a consideration of some leading problems in the field.

HIST 655. Topics in American Urban and Ethnic History. 3 credits, 3 contact hours.
Examination of issues and methods in American urban and ethnic history, with a consideration of some leading problems in the field.

HIST 656. Topics in the History of Health. 3 credits, 3 contact hours.
Selected topics in the history of health.

HIST 657. Topics in Environmental History. 3 credits, 3 contact hours.
Selected topics in environmental history.

HIST 658. Topics in American Legal History. 3 credits, 3 contact hours.
Readings and discussion on the growth of legal formalism, the evolution of substantive due process, changes in legal education and the legal profession, and the evolution of private law.

HIST 660. The Enlightenment in Britain. 3 credits, 3 contact hours.
The 18th century was the age of the Enlightenment. Great Britain became a unified polity and the most powerful imperial force in the world. We examine the Enlightenment in Britain against the backdrop of war and empire, imperial consumer culture, the growth and significance of sociability and politeness, representations of gender, the writing of cultural history, social uses of science/technology, print culture, and competition among varying notions of ethnic identity.

HIST 661. Problems and Readings in European History since 1850. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in European history since 1850.

HIST 662. Prob. and Read: Hist/US Foreign Policy and Diplomacy. 3 credits, 3 contact hours.
Examination of issues and methods in American diplomatic history, with a consideration of some leading problems in the field.

HIST 663. Problems and Readings in American History, 1492-1789. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history rom 1492 to 1789.

HIST 664. Problems and Readings in American History, 1789-1865. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1789 to 1865.

HIST 665. Problems and Readings in American History, 1865-1914. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1865 to 1914.

HIST 666. Problems and Readings in American History, 1890-1945. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history from 1890 to 1945.
HIST 667. Problems and Readings in American History, 1945-Present. 3 credits, 3 contact hours.
Introduction to the major historiographical problems and recent literature in American history since 1945.

HIST 701B. Master's Thesis. 3 credits, 3 contact hours.
Restriction: permission of graduate history advisor. For students writing a master's thesis in the history of technology, environment and medicine. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

HIST 701C. Master's Thesis. 6 credits, 6 contact hours.
Restriction: Permission of graduate history advisor. For students writing a master's thesis in the history of technology, environment and medicine.

HIST 702. Master's Essay. 3 credits, 3 contact hours.
For those who don't write a 6 credit thesis, the 3 credit Master's Essay caps the M.A./M.A.T. A substantial work done with an advisor, may be: 1. Interpretive historical essay based on primary source research. 2. Narrative history based on primary source research. Prereq: R510:504, R510:505, or R510:506. 3. Historiographical essay. 4. Content-focused curriculum design, either a course or significant portion thereof. 5. Design for an historical museum exhibition/other work in public history. Prereq: R510:565.

HIST 725. Independent Study. 3 credits, 1 contact hour.
Restriction: permission of graduate history advisor and course instructor.

HIST 726. Independent Study. 3 credits, 1 contact hour.
Restriction: permission of graduate history advisor and course instructor.

HIST 727. Independent Study. 3 credits, 3 contact hours.
Restriction: permission of graduate history advisor and course instructor.

HIST 791. Seminar in History of Technology, Environment and Medicine. 0 credits, 0 contact hours.
Faculty, students and invited speakers present and discuss current topics of research in history, technology and medicine.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>R510 505</td>
<td>History, Fiction And Fact</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 506</td>
<td>Poetics Of History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 515</td>
<td>Hist Of Gender</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 520</td>
<td>Topics/History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 525</td>
<td>Colloq History Of Women</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 526</td>
<td>Rdngs Afro-Amer History</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 527</td>
<td>European Diplomatic Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 528</td>
<td>Eur Polit & Diplom Hist</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 529</td>
<td>ST:Eur Intell&Cult Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 531</td>
<td>Amer Diplomatic Hist</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 532</td>
<td>American Diplomatic History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 533</td>
<td>Topics In Envir Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 537</td>
<td>Problems Ancient World</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 538</td>
<td>Problems Ancient World</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 539</td>
<td>Probs Medieval History</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 543</td>
<td>European Hist 1650</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 547</td>
<td>Comparative Colonial History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 548</td>
<td>Amer Environmentl History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 549</td>
<td>Mod Latin Am History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 551</td>
<td>Amer Intellect & Culture Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 552</td>
<td>Topics-Amer Intell Cult Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 553</td>
<td>Amer Polit & Legal Hist</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 555</td>
<td>Am Urban & Ethnic History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 563</td>
<td>Heredity, Health And Disease</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 564</td>
<td>History of Urban Education</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 565</td>
<td>Public History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 566</td>
<td>Writing American History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 567</td>
<td>Global Environ.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 571</td>
<td>Historical & Social Theory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 576</td>
<td>American Hist, 1492-1789</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 577</td>
<td>Prob Am Hist 1789-1865</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 581</td>
<td>Amer History 1865-1914</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 583</td>
<td>American History 1912 To 1945</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 585</td>
<td>Prob & Rdngs Amer Hist</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 589</td>
<td>Prob & Rdng African Hist</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 590</td>
<td>Prob & Read African Hist</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R510 593</td>
<td>Cult & Sc Hist Am Med</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 595</td>
<td>Soc Hist, Am Med-1800</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 598</td>
<td>Hist-Tech, Env & Med</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 599</td>
<td>Social History-Communic</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 618</td>
<td>Sem Teaching History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 619</td>
<td>Internship In Public History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 632</td>
<td>Technology Culture & History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 678</td>
<td>Advanced Topics In Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 695</td>
<td>Independent Study In History</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 696</td>
<td>Adv Ind Study Hist</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R510 697</td>
<td>Adv Research</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
M.A. in History

Degree Requirements

A minimum of 30 credits is required, including 18 in a major field and 6 in courses outside of the major field chosen in consultation with a faculty advisor. The remaining 6 credits may be completed through a Master's Thesis or a combination of a Master's Essay and an additional course.

Major Field

The M.A. program in history offers a choice of three major fields in areas that are particularly well supported by the research and teaching interests of the history faculty:

- American History (https://history.njit.edu/academics/graduate/ma-history.php#american)
- World History (https://history.njit.edu/academics/graduate/ma-history.php#world)
- History of Technology, Environment and Medicine/Health (https://history.njit.edu/academics/graduate/ma-history.php#technology)

To ensure a program of reasonable depth and coherence, each student takes at least 18 credits of course work in one of these major fields, chosen in consultation with the Graduate History Director or designated advisor.

Courses Outside the Major Field

To add breadth and diversity to the program of study, each M.A. candidate must take at least two courses (6 credits) outside of the chosen major field, often selected from among the two major fields in which a student does not have a primary concentration (e.g., a student with a major field in American History may elect a minor field in World History or in History of Technology, Environment and Medicine/Health). It is preferable that both courses be in the same field, but this is not required.

Master's Thesis

Students pursuing the Thesis Option earn 6 credits for the thesis, which should be a sustained work of scholarship written under the supervision of a qualified faculty advisor. The thesis will normally be on a topic within a student's major field. It must be based on primary source research.

Master's Essay

Students who do not elect to write a thesis must write a 3 credit Master's Essay. The Master's Essay is a substantial piece of written work, the capstone of the M.A./M.A.T. program for those students who elect not to write a 6-credit Master's Thesis. The essay is undertaken in consultation with an advisor, and may take one of several forms:

1. An interpretive historical essay based on research in primary sources, in form much like the M.A. thesis, but shorter.
2. A short work of narrative history, emphasizing form as well as content of the writing, also based on research in primary sources. (prerequisite: 26:510:504 Reading and Writing Narrative History, or 26:510:505 History in Fiction and Fact, or 26:510:506 The Poetics of History)
3. A historiographical essay, reviewing the literature on a particular problem in, or aspect of, history.
4. A design for a new curriculum, either a course or a significant portion of a course, with the focus on content more than on pedagogy.
5. A design for an exhibition in a historical museum or another appropriate work in public history. (prerequisite: 26:510:565 Public History)

M.A. in History (Master's thesis option)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major Field Courses</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Level Courses in Major Field</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Courses Outside the Major Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two 600 or 700 level courses outside of the major field</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 701C</td>
<td>Master's Thesis</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

M.A. in History (Master's essay option)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major Field Courses</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Level Courses in Major Field</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Courses Outside the Major Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two 600 or 700 level courses outside of the major field</td>
<td>6</td>
</tr>
</tbody>
</table>
Essay
Elective Courses
One 600 or 700 level course 3
HIST 702 Master's Essay 3
Total Credits 30

Humanities and Social Sciences

This program is designed to prepare students for careers in the field of technical communication. Students learn to approach communication issues in a scholarly and professional manner, developing abilities in critical thinking, problem solving, and navigating effectively and ethically through our scientific and technological society.

The program is intended for students and communication professionals who want to develop abilities in:

• Social media
• User-centered design
• Usability testing and knowledge management
• Advanced communication theory and research methods
• Technical editing
• Writing and speaking in teams, in a wide range of professional environments

Masters of Science in Professional and Technical Communication

The Master of Science in Professional and Technical Communication (MSPTC) prepares students for careers in the rapidly growing field of technical communication. This degree enables students to acquire an understanding of information technologies and to approach communication issues with new problem-solving skills. Familiarity and technical proficiency with many different media tools and services will also be gained. Professional experts will provide strong theoretical foundations within a practical framework. The MSPTC is entirely and only available online (in distance learning format).

Admission Requirements

Students must have an undergraduate degree in any field with strong interest in science and technology and/or communication and media and must submit the following.

• a statement outlining how the degree will meet personal and professional objectives;
• a current resume;
• one letter of recommendation;
• a portfolio of work (Three samples of writing, web development, CD-ROM, or other appropriate media that demonstrate abilities for clear expression);
• Graduate admission application;
• Official transcripts of all prior work and certificate of graduation;
• GRE scores (These scores are required of all international applicants, all applicants who have earned their last degree outside of the United States, and students who wish to apply for merit-based financial support on individual basis; other applicants do not need GRE scores);
• TOEFL scores of 550 (pencil and paper) or 79 (IBT) are required of all international applicants.

Graduate Certificate Programs: Two 12-credit graduate certificates are available as a step toward this degree

• Technical Communication Essentials
• Social Media Essentials

Please see Graduate Certificates for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; e-mail: cpe@njit.edu.

NJIT Faculty

A
Ascarelli, Miriam F., University Lecturer
B
Bodner, Janet, Associate Director

C
Castronova, Louise, Senior University Lecturer
Cohen, Maurie, Professor
Curley, Jonathan R., Senior University Lecturer

E
Edel, Gareth
Egan, John A., University Lecturer
Esche, John N., University Lecturer
Estrada, Daniel J., University Lecturer

F
Fleischer, Doris Z., Senior University Lecturer
Funkhouser, Christopher T., Professor

G
Gorelick, Risa, University Lecturer

H
Henry, Rolanne, Senior University Lecturer
Holbrook, J. Britt, Assistant Professor
Hunt, Theresa A., University Lecturer

J
Johnson, Carol S., Associate Professor

K
Katz, Eric, Professor and Chair
Kerley, Michael, Associate Director
Khichi, Narendra-Neel, University Lecturer
Kimmelman, Burt J., Professor
Klobucar, Philip Andrew, Associate Professor
Kmiec, David M., University Lecturer

L
Lipuma, James M., Senior University Lecturer
Longo, Bernadette C., Associate Professor

M
McRae, Calista A. Assistant Professor

O
O’Neill, Megan E., Assistant Professor
O'Sullivan, William, University Lecturer

P
Pardi, Nina L., Senior University Lecturer
Paris, Jerome, Director

R
Rittenhouse, Michele R., Director
Rothenberg, David B., Distinguished Professor
Rutkoff, Rebekah, Assistant Professor

S
Siemann, Catherine A., University Lecturer
Steffen, Nancy L., Associate Professor

W
Waltz-Cummings, Anika E., University Lecturer
Wells, Louis A., University Lecturer

Programs
• Applied Science (p. 346)

Humanities Courses

ENG 502. English for International Graduate Students. 3 credits, 3 contact hours.
Practice in writing to improve sentence structure, grammar, vocabulary, and organization. For technical writing, see ENG 541. Level: High Intermediate.

ENG 503. Public Speaking for International Teaching Assistants and Others. 3 credits, 3 contact hours.
Practice in public speaking for international TAs and others who want to improve their oral presentation skills. Includes teaching techniques, extemporaneous speaking, and pronunciation. Weekly video-recorded presentations.

ENG 505. English Pronunciation for International Graduate Students. 3 credits, 3 contact hours.
Offers practice and guidance in developing clear, accurate English pronunciation.

ENG 507. Advanced Conversation and American Culture. 3 credits, 3 contact hours.
Practice in conversation in English. The goal is to help students gain cultural knowledge and everyday speaking skills to increase participation in American life. Develops skill in using American idiomatic expressions.

ENG 521. Technical Written and Oral Communication. 3 credits, 3 contact hours.
Designed for Ph.D. students, but also open to Masters students who want to improve their writing and oral presentation skills in English. Focus on communication on a professional level. The approach is practical; course is taught in workshop format with special attention to journal articles, material for the job market, conference presentations and aspects of the dissertation. Students learn to write clear and grammatically correct documents and develop skills in technical speaking presentations. Native speakers of English may also take this course.

PTC 601. Advanced Professional and Technical Communication. 3 credits, 3 contact hours.
Provides the foundation and direction for all Professional and Technical Communication coursework. This course introduces students to the profession and the academic discipline of technical/professional communication. Modules include usability analysis; visual information; ethics; global diversity, global communication; report writing; information literacy; communicating with new technologies; and technical writing style. Students begin development of the MSPTC ePortfolio.

PTC 603. Identity, Technology, and Communication. 3 credits, 3 contact hours.
Prerequisite or corequisite: PTC 601. Examines the complex ways in which technology constructs and is constructed by society, with emphasis on interrelationships between technology and communication. Discussions focus on how technological change is expressed in social and political movements, literature, art, architecture, and philosophy and how they, in turn, influence the future direction of technology. Design and updating of the MSPTC ePortfolio will be required in this seminar.

PTC 604. Communication Theory and Research. 3 credits, 3 contact hours.
Pre or Corequisite: PTC 601. Reviews the major theories of communication and provides strategies for research in the field of Professional and Technical Communication. The course focuses on these research methods: problem statement and hypothesis formulation derived from theory; research design and data generation; existing information sources and their acquisition; and analytic techniques. Students develop analytic methods necessary to create a well-considered thesis proposal. Design and updating of the MSPTC ePortfolio will be required in this seminar.
PTC 606. Advanced Information Design. 3 credits, 3 contact hours.
Develops online visual communication strategies and community building. The course will cover the design and creation of multimedia objects, usability heuristics, navigation theory, contemporary design practices and online community building. Students will be required to create media-rich multidimensional online projects that encourage and facilitate interaction and team-building in the online environment. Design and updating of the MSPTC ePortfolio will be required for this seminar.

PTC 610. Research Methods for Information Design. 3 credits, 3 contact hours.
Introduces user research methods such as contextual inquiry, ethnographic field studies, card sorting, affinity diagramming, and usability testing that provide the foundation for user-centered interaction design.

PTC 612. Theory and Practice of Text Encoding. 3 credits, 3 contact hours.
Students will learn to identify considerations and methods for efficient text encoding. Topics covered will include text encoding tools, markup languages, document analysis, and workflow design for text delivery. After taking this class, students should be able to analyze processes and technologies that support the collection, management, and publishing of content in a variety of forms and media.

PTC 620. Proposal Writing. 3 credits, 3 contact hours.
Provides an understanding of and practice in proposal writing for corporations, foundations, and government agencies. Students build skills to create a range of persuasive documents including proposals for research grants, responses to requests for proposal, and government proposals.

PTC 622. Working in Teams: Collaborative and Interpersonal Communications. 3 credits, 3 contact hours.
Introduces interpersonal and collaborative communication topics relating to face-to-face and virtual teams. Covers communication and documentation functions in agile project environments. Examines mobile workplace communication strategies.

PTC 624. Professional and Technical Editing. 3 credits, 3 contact hours.
Prerequisite or corequisite: PTC 601. Presents the theory and practice of editing professional and technical writing. Topics include correctness and conciseness, hard copy and on-line editing, editing graphics, document management, editor-author relationships, and ethical considerations in editing. Students edit writing samples from a variety of technical fields.

PTC 626. Communication Media Design Studio. 3 credits, 3 contact hours.
This course integrates language and media in a studio approach to multimodal communication projects. Students work with instructor to design individual projects using current media applications.

PTC 628. Analyzing Social Networks. 3 credits, 3 contact hours.
Prerequisite: PTC 601 for MSPTC students; approval of instructor for non-MSPTC students. This course will provide students with an overview of social networks by introducing them to the unique terminology of social networks (centrality, boundary spanners, directional ties, etc.) Positive and negative characteristics of social networks will be discussed, followed by visualizations and analyses of those characteristics. Students will read selected journal articles explaining how social networks relate to communication and the flow of information within organizations. The culmination of the course will be a project in which students will create and analyze their own social network, most likely drawing their data from the popular social media site Facebook and using ORA, a freeware social network analysis application created by Carnegie Mellon University.

PTC 629. Theory and Practice of Social Media. 3 credits, 3 contact hours.
Introduces social media strategies for reading and writing in today's multi-cultural, screen-oriented, networked culture. Students study relationship between mediated communication and human community and gain hands-on experience with chatting, blogging, tagging, wiki writing, tweeting and social media presentation. Students strategize, plan, design and produce social media projects of their own.

PTC 631. Communication and Environmental Problem Solving. 3 credits, 3 contact hours.
Prerequisite or corequisite: PTC 601. Develops critical thinking on ecological issues for problem solving by integrating technical information, human values, and communication with environmental change. Students combine theory, research and models, case studies, visual thinking, and scientific inquiry for application in individual decision-making course project.

PTC 632. Content Management and Information Architecture. 3 credits, 3 contact hours.
Prerequisite or Corequisite: PTC 601. Today’s complex systems often produce complex information needs that require new technical communication methods and tools. This course will focus on the use of Information Architecture methodologies (such as, DITA or DocBook) to develop a structure for presenting technical information and on Content Management tools for creating a single source repository for this information. Students will also use theory and practical applications to design and develop a structured online Help module.

PTC 640. Health Communications. 3 credits, 3 contact hours.
This course will focus on the use of communication strategies to inform and influence individual and community decisions regarding health. The course will cover: the multidimensional nature of health communication, research in health communication, behavioral theories in health communication, rhetorical theories in health communication, legal and ethical concerns in health communication, the communication of risk and uncertainty, and the design of health campaigns. Students will be required to (a) research and prepare a health communication strategy for use in a specific context and (b) to design an accompanying print or hypertext document to be used in that context.
PTC 642. Corporate Media and Communication. 3 credits, 3 contact hours.
Introduces the dynamics of communication within complex organizations. Develops communication skills for contemporary global corporate and business markets. Focuses on the efforts of businesses and organizations to communicate and persuade in target audiences. Covers translation issues in developing corporate media.

PTC 644. Communication in Technology Transfer and Innovation. 3 credits, 0 contact hours.
Examine roles of communication in innovation development and technology transfer. Students review models of communication in technology transfer in global contexts. Issues such as audience analysis, user experience, participatory design, and knowledge transfer will be investigated.

PTC 650. eLearning Design for Mobile. 3 credits, 3 contact hours.
Designing eLearning for mobile platforms is a critical skill for today's technical communicator. Specific skills and tools are required to ensure a successful implementation. Based on proven user centered design concepts, this course provides the student with the skills necessary to create effective mobile training programs.

PTC 660. Medical Ethics. 3 credits, 3 contact hours.
This course is an examination of the ethical problems and moral foundations of medicine. Among the issues explored are the changing nature of the doctor/patient relationship, increased patient autonomy, advance directives, the rationing of care, doctor-assisted suicide, and "the right to die".

PTC 672. Design Instruction Assess Meth. 3 credits, 3 contact hours.
Prerequisite: Students must have a graduate standing and should be enrolled in MSPTC program or the Instructional Design and Educational Assessment certificate. Student must meet these requirements, approval of instructor is required. Examines planning and implementation of instruction to facilitate learning and analysis of methods of data gathering on learner progress and mastery, lessons and learning objects so appropriate instructional strategies with associated methods of formative and summative assessments that can yield data for learner assessment and course evaluation can be selected or develop to suit the instructional style, learner needs, and instructional situations.

PTC 681. Tech in Class & Learning Envir. 3 credits, 3 contact hours.
Prerequisite: Students must have a graduate standing and should be enrolled in MSPTC program or the Instructional Design and Educational Assessment certificate. Student must meet these requirements, approval of instructor is required. This course examines the various types of technology necessary to develop, use, and process the results of assessments as well as facilitate and augment instructional design. This course examines the integration of present and likely future technology into instruction to foster community, collaboration, conceptual development, and exceptional academic performance as well as a more effective and well-understood assessment system.

PTC 691. ePortfolio Capstone Seminar. 0 credits, 0 contact hours.
This course is taken in the student's final semester before graduation. Students complete final revisions of the ePortfolio of work completed in MSPTC seminars (may also include professional and service projects). Student ePortfolios must successfully demonstrate MSPTC core competencies and be presented in an oral presentation for faculty and other students.

PTC 698. Selected Topics in Professional and Technical Communication. 3 credits, 3 contact hours.
Prerequisite or corequisite: PTC 601 This is a Special Topics course (does not require CGE approval). It was presented to CGE in an effort to attract more students. Students will learn approaches to understand and producing the forms of writing central to academic research. They will review literature, peer-review the work of others, prepare conference material, and produce a submission-quality journal or conference paper in their field of study. The current plan is to run the course every Spring.

PTC 700B. Master's Project. 3 credits, 3 contact hours.
Prerequisites: Approval of graduate advisor, and completion of core courses. Requires demonstration of student's ability to conceive and execute an extended writing project with professional graphics and to make an oral and visual presentation of the work. Based on experiential research (internship, co-op, work experience) student submits a proposal, develops a project (e.g., guidebook, manual, online documentation, website, video, podcast) and completes a paper describing the theory and methodology supporting the project application. Submission of the MSPTC ePortfolio demonstrating proficiency is required for graduation. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PTC 701A. Master's Thesis. 3 credits, 3 contact hours.
Prerequisite: approval of graduate advisor; completion of core courses. Demonstrates ability to conceive and execute an extended writing project with professional graphics and to make an oral and visual presentation of the work. The completed written thesis should warrant publication in a technical journal. Thesis Committee consists of program-approved faculty advisor, one other faculty member, and external reviewer. A student must register continuously for a minimum of 3 credits per semester until thesis in completed. Total will be limited to 6 credits. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PTC 701C. Master's Thesis. 6 credits, 3 contact hours.
Prerequisite: approval of graduate advisor; completion of core courses. Demonstrates ability to conceive and execute an extended writing project with professional graphics and to make an oral and visual presentation of the work. The completed written thesis should warrant publication in a technical journal. Thesis Committee consists of program-approved faculty advisor, one other faculty member, and external reviewer. A student must register continuously for a minimum of 3 credits per semester until thesis in completed. Total will be limited to 6 credits. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PTC 725. Independent Study in Professional and Technical Communication. 3 credits, 3 contact hours.
Prerequisite: approval of graduate advisor and supervising faculty Allows development of areas of specialization for Master's Project or for areas of study in communication in which one or more students may be interested but which are not of sufficiently broad interest to warrant a regular course offering.
PTC 726. Independent Study II. 3 credits, 3 contact hours.

Applied Science

The Graduate Certificate in Applied Science (APSC) is a program representing many of NJIT’s academic departments and colleges. The multitude concentrations within the program are brought together by Dr. Andrew Klobucar from the NJIT Department of Humanities into one cohesive unit of learning, with his expertise in technical writing and instructional design. The primary objective of the program is to ‘educate the educators’ in a concentrated science field at a high level, and apply current instructional design tools in that science field, to bring back to the classroom on their own. By no means is the program exclusive to educators - anyone qualified may take it! Click here to download the program brochure (http://www.njit.edu/graduatestudies/file/cert-applied-science-teachers-flyer-draftpdf/).

Who would be suited to take this program?

This graduate certificate is primarily for secondary school teachers who want to strengthen their background in science, business, computing, engineering, architecture and/or technical communication. Students may choose from ten tracks. Those teaching AP (Advanced Placement) courses in secondary schools will benefit substantially from the certificate courses.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses (choose 2 courses)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PTC 681</td>
<td>Tech in Class & Learning Envir</td>
<td></td>
</tr>
<tr>
<td>PTC 698</td>
<td>Selected Topics in Professional and Technical Communication</td>
<td></td>
</tr>
<tr>
<td>Tracks (choose 1 track; take 9 credits)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Professional and Technical Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 3 Courses (9 credits)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>PTC 603</td>
<td>Identity, Technology, and Communication</td>
<td></td>
</tr>
<tr>
<td>PTC 629</td>
<td>Theory and Practice of Social Media</td>
<td></td>
</tr>
<tr>
<td>PTC 601</td>
<td>Advanced Professional and Technical Communication</td>
<td></td>
</tr>
<tr>
<td>PTC 605</td>
<td>Elements of Visual Design</td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 3 Courses (9 credits)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>ECON 610</td>
<td>Managerial Economics</td>
<td></td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td></td>
</tr>
<tr>
<td>FIN 624</td>
<td>Corporate Finance II</td>
<td></td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 640</td>
<td>New Venture Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues</td>
<td></td>
</tr>
<tr>
<td>MGMT 692</td>
<td>Strategic Management</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 3 Courses (9 credits)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td></td>
</tr>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>Engineering Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 3 Courses (9 credits)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td></td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td></td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Engineering Managers</td>
<td></td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td></td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
<tr>
<td>IS 601</td>
<td>Web Systems Development</td>
<td></td>
</tr>
<tr>
<td>IS 663</td>
<td>System Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>IS 631</td>
<td>Enterprise Database Management</td>
<td></td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td></td>
</tr>
<tr>
<td>IS 676</td>
<td>Requirement Engineering</td>
<td></td>
</tr>
<tr>
<td>IS 678</td>
<td>IT Service Management</td>
<td></td>
</tr>
<tr>
<td>IS 680</td>
<td>Information Systems Auditing</td>
<td></td>
</tr>
<tr>
<td>IS 681</td>
<td>Computer Security Auditing</td>
<td></td>
</tr>
<tr>
<td>IS 684</td>
<td>Business Process Innovation</td>
<td></td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td></td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>ECE 601</td>
<td>Linear Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 605</td>
<td>Discrete Event Dynamic Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis I</td>
<td></td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td></td>
</tr>
<tr>
<td>ME 616</td>
<td>Matrix Methods in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 632</td>
<td>Mechanical Engineering Measurements</td>
<td></td>
</tr>
<tr>
<td>BME 669</td>
<td>Engineering Physiology</td>
<td></td>
</tr>
<tr>
<td>BME 670</td>
<td>Introduction to Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>BME 675</td>
<td>Computer Methods in Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>ARCH 545G</td>
<td>Structures I</td>
<td></td>
</tr>
<tr>
<td>ARCH 548G</td>
<td>Structures II</td>
<td></td>
</tr>
<tr>
<td>ARCH 555G</td>
<td>Tools and Techniques I</td>
<td></td>
</tr>
<tr>
<td>ARCH 500G</td>
<td>Tools and Techniques II</td>
<td></td>
</tr>
<tr>
<td>ARCH 528G</td>
<td>History of Architecture I</td>
<td></td>
</tr>
<tr>
<td>ARCH 529G</td>
<td>History of Architecture II</td>
<td></td>
</tr>
<tr>
<td>ARCH 541G</td>
<td>Construction I</td>
<td></td>
</tr>
<tr>
<td>ARCH 542G</td>
<td>Construction II</td>
<td></td>
</tr>
<tr>
<td>ARCH 543G</td>
<td>Environmental Control Systems I</td>
<td></td>
</tr>
<tr>
<td>ARCH 544G</td>
<td>Environmental Control Systems II</td>
<td></td>
</tr>
<tr>
<td>ARCH 569G</td>
<td>Professional Practice I</td>
<td></td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
<td></td>
</tr>
<tr>
<td>CHEM 661</td>
<td>Instrumental Analysis Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Principles Pharm Chemistry</td>
<td></td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td></td>
</tr>
</tbody>
</table>
Mathematics
Choose 3 Courses (9 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 545</td>
<td>Introductory Mathematical Analysis</td>
</tr>
<tr>
<td>MATH 546</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
</tr>
</tbody>
</table>

Physics
Choose 3 Courses (9 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamics</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS 661</td>
<td>Solid-State Physics</td>
</tr>
<tr>
<td>PHYS 607</td>
<td>Topics in Astronomy and Cosmology</td>
</tr>
</tbody>
</table>

Total Credits 15

* indicates as available online

What will I learn?

Technology in the classroom and learning environments, digital instructional design, and a track of your choice:

- **Technology in Class and Learning** - Various types of technology necessary to develop, use, and process the results of assessments as well as facilitate and augment instructional design. The integration of present and likely future technology into instruction to foster community, collaboration, conceptual development, and exceptional academic performance as well as a more effective and well-understood assessment system.
- **Digital Instruction Essentials** - The digital era has placed teaching and learning in flux, creating instructional opportunities at every turn. In this course students will examine the fundamentals of instructional design, working through a cycle of continuous improvement including idea generation, curriculum development, course production, and assessment. Students will explore and discuss scholarly research about the impact of mobile technology, big data, gamification, MOOCs, and universal design on today’s learning environments. This course will borrow some ideas from agile methodology in hopes that it drives us to be better designers; we want to incorporate simplicity, feedback, communication, and courage into everything we do. That doesn’t have to be limited to what we design, but it can be part of how this course runs for you.

Why study Applied Science at NJIT?

The graduate certificate allows you to choose the area of specialty that you would like to enhance, in your career. Whether you are a Chemistry middle school teacher, or a corporate instructional designer, this program will help improve your everyday methodology.

Prerequisites and Competition Requirements

Applicants are expected to be practicing secondary school teachers who have a bachelor’s degree. Students who lack an appropriate background for their chosen track, or prerequisites for a particular course that they plan to take, may be asked to take one or more bridge/undergraduate courses that will not count toward the degree requirements. Students must choose one of the ten tracks (that represent specific disciplines) and successfully complete 15 credits.

Related Degree Programs

All credits for the Applied Science Graduate Certificate relates in its entirety to NJIT MS in Applied Science (http://www.njit.edu/online/ms-applied-science/).

NJIT K-12 Teacher Scholarship

This is an NJIT award available to any K-12 teachers who are residents of New Jersey, New York, Pennsylvania, and Delaware enrolled in the Applied Science Master Degree or Graduate Certificate in Applied Science Programs (On-campus or Online). The recipient will receive up to 35% of his/her tuition charge in scholarship. The award is renewable for the duration of the program. You must provide a copy of your teaching license or submit a letter of employment as a teacher from your school district prior to enrollment to be considered for the scholarship. You must be a U.S. citizen or a permanent resident to be eligible. You must maintain a cumulative GPA of 3.0/4.0. Please complete this form to submit your information for consideration for the scholarship (https://docs.google.com/forms/d/e/1FAIpQLSczruWuu3X_FnUUtW9k69uVh2Ce0YHDFN2A4CqEaxI68CNAR/viewform?usp=sf_link).
M.S. in Applied Science

This is a multidisciplinary program for secondary school teachers to strengthen their background in science, business, computing, engineering, architecture and/or technical communication.

Admission Requirements

Applicants should be practicing secondary school teachers who have a bachelor's degree. Individuals who seek admission to the program are considered on an individual basis and will be advised in choosing a track matching their teaching assignments as teachers. Students who lack an appropriate background for their chosen track or a particular course that they plan to take may be asked to take one or more bridge/undergraduate courses that will not count toward the degree requirements.

Degree requirements

Students must successfully complete 30 credits:

- 9 credits of core courses;
- 3 credits of master’s project or 6 credits of master’s thesis;
- 15 credits of courses in the chosen track when choosing the project option

or 12 credits of courses in the chosen track when choosing the thesis option; and

- at least 3 credits of additional elective courses (elective courses can be from other tracks if the student has the required background or prerequisites).

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC 603</td>
<td>Identity, Technology, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>PTC 629</td>
<td>Theory and Practice of Social Media</td>
<td>3</td>
</tr>
<tr>
<td>PTC 681</td>
<td>Tech in Class & Learning Envir</td>
<td>3</td>
</tr>
<tr>
<td>PTC 698</td>
<td>Selected Topics in Professional and Technical Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Tracks

Business

Required Courses (3 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
</tbody>
</table>

Additional Courses (choose 3 or 4 courses to earn 9 or 12 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 610</td>
<td>Managerial Economics</td>
<td></td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td></td>
</tr>
<tr>
<td>FIN 624</td>
<td>Corporate Finance II</td>
<td></td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 640</td>
<td>New Venture Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td></td>
</tr>
<tr>
<td>MGMT 692</td>
<td>Strategic Management</td>
<td></td>
</tr>
</tbody>
</table>

Computer Science

Required Courses (6 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 506</td>
<td>Foundations of Computer Science</td>
<td></td>
</tr>
</tbody>
</table>

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 630</td>
<td>Operating System Design</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
</tbody>
</table>
Engineering Management

Required Courses (6 credits)
- CS 656 Internet and Higher-Layer Protocols
- EM 636 Project Management
- HRM 601 Organizational Behavior

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)
- ACCT 615 Management Accounting
- IE 673 Total Quality Management
- MIS 645 Information Systems Principles
- EM 634 Legal, Ethical and Intellectual Property Issues for Engineering Managers
- EM 637 Project Control
- EM 691 Cost Estimating for Capital Projects
- EM 632 Legal Aspects in Construction

Information Systems

Required Courses (6 credits)
- IS 601 Web Systems Development
- IS 663 System Analysis and Design

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)
- IS 631 Enterprise Database Management
- IS 665 Data Analytics for Info System
- IS 676 Requirement Engineering
- IS 678 IT Service Management
- IS 680 Information Systems Auditing
- IS 681 Computer Security Auditing
- IS 684 Business Process Innovation
- IS 688 Web Mining

Engineering

Required Courses (6 credits)
- IE 604 Advanced Engineering Statistics
- IE 621 Systems Analysis and Simulation

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)
- ECE 601 Linear Systems
- ECE 605 Discrete Event Dynamic Systems
- ECE 673 Random Signal Analysis
- IE 618 Engineering Cost and Production Economics
- IE 672 Industrial Quality Control
- IE 673 Total Quality Management
- ME 616 Matrix Methods in Mechanical Engineering
- ME 632 Mechanical Engineering Measurements
- ME 635 Computer-Aided Design
- ME 669 Engineering Physiology
- BME 669 Engineering Physiology
- BME 670 Introduction to Biomedical Engineering
- BME 675 Computer Methods in Biomedical Engineering

Architecture

Required Courses (6 credits)
- ARCH 545G Structures I
- ARCH 548G Structures II

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)
- ARCH 555G Tools and Techniques I
- ARCH 500G Tools and Techniques II
- ARCH 528G History of Architecture I
- ARCH 529G History of Architecture II
ARCH 541G Construction I
ARCH 542G Construction II
ARCH 543G Environmental Control Systems I
ARCH 544G Environmental Control Systems II
ARCH 569G Professional Practice I

Chemistry

Required Courses (6 credits)
CHEM 605 Advanced Organic Chemistry I: Structure
CHEM 661 Instrumental Analysis Laboratory

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)
CHEM 673 Biochemistry
CHEM 777 Principles Pharm Chemistry
EVSC 616 Toxicology
EVSC 610 Environmental Chemical Science

Mathematics

Required Courses (6 credits)
MATH 545 Introductory Mathematical Analysis
MATH 546 Advanced Calculus

Additional Courses (choose 2 or 3 courses to earn 6 or 9 credits)
MATH 611 Numerical Methods for Computation
MATH 630 Linear Algebra and Applications
MATH 660 Introduction to statistical Computing with SAS and R
MATH 661 Applied Statistics

Physics

Required Courses (3 credits)
PHYS 611 Adv Classical Mechanics

Additional Courses (choose 3 or 4 courses to earn 9 or 12 credits)
PHYS 621 Classical Electrodynamic
PHYS 641 Statistical Mechanics
PHYS 661 Solid-State Physics
PHYS 607 Topics in Astronomy and Cosmology

Custom track

Students may develop an individual track in consultation with a graduate advisor. A coherent set of courses involving mathematics, computing, physics, chemistry, biology or engineering are expected.

Mathematical Sciences

Master of Science in Applied Mathematics

This program is intended for students with a strong interest in Applied Mathematics. Applied Mathematics is the application of classical and modern mathematical techniques to the solution of practical problems in the physical and biological sciences and engineering. The applied mathematician develops and analyzes mathematical models of physical and biological phenomena and engineering systems, interprets solutions to mathematical problems and uses the results to identify relationships, patterns, and the effects of altering one or more variables or modeling assumptions. Many of the courses in the program illustrate how mathematics can be used to predict the behavior of physical, biological, and engineering systems.

The Master of Science in Applied Mathematics, with its areas of specialization in analysis, applied mathematics, computational methods, and mathematical biology is designed to serve the needs of students who may be interested in pursuing a doctoral degree in the mathematical, physical, or biological sciences. The program also strengthens the quantitative and analytical skills of students with a baccalaureate degree who are planning to work in industry, commerce, or education, as well as practicing engineers and others already employed in industry and commerce.

Admission Requirements

It is expected that students applying for admission will have an undergraduate education in mathematics, the physical or biological sciences, or engineering. For additional information, see the Admissions section of this catalog. An undergraduate GPA of at least 2.8 on a 4.0 scale or equivalent...
is normally required. GRE scores are required for those students applying for financial support, or if the most recent degree was earned at a school outside the United States. Applications are considered on a case-by-case basis.

Master of Science in Applied Statistics

The objective of the Master of Science in Applied Statistics is to prepare students for a wide range of professional activities as practicing statisticians in both academia and industry. A statistician develops and analyzes models of data-driven situations where uncertainty of the outcomes plays a major role, identifies statistical relationships among observable variables, forecasts probable future outcomes, and draws inferences about background parameters that impact the phenomenon of interest. Thus the program is designed to provide students with the comprehensive knowledge and technical skills that are needed for the planning, execution, and analysis of statistical studies. These statistical studies are increasingly used as advisory instruments for policy decisions in the corporate and other sectors of the economy.

The Master of Science in Applied Statistics program will serve the needs of students with a baccalaureate degree who are planning to work in industry, commerce, or education, as well as practicing engineers and others already employed in industry and commerce. The program also strengthens the analytical and quantitative skills of graduate students who may be interested in pursuing a doctoral degree in Applied Probability and Statistics, since it equips them with basic training in the foundations of statistics in preparation for further advanced studies and research.

Admission Requirements

Applicants must have a degree from an accredited institution with at least 12 credits in mathematics, including calculus. Students who do not meet these requirements may be admitted if they satisfy the university's requirements for admission. An undergraduate GPA of at least 2.8 on a 4.0 scale or equivalent is normally required. GRE scores are required for those students applying for financial support, or if the most recent degree was earned at a school outside the United States. Applications are considered on a case-by-case basis.

Bridge Program: Students who do not satisfy the credit requirement in mathematics will be required to take a bridge program of six credits in appropriate mathematics courses. Such courses do not count towards a graduate degree.

Master of Science in BioStatistics

The Master of Science in Biostatistics will provide advanced graduate education and training to students interested in applying statistical methods to the health sciences in general and clinical studies in particular. It will focus on training students in quantitative methods that will prepare them for careers in the health, life sciences, and pharmaceutical areas. Graduates, upon satisfactory completion of the degree program, are expected to have acquired appropriate skills in data analysis and computing that are typically required in their profession. This program will address the growing demand for trained biostatisticians in these fields, especially in New Jersey.

Admission Requirements

Applicants must have a baccalaureate degree in Statistics, Mathematics, Sciences, or Engineering, with at least 12 credits in mathematics, including calculus and at least one upper division course in statistics. Applicants with other baccalaureate degrees will also be considered and may be subject to a suitable bridge program. An undergraduate GPA of at least 3.0 on a 4.0 scale or equivalent is required.

Bridge Program: Students who do not satisfy the credit requirement in mathematics will be required to take a suitable bridge program of appropriate mathematics/statistics courses. Such courses do not count towards the graduate degree.

Master of Science in Data Science – Statistics Track

The Master of Science in Data Science at NJIT is a joint program with the Ying Wu College of Computing. The Statistics track (MSDS-Stat), administered by the Department of Mathematical Sciences, has a greater focus on the statistical aspects of data science and will provide students with an understanding of randomness, sampling, data generation, statistical inference, modeling, data analysis, and statistical computing, which they can leverage to enter the field of machine learning, data analytics, and data science. The program provides elective courses that allow students to tailor the program to suit their interests and goals, including topics such as probability, mathematical statistics, data visualization, and deep learning. Students will use the R statistical software and the Python programming language for data analysis and simulation.

Admission Requirements

Undergraduate GPA of at least 3.0 out of 4.0 is required for students with a data science, applied statistics, or computer science background. Students whose records do not satisfy the mathematical requirements as per the advisor’s review will be required to take a suitable bridge program of appropriate mathematics/statistics courses. Such courses do not count towards the graduate degree.

How can I find out more?

- Attend a graduate student open house (http://www.njit.edu/admissions/visit/graduateopenhouses.php).
- Request information from our Admissions Office (http://www.njit.edu/admissions/graduate/).
Doctor of Philosophy in Mathematical Sciences

The Doctor of Philosophy in Mathematical Sciences is offered in collaboration with the Department of Mathematics and Computer Science at Rutgers University-Newark. The doctoral program in Mathematical Sciences is designed to prepare students for a wide range of professional activities in science and engineering. Prospective students must choose one of the following tracks:

- Applied Mathematics
- Applied Probability and Statistics
- Pure Mathematics

The doctoral program reflects the research interests of the faculty and is focused on the development and use of mathematical tools for solving modern scientific, technological and industrial problems, and advancing the research knowledge and methodology in various fields of specialization.

The Applied Mathematics track emphasizes the applications of mathematical methods to the physical and biological sciences and engineering, including acoustics, electromagnetics, fluid dynamics, materials science, biology, and medicine. Mathematical modeling, asymptotic analysis, and scientific computing are emphasized. Students are expected to develop a broad range of capabilities both in mathematics and in an area of application.

The Applied Probability and Statistics track emphasizes directed instruction and independent research in areas that are specializations of the faculty. Current research interest areas of the faculty include applied probability, non-parametric statistics, and statistical reliability theory and applications.

The Pure Mathematics track offers research opportunities in many fields of specialization, including representation theory, number theory, low-dimensional topology, Riemann surfaces and Kleinian groups, geometric group theory, and 4-manifolds.

Admission Requirements

Admission to the program is based on a review of the applicant’s credentials and interests as expressed in academic transcripts, GRE scores, letters of recommendation, statement of interests, and TOEFL scores (for students whose native language is not English). Applicants with strong academic records whose abilities and interests complement the research of the faculty are sought. In general, applicants should have a bachelor’s or master’s degree in mathematics, an engineering discipline, or a branch of the natural sciences. Students choosing the Applied Mathematics track or the Applied Probability and Statistics track must fulfill the admissions requirements specified in the Admissions section of this catalog.

Students interested in either the Applied Mathematics track or the Applied Probability and Statistics track should apply to NJIT. Students interested in the Pure Mathematics track should apply to Rutgers-Newark.

NJIT Faculty

A
Afkhani, Shahriar, Professor
Ahuwalia, Daljit Singh, Professor Emeritus
Andrushkiw, Roman, Professor Emeritus
Askham, Travis, Assistant Professor
B
Bechtold, John K., Professor
Blackmore, Denis L., Professor
Booty, Michael R., Professor
Bose, Amitabha K., Professor
Boubendir, Yassine, Professor
Brown, Ronald Robert, University Lecturer
Bukiet, Bruce G., Professor
C
Choi, Wooyoung, Professor
Chong Jin, Assistant Professor
Cummings, Linda J., Professor
D
Dhar, Sunil K., Professor
Diekman, Casey O., Associate Professor

F
Frederick, Christina, Assistant Professor

G
Garfield, Ralph, Associate Professor Emeritus
Goodman, Roy H., Associate Professor
Guo, Wenge, Associate Professor

H
Hamfeldt, Brittany, Associate Professor
Horntrup, David J., Associate Professor
Horwitz, Kenneth A., University Lecturer

J
Jiang, Shidong, Professor

K
Kappraff, Jay M., Associate Professor
Kim, Chulmin, Senior University Lecturer
Kondic, Lou, Distinguished Professor
Kristin Carfora, University Lecturer

L
Loh, Ji Meng, Associate Professor
Lushi, Enkeleida, Assistant Professor
Luke, Jonathan H. C., Professor

M
MacLaurin, James, Assistant Professor
Matveev, Victor V., Professor
Michalopoulou, Zoi-Heleni, Professor
Michal Rydchowski, Professor of Practice
Milojevic, Petronije, Professor
Muratov, Cyrill B., Professor

N
Natarajan, Padma, Senior University Lecturer

O
Oza, Anand, Assistant Professor

P
Petropoulos, Peter G., Associate Professor
Plastock, Roy A., Associate Professor
Pole, Andrew, Senior University Lecturer
Perus, Jonathan J., Math Tutoring Center Director
Potocki-Dul, Magdallena M., University Lecturer
R
Rana Concepcion, Priyanka, University Lecturer
Ratnaswamy, Jey, Senior University Lecturer
S
Shang, Zuofeng, Associate Professor
Shirokoff, David, Associate Professor
Siegel, Michael S., Professor
Stickler, David, Professor Emeritus
Subramanian, Sundarraman, Associate Professor
T
Tavantzis, John, Professor Emeritus
Thi-Phong Nguyen, Assistant Professor
Turc, Catalin C., Associate Professor
V
Voronka, Roman W., Professor Emeritus
W
Wang, Antai, Associate Professor
Y
Young, Yuan-Nan, Professor
Z
Zaleski, Joseph, University Lecturer

Programs
• Applied Mathematics - M.S. (p. 366)
• Applied Statistics - M.S. (p. 368)
• BioStatistics - M.S. (p. 370)
• Data Science - M.S - Statistics Track (p. 371)
• Mathematical Sciences - Ph.D. (p. 373)

Programs
• Applied Statistical Methods (p. 363)
• Biostatistics Essentials (p. 364)
• Clinical Trials: Design and Analysis (p. 365)
• Statistics for Data Science (p. 376)
Mathematical Sciences Courses

MATH 545. Introductory Mathematical Analysis. 3 credits, 3 contact hours.
Prerequisite: MATH 211 or MATH 213, and departmental approval. Rigorous treatment of the calculus of real-valued functions of one real variable: the real number system, epsilon-delta theory of limit, continuity, derivative, and the Riemann integral. The fundamental theory of calculus. Series and sequences including Taylor series and uniform convergence. The inverse and implicit function theorems.

MATH 546. Advanced Calculus. 3 credits, 3 contact hours.
Prerequisite: MATH 545 or MATH 480. Rigorous treatment of the calculus of real-valued functions of several real variables: the geometry and algebra of n-dimensional Euclidean space, limit, continuity, derivative, and the Riemann integral of functions of several variables, the inverse and implicit function theorems, series, including Taylor series, optimization problems, integration on curves and surfaces, the divergence and related theorems.

MATH 573. Intermediate Differential Equations. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 337, or departmental approval. Methods and applications for systems of ordinary differential equations: existence and uniqueness for solutions of ODEs, linear systems, stability analysis, phase plane and geometrical methods, Sturm-Liouville eigenvalue problems.

MATH 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisites: Graduate status, departmental approval, and permission of the Division of Career Development Services. Cooperative education/internship providing on-the-job complement to academic programs in mathematics. Work assignments and projects are developed by the Co-op Office in consultation with the Department of Mathematical Sciences.

MATH 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

MATH 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisites: Graduate status, departmental approval, and permission of the Division of Career Development Services.

MATH 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

MATH 599. Teaching in Mathematics. 3 credits, 3 contact hours.
Required of all master's and doctoral students in Mathematical Sciences who are receiving departmental or research-based awards. Provides students with the skills needed to communicate effectively and to perform their teaching and related duties. Students are exposed to strategies and methods for communicating and for teaching undergraduate mathematics, and they are required to practice and demonstrate these techniques. Not counted for degree credit.

MATH 604. Mathematical Finance. 3 credits, 3 contact hours.
Prerequisites: FIN 641 Derivatives, MATH 605 Stochastic Calculus, or permission of the instructor. This course will explore the structure, analysis, and use of financial derivative instruments deployed in investment strategies and portfolio risk management. Topics include continuous time dynamics, arbitrage pricing, martingale methods, and valuation of European, American, and path dependent derivatives.

MATH 605. Stochastic Calculus. 3 credits, 3 contact hours.
This course provides an introduction to stochastic calculus. Topics include conditioning, Poisson processes, martingales, Brownian motion, Itô integrals, Itô's formula, stochastic differential equations, Feynman-Kac formula, Girsanov's theorem, and the martingale representation theorem. Financial applications include pricing, hedging, and interest rate models.

MATH 606. Term Structure Models. 3 credits, 3 contact hours.
Prerequisites: MATH 605, or permission of the instructor. Corequisite: MATH 608. This course will develop the mathematical structure of interest rate models and explore the considerable hurdles involved in practical implementation. Short rate models, single and multifactor; the Heath-Jarrow-Morton framework; and modern Libor market models will be examined.

MATH 607. Credit Risk Models. 3 credits, 3 contact hours.
Prerequisites: MATH 604, MATH 605, MATH 606 or permission of the instructor. This course explores mathematical models and methods for credit risk measurement and rating. The nature of credit risk is reviewed through examination of credit instruments, including credit default swaps, collateralized debt obligations, and basket credit derivatives. These instruments, through which risk exposure opportunities and hedging possibilities are created and managed, are explored with respect to dynamics and valuation techniques, applying PDE methods and stochastic processes.

MATH 608. Partial Differential Equations for Finance. 3 credits, 3 contact hours.
This course presents the subject of partial differential equations (PDE's) with a strong emphasis on the PDE's arising in the study of stochastic processes and finance. The focus is on analytical and numerical methods for obtaining solutions in a form useful for solving problems in financial engineering. Topics include modeling with PDE's, classification of PDE's, analytical and numerical methods for PDE's and application to finance.

MATH 609. Projects in Mathematical and Computational Finance. 3 credits, 3 contact hours.
Prerequisites: MATH 604 Mathematical Finance, MATH 605 Stochastic Calculus, MATH 606 Term Structure Models, or permission of the instructor. This project course requires students to demonstrate attained mastery of the material studies in the prerequisite courses. Projects also extend students' knowledge of specific areas beyond that covered in earlier courses into areas such as particle filtering or optimization techniques for term structure model calibration. The aim is to broaden the students' classroom focus to the more unconstrained, open ended and less well defined contexts that are frequently encountered in practice.

MATH 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisites: Graduate status, departmental approval, and permission of the Division of Career Development Services. Cooperative education/internship providing on-the-job complement to academic programs in mathematics. Work assignments and projects are developed by the Co-op Office in consultation with the Department of Mathematical Sciences.
MATH 610. Graduate Research Methods. 3 credits, 0 contact hours.
Prerequisites: MATH 614, MATH 671, and MATH 690. Acquaints second-year graduate students with the techniques and vocabulary of a field in applied mathematics. Each student contacts a designated faculty member and is given several basic papers or books on a research topic of current interest. The student prepares two lectures on his/her topic to be given at the end of the semester. A sample list of active fields of research includes acoustics, electromagnetic theory, elasticity, fluid dynamics, combustion, and mathematical biology.

MATH 611. Numerical Methods for Computation. 3 credits, 3 contact hours.
This course provides a practical introduction to numerical methods. Numerical solution of linear systems. Interpolation and quadrature. Iterative solution of nonlinear systems. Computation of eigenvalues and eigenvectors. Numerical solution of initial and boundary value problems for ODE’s. Introduction to numerical solution of PDE’s. Applications drawn from science, engineering, and finance.

MATH 613. Advanced Applied Mathematics I: Modeling. 3 credits, 3 contact hours.
Prerequisites: MATH 331 and MATH 337, or departmental approval. Concepts and strategies of mathematical modeling are developed by investigation of case studies in a selection of areas. Consistency of a model, nondimensionalization and scaling, regular and singular effects are discussed. Possible topics include continuum mechanics (heat and mass transfer, fluid dynamics, elasticity), vibrating strings, population dynamics, traffic flow, and the Sommerfeld problem.

MATH 614. Numerical Methods I. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 337, MATH 340, and proficiency in a computer language (FORTRAN, C, or C++), or departmental approval. Theory and techniques of scientific computation, with more emphasis on accuracy and rigor than MATH 611. Machine arithmetic. Numerical solution of a linear system and pivoting. Interpolation and quadrature. Iterative solution of nonlinear systems. Computation of eigenvalues and eigenvectors. Numerical solution of initial- and boundary-value problems for systems of ODEs. Applications. The class includes examples requiring student use of a computer.

MATH 615. Approaches to Quantitative Analysis in the Life Sciences. 3 credits, 3 contact hours.
A graduate seminar-style course based around case studies of common data analytic methods used in the life sciences. The case studies are designed to help students who are interested in applications of statistical thinking to biological sciences appreciate the scope of quantitative methods, their underlying concepts, assumptions and limitations. While the mathematics of specific methods are not covered, students of the course will get an understanding of the diverse approaches to statistical inference in the life sciences.

MATH 630. Linear Algebra and Applications. 3 credits, 3 contact hours.
Prerequisites: MATH 211 or MATH 213, and MATH 222. This course is not intended for students in the Master's in Applied Mathematics program or in the doctoral program in Mathematical Sciences. Development of the concepts needed to study applications of linear algebra and matrix theory to science and engineering. Topics include linear systems of equations, matrix algebra, orthogonality, eigenvalues and eigenvectors, diagonalization, and matrix decomposition.

MATH 631. Linear Algebra. 3 credits, 3 contact hours.
Prerequisites: MATH 222 and MATH 337, or departmental approval. Similar in aim and content to MATH 630 but with more emphasis on mathematical rigor. Linear systems of equations, matrix algebra, linear spaces, orthogonality, eigenvalues and eigenvectors, diagonalization, and matrix decomposition. Applications.

MATH 635. Analytical Computational Neuroscience. 3 credits, 3 contact hours.
Prerequisites: MATH 211 or 213, MATH 337, and CS 113 or MATH 240, or departmental approval. This course will provide an intermediate-level mathematical and computational modeling background for small neuronal systems. Models of biophysical mechanisms of single and small networks of neurons are discussed. Topics include voltage-dependent channel gating mechanisms, the Hodgkin-Huxley model for membrane excitability, repetitive and burst firing, single- and multi-compartmental modeling, synaptic transmission, mathematical treatment of 2-cell inhibitory or excitatory networks. In this course, the students will be required to build computer models of neurons and networks and analyze these models using geometric singular-perturbation analysis and dynamical systems techniques.

MATH 636. Systems Computational Neuroscience. 3 credits, 3 contact hours.
Prerequisite: MATH 635. This course covers mathematical and computational modeling of neuronal networks. Topics covered include central pattern generators, models of visual processes, models of learning and memory, neural coding and mathematics of neural networks, models of oscillations in sensory, thalamic and thalamo-cortical networks, neuronal wave propagation.

MATH 637. Foundations of Mathematical Biology. 3 credits, 3 contact hours.
Prerequisites: MATH 222 and MATH 337, or departmental approval. This course provides an introduction to the use of mathematical techniques applied to solve problems in biology. Models discussed fall into 3 categories: discrete, continuous, and spatially distributed. Biological topics discussed range from the subcellular molecular systems and cellular behavior to physiological problems, population biology and developmental biology.

MATH 639. Mathematical Modeling II. 3 credits, 3 contact hours.
Continuation of MATH 613 (Advanced Applied Mathematics I, Modeling). Concepts and strategies of Mathematical modeling are developed by case studies in a selection of areas. Topics will be complementary to those presented in MATH 613, and include for example, the mathematical theory of elasticity and electromagnetism.

MATH 644. Regression Analysis Methods. 3 credits, 3 contact hours.
MATH 645. Analysis I. 3 credits, 3 contact hours.
Prerequisite: MATH 546 or departmental approval. Review and extension of the fundamental concepts of advanced calculus: the real number system, limit, continuity, differentiation, the Riemann integral, sequences and series. Point set topology in metric spaces. Uniform convergence and its applications.

MATH 646. Time Series Analysis. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or departmental approval. Time series models, smoothing, trend and removal of seasonality. Naïve forecasting models, stationarity and ARMA models. Estimation and forecasting for ARMA models. Estimation, model selection, and forecasting of nonseasonal and seasonal ARIMA models.

MATH 647. Time Series Analysis II. 3 credits, 3 contact hours.
Prerequisite: MATH 646. Continuation of MATH 646. Covers methods of time series analysis useful in engineering, the sciences, economics, and modern financial analysis. Topics include spectral analysis, transfer functions, multivariate models, state space models and Kalman filtering. Selected applications from topics such as intervention analysis, neural networks, process control, financial volatility analysis.

MATH 651. Methods of Applied Mathematics I. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or departmental approval. Communicating with scientists in other disciplines. Statistical tools for consulting. Using statistical software such as JMP, SAS, and S-plus. Case studies which illustrate using statistical methodology and tools are presented by the instructor and guest speakers from academia and industry. Assignments based on case studies with use of statistical software is required.

MATH 652. Methods of Applied Mathematics II. 3 credits, 3 contact hours.
Prerequisite: MATH 651. Role and purpose of applied statistics. Data visualization and use of statistical software used in course. Descriptive statistics, summary measures for quantitative and qualitative data, data displays. Modeling random behavior: elementary probability and some simple probability distribution models. Normal distribution. Computational statistical inference: confidence intervals and tests for means, variances, and proportions. Linear regression analysis and inference. Control charts for statistical quality control. Introduction to design of experiments and ANOVA, simple factorial design and their analysis. MATH 661 and MATH 663 cannot both be used toward degree credits at NJIT.

MATH 653. Methods of Applied Mathematics III. 3 credits, 3 contact hours.
Prerequisite: MATH 652. Methods for Statistical Consulting. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or departmental approval. Communicating with scientists in other disciplines. Statistical tools for consulting. Using statistical software such as JMP, SAS, and S-plus. Case studies which illustrate using statistical methodology and tools are presented by the instructor and guest speakers from academia and industry. Assignments based on case studies with use of statistical software is required.
MATH 665. Statistical Inference. 3 credits, 3 contact hours.
Prerequisite: MATH 662 or departmental approval. Review of sampling distributions. Data reduction principles: sufficiency and likelihood. Theory and methods of point estimation and hypothesis testing, interval estimation, nonparametric tests, introduction to linear models.

MATH 666. Simulation for Stochastic Systems. 3 credits, 3 contact hours.
Covers the use of Monte Carlo stochastic simulation for data science, finance, and other applications. Topics include generation of various random variables and stochastic processes (e.g., point processes, Brownian motion, diffusions), simulation methods for estimating quantities of interest (e.g., probabilities, expected values, quantiles), input modeling, and variance-reduction techniques. Simulation programming assignments will be included. Students cannot receive credit for both CS 661 and CS 666/MATH 666.

MATH 671. Asymptotic Methods I. 3 credits, 3 contact hours.
Prerequisites: MATH 645 or MATH 545, and MATH 656, or departmental approval. Asymptotic sequences and series. Use of asymptotic series. Regular and singular perturbation methods. Asymptotic methods for the solution of ODEs, including: boundary layer methods and asymptotic matching, multiple scales, the method of averaging, and simple WKBJ theory. Asymptotic expansion of integrals, including: Watson’s lemma, stationary phase, Laplace’s method, and the method of steepest descent.

MATH 672. Biomathematics I: Biological Waves and Oscillations. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 331, and MATH 337, or departmental approval. Models of wave propagation and oscillatory phenomena in nerve, muscle, and arteries: Hodgkin-Huxley theory of nerve conduction, synchronization of the cardiac pacemaker, conduction and rhythm abnormalities of the heart, excitation-contraction coupling, and calcium induced waves, wave propagation in elastic arteries, models of periodic human locomotion.

MATH 673. Biomathematics II: Pattern Formation in Biological Systems. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 331, and MATH 337, or departmental approval. Emergence of spatial and temporal order in biological and ecological systems: Hopf and Turing bifurcation in reaction-diffusion systems, how do zebras get their stripes, patterns on snake skins and butterfly wings, spatial organization in the visual cortex, symmetry breaking in hormonal interactions, how do the ovaries count. Basic techniques of mathematics are introduced and applied to significant biological phenomena that cannot be fully understood without their use.

MATH 675. Partial Differential Equations. 3 credits, 3 contact hours.

MATH 676. Advanced Ordinary Differential Equations. 3 credits, 3 contact hours.
Prerequisites: MATH 222, MATH 337, and MATH 545 or MATH 645. A rigorous treatment of the theory of systems of differential equations: existence and uniqueness of solutions, dependence on initial conditions and parameters. Linear systems, stability, and asymptotic behavior of solutions. Nonlinear systems, perturbation of periodic solutions, and geometric theory of systems of ODEs.

MATH 677. Calculus of Variations. 3 credits, 3 contact hours.
Prerequisite: MATH 545 or MATH 645 or departmental approval. Necessary conditions for existence of extrema. Variation of a functional, Euler’s equation, constrained extrema, first integrals, Hamilton-Jacobi equation, quadratic functionals. Sufficient conditions for the existence of extrema. Applications to mechanics.

MATH 678. Stat Methods in Data Science. 3 credits, 3 contact hours.
Prerequisite: MATH 661 or MATH 680, or permission by instructor. This course introduces students to concepts in statistical methods used in data science, including data collection, data visualization and data analysis. Emphasis is on model building and statistical concepts related to data analysis methods. The course provides the basic foundational tools on which to pursue statistics, data analysis and data science in greater depth. Topics include sampling and experimental design, understanding the aims of a study, principles of data analysis, linear and logistic regression, resampling methods, and statistical learning methods. Students will use the R statistical software.

MATH 680. Advanced Statistical Learning. 3 credits, 3 contact hours.
Prerequisites: MATH 478 or MATH 678, or permission by instructor. This course builds on the material in MATH 478 or MATH 678 and serves as a second graduate course in data science with emphasis on statistics. It covers many topics in high dimensional data analysis, including LASSO, SCAD and other regularization procedures, sparse PCA, sparse k-means, and asymptotic theory for high dimensional models. This course will provide students with necessary theoretical and computational skills to understand, design, and implement modern statistical learning methods, including ensemble learning (bagging, random forest, and boosting). Students will use the R statistical software.

MATH 683. High Dimensional Stat Inferenc. 3 credits, 3 contact hours.
Prerequisite: MATH 665 or permission by instructor. This course introduces modern statistical inference theory and methods developed as a result of the influence of computing. The course covers statistical thinking, ideas and theory that underlie many of the statistical learning algorithms used in data science, such as bootstrap, EM algorithm, cross-validation, large-scale hypothesis test, false discovery rates, sparse modeling, support vector machines and ensemble learning.

MATH 687. Quantitative Analysis for Environmental Design Research. 3 credits, 3 contact hours.
Prerequisites: MATH 333 and departmental approval. Fundamental concepts in the theory of probability and statistics including descriptive data analysis, inferential statistics, sampling theory, linear regression and correlation, and analysis of variance. Also includes an introduction to linear programming and nonlinear models concluding with some discussion of optimization theory.
MATH 688. Mathematical and Statistical Methods in Materials Science. 3 credits, 3 contact hours.
Prerequisites: MATH 111, MATH 112 and (MATH 211 or MATH 213). The course introduces mathematical methods necessary for materials science with emphasis on practical applications. Topics include power series, complex numbers, linear algebra, partial differentiation, multiple integrals, vector analysis, Fourier series and transformation, ordinary and partial differential equations, functions of complex variables, probability, and statistics.

MATH 689. Advanced Applied Mathematics II: Ordinary Differential Equations. 3 credits, 3 contact hours.
Prerequisites: MATH 545 or MATH 645, MATH 613, and MATH 631. A practical and theoretical treatment of boundary-value problems for ordinary differential equations: generalized functions, Green’s functions, spectral theory, variational principles, and allied numerical procedures. Examples will be drawn from applications in science and engineering.

MATH 690. Advanced Applied Mathematics III: Partial Differential Equations. 3 credits, 3 contact hours.
Prerequisite: MATH 689. A practical and theoretical treatment of initial- and boundary-value problems for partial differential equations: Green’s functions, spectral theory, variational principles, transform methods, and allied numerical procedures. Examples will be drawn from applications in science and engineering.

MATH 691. Stochastic Processes with Applications. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Renewal theory, renewal reward processes and applications. Homogeneous, non-homogeneous, and compound Poisson processes with illustrative applications. Introduction to Markov chains in discrete and continuous time with selected applications.

MATH 692. MSMCF Forum. 0 credits, 0 contact hours.
Forum comprises informal discussions and debates engaging students in the realities of living and working in the world, with a focus on economics and finance. These realities include broad awareness of contemporary events, ethical implications of decisions, proper implementation and use of models, the research process and the critical skills of communication. Forum meetings are designed to promote understanding and build experience in all these areas.

MATH 698. Sampling Theory. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Role of sample surveys. Sampling from finite populations. Sampling designs, the Horowitz-Thompson estimator of the population mean. Different sampling methods, simple random sampling, stratified sampling, ratio and regression estimates, cluster sampling, systematic sampling.

MATH 699. Design and Analysis of Experiments. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Statistically designed experiments and their importance in data analysis, industrial experiments. Role of randomization. Fixed and random effect models and ANOVA, block design, latin square design, factorial and fractional factorial designs and their analysis.

MATH 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied mathematics or applied statistics. A written report must be submitted to the project advisor. The student cannot register in MATH 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MATH 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied mathematics or applied statistics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in MATH 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MATH 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied mathematics or applied statistics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (MATH 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

MATH 707. Advanced Applied Mathematics IV: Special Topics. 3 credits, 3 contact hours.
Prerequisite: Departmental approval. A current research topic of interest to departmental faculty. Typical topics include: computational fluid dynamics, theoretical fluid dynamics, acoustics, wave propagation, dynamical systems, theoretical and numerical aspects of combustion, mathematical biology, and various topics in statistics.

MATH 712. Numerical Methods II. 3 credits, 3 contact hours.
Prerequisites: MATH 614, MATH 331 or departmental approval, and proficiency in a computer programming language (FORTRAN, C, or C++). Numerical methods for the solution of initial- and boundary-value problems for partial differential equations, with emphasis on finite difference methods. Consistency, stability, convergence, and implementation are considered.
MATH 713. Advanced Scientific Computing: Multi-Dimensional Finite-Difference Schemes and Spectral Methods. 3 credits, 3 contact hours. Prerequisites: MATH 712 and proficiency in a computer programming language (FORTRAN, C, or C++). Derivation and analysis of finite difference schemes for systems of partial differential equations in two and three spatial dimensions and time. Issues pertaining to efficient implementation of algorithms and to stability of physical and numerical boundary conditions. Pseudo-spectral and spectral methods to solve partial differential equations. Approximation properties of Fourier and Chebyshev series and techniques based on the Fast Fourier Transform (FFT) and on matrix multiplication to numerically compute partial derivatives. Time-discretization techniques suitable for use with pseudo-spectral and spectral methods. Model systems arising in wave propagation, fluid dynamics, and mathematical biology will be considered.

MATH 715. Mathematical Fluid Dynamics I. 3 credits, 3 contact hours. Introduction to the basic ideas of fluid dynamics, with an emphasis on rigorous treatment of fundamentals and the mathematical developments and issues. The course focuses on the background and motivation for recent mathematical and numerical work on the Euler and Navier-Stokes equations, and presents a mathematically intensive investigation of various model equations of fluid dynamics (e.g., the Korteweg-de-Vries equations).

MATH 716. Mathematical Fluid Dynamics II. 3 credits, 0 contact hours. Continuation of MATH 715. Further development of the ideas of fluid dynamics, with an emphasis on mathematical developments and issues. A selection of topics will be developed in some detail, for example: Stokes flow and low-Reynolds-number hydrodynamics; flow at high Reynolds number and boundary layers; shock waves and hyperbolic systems; dynamics of interfacial flows; hydrodynamic stability; rotating fluids.

MATH 717. Inverse Problems and Global Optimization. 3 credits, 3 contact hours. Introduction to inverse problems and global optimization. Linear, quasi-linear, and nonlinear inverse problems are studied with emphasis on regularization techniques. Bayesian statistical approaches and Monte Carlo methods are introduced and discussed in the context of inverse problems. The mathematical foundations of simulated annealing, genetic algorithms, and TABU are presented.

MATH 720. Tensor Analysis. 3 credits, 3 contact hours. Prerequisites: MATH 613 and MATH 631, or departmental approval. Review of vector analysis in general curvilinear coordinates. Algebra and differential calculus of tensors. Applications to differential geometry, analytical mechanics, and mechanics of continuous media. The choice of applications will be determined by the interests of the class.

MATH 725. Independent Study I. 3 credits, 3 contact hours. Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

MATH 726. Independent Study II. 3 credits, 3 contact hours. Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for MATH 726 if they have taken MATH 725 in a prior semester.

MATH 727. Independent Study III. 3 credits, 3 contact hours.

MATH 756. Complex Variables II. 3 credits, 3 contact hours. Prerequisite: MATH 656. Selected topics from: conformal mapping and applications of the Schwarz-Christoffel transformation, applications of calculus of residues, singularities, principle of the argument, Rouche’s theorem, Mittag-Leffler’s theorem, Casorati-Weierstrass theorem, analytic continuation, and applications, Schwarz reflection principle, monodromy theorem, Wiener-Hopf technique, asymptotic expansion of integrals; integral transform techniques, special functions.

MATH 761. Statistical Reliability Theory and Applications. 3 credits, 3 contact hours. Prerequisite: MATH 662 or departmental approval. Survival distributions, failure rate and hazard functions, residual life. Common parametric families used in modeling life data. Introduction to nonparametric aging classes. Coherent structures, fault tree analysis, redundancy and standby systems, system availability, repairable systems, selected applications such as software reliability.

MATH 763. Generalized Linear Models. 3 credits, 3 contact hours. Prerequisites: MATH 662 and MATH 665 or departmental approval. Theoretical and applied aspects of generalized linear models. Classical linear models, nonlinear regression models, and generalized estimating equations.
MATH 767. Fast Numerical Algorithms. 3 credits, 3 contact hours.
The course covers state-of-the-art, analysis-based, fast numerical algorithms for computing discrete summations/transforms and for solving differential/ integral equations. In particular, this course presents fast multiple methods and their descendants, including fast Fourier transform for nonequispaced data, fast Gauss transform, fast iterative solver and direct solver for elliptic boundary value problems.

MATH 768. Probability Theory. 3 credits, 3 contact hours.
Prerequisite: MATH 645 or departmental approval. Measure theoretic introduction to axiomatic probability. Probability measures on abstract spaces and integration. Random variables and distribution functions, independence, 0-1 laws, basic inequalities, modes of convergence and their interrelationships, Laplace-Stieltjes transforms and characteristic functions, weak and strong laws of large numbers, conditional expectation, discrete time martingales.

MATH 771. Asymptotic Methods II. 3 credits, 3 contact hours.
Prerequisite: MATH 671. Continuation of MATH 671. Asymptotic methods for the solution of PDEs, including: matched asymptotic expansions, multiple scales, the WKBJ method or geometrical optics, and near-field far-field expansions. Applications to elliptic, parabolic, and hyperbolic problems. Further topics in the asymptotic expansion of integrals and the WKBJ method. Emphasis on examples drawn from applications in science and engineering.

MATH 786. Large Sample Theory and Inference. 3 credits, 3 contact hours.

MATH 787. Non-Parametric Statistics. 3 credits, 3 contact hours.
Prerequisite: MATH 662. Wilcoxon signed-ranks test, Mann-Whitney U test, binomial sign test for single sample and two dependent samples, McNemar's test, Cochran Q test, Wilcoxon matched-pairs signed-ranks test, Kruskal-Wallis one-way analysis of variance, Friedman two-way analysis of variance, Siegel-Tukey test for equal variability, chi-squared goodness-of-fit test, test for homogeneity and independence, single-sample runs test and other tests of randomness, correlation tests: Spearman's rank-order correlation, coefficient and Kendall's tau, Kendall's coefficient of concordance, and Goodman and Kruskal's gamma, comparing power efficiency.

MATH 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Prerequisite: Excellent performance on the doctoral qualifying examination. A minimum of 36 credits is required of all candidates for the Ph.D. degree. Candidates must register for 6 to 12 credits per semester, to be determined by a designated dissertation advisor. After reaching 36 credits, students must continue to register for 3 credits each semester until degree completion.

MATH 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: MATH 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mathematical sciences. For PhD students who have successfully defended their dissertation proposal. The student must register in MATH 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

MATH 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: MATH 791. Since the MATH 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mathematical sciences. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

MATH 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: MATH 791. Since the MATH 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in mathematical sciences. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

MATH 790D. Doct Dissertation & Res. 9 credits, 9 contact hours.
Prerequisite: Excellent performance on the doctoral qualifying examination. A minimum of 36 credits is required of all candidates for the Ph.D. degree. Candidates must register for 6 to 12 credits per semester, to be determined by a designated dissertation advisor. After reaching 36 credits, students must continue to register for 3 credits each semester until degree completion.

MATH 790E. Doctoral Dissertation. 12 credits, 12 contact hours.
Prerequisite: Excellent performance on the doctoral qualifying examination. A minimum of 36 credits is required of all candidates for the Ph.D. degree. Candidates must register for 6 to 12 credits per semester, to be determined by a designated dissertation advisor. After reaching 36 credits, students must continue to register for 3 credits each semester until degree completion.

MATH 791. Graduate Seminar. 0 credits, 1 contact hour.
All master's and doctoral students receiving departmental or research-based awards must register for this course each semester.
MATH 792B. Pre Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: MATH 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in mathematical sciences. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

MATH 792D. Pre Doctoral Research. 9 credits, 9 contact hours.

Applied Statistical Methods

The Applied Statistical Methods Graduate Certificate provides professionals with advanced skills and tools to collect data, analyze it, and interpret results across a wide variety of high tech companies.

What will I learn?

How to collect data, how to analyze and summarize data and how to interpret the results. The techniques learned in this certificate can be applied to quality control, production design and analysis, telecommunications, financial analysis, and risk analysis. This certificate will help the data analysts in conducting appropriate statistical analyses of their data and helping the technical supervisors in understanding the results of statistical analyses conducted by other people.

- Role of sample surveys. Sampling from finite populations. Sampling designs, the Horowitz-Thompson estimator of the population mean. Different sampling methods, simple random sampling, stratified sampling, ratio and regression estimates, cluster sampling, systematic sampling.
- Statistically designed experiments and their importance in data analysis, industrial experiments. Role of randomization. Fixed and random effect models and ANOVA, block design, latin square design, factorial and fractional factorial designs and their analysis.
- Communicating with scientists in other disciplines. Statistical tools for consulting. Using statistical software such as JMP, SAS, and S-plus. Case studies which illustrate using statistical methodology and tools are presented by the instructor and guest speakers from academia and industry.

Why study Applied Statistical Methods at NJIT?

The graduate certificate’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. Earn this certificate on our NJIT Newark campus. And you’ll learn from NJIT’s distinguished professors and instructors.

Prerequisites

Applicants must have an undergraduate degree from an accredited institution with at least 12 credits in mathematics, including calculus. Students who do not meet these requirements may be admitted if they satisfy the university's requirements for admission. An undergraduate GPA of at least 3.0 on a 4.0 scale or equivalent is normally required.

Related Degree Programs

All credits for the Applied Statistical Methods Certificate relate in their entirety to the NJIT MS in Applied Statistics (http://catalog.njit.edu/graduate/science-liberal-arts/mathematical-sciences/applied-statistics-ms/).

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/applied-statistical-methods-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
</tbody>
</table>
Electives
Select two of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 698</td>
<td>Sampling Theory</td>
<td></td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td></td>
</tr>
<tr>
<td>MATH 644</td>
<td>Methods for Statistical Consulting</td>
<td></td>
</tr>
<tr>
<td>MATH 646</td>
<td>Time Series Analysis</td>
<td></td>
</tr>
</tbody>
</table>

* indicates as available online

Biostatistics Essentials

The Graduate Certificate in Biostatistics Essentials provides the groundworks for developing new statistical methods, as well as applying existing techniques, to interpret data about the medical and life sciences. Biostatistics is important because it is used widely in the pharmaceutical industry, the health-care industry and in medical schools.

What kind of jobs do biostatisticians have?

Most biostatisticians work in a university, a healthcare field, a research institution or pharmaceutical firm. By using sophisticated software and statistical methods, they study the factors that affect human health. They also provide advice on how to use statistics to design and analyze studies.

What will I learn?

- Statistical techniques with emphasis on applications in health related sciences, summarizing and displaying data; basic probability and inference; Bayes’ theorem and its application in diagnostic testing; estimation, confidence intervals, and hypothesis testing for means and proportions; contingency tables; regression and analysis of variance; logistic regression and survival analysis; basic epidemiologic tools; use of statistical software.
- Different sampling methods, simple random sampling, stratified sampling, ratio and regression estimates, cluster sampling, systematic sampling.
- Statistical methods and issues in the design of clinical trials and analysis of their data, which include clinical trial designs for phases 1-4, randomization principle and procedures, analysis of pharmacokinetic data for bioequivalence, multi-center trials, categorical data analysis, survival analysis, longitudinal data analysis, interim analysis, estimation of sample size and power, adjustment for multiplicity, evaluation of adverse events, and regulatory overview.
- Modeling time-to-event data in the presence of censoring and truncation, with emphasis on applications to the health sciences, including survival and hazard functions, censoring and truncation, parametric and nonparametric models for survival data, competing-risks, regression models including Cox proportional hazards model and time-dependent covariates, one and two sample tests, and use of appropriate statistical software for computations.

Why study Biostatistics Essentials at NJIT?

The certificate allows the students to focus and dig deep into this specific topic, and start applying your knowledge sooner. Earn this certificate on our NJIT Newark campus. And you’ll learn from NJIT’s distinguished professors and instructors.

Prerequisites

Applicants must have an undergraduate degree from an accredited institution with at least 12 credits in mathematics, including calculus. Students who do not meet these requirements may be admitted if they satisfy the university’s requirements for admission. An undergraduate GPA of at least 3.0 on a 4.0 scale or equivalent is normally required.

Related Degree Programs

All credits for the Biostatistics Essentials Graduate Certificate relate in their entirety to NJIT MS in Biostatistics (http://catalog.njit.edu/graduate/science-liberal-arts/mathematical-sciences/biostatistics-ms/).

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/biostatistics-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
</tbody>
</table>
MATH 662 Probability Distributions 3

Electives
Select two of the following: 6

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Clinical Trials Design and Analysis</td>
</tr>
<tr>
<td>MATH 669</td>
<td>Survival Analysis</td>
</tr>
</tbody>
</table>

CLINICAL TRIALS: DESIGN AND ANALYSIS

What will I learn?

- **Probability Distributions** - Probability, conditional probability, random variables and distributions, independence, expectation, moment generating functions, useful parametric families of distributions, transformation of random variables, order statistics, sampling distributions under normality, the central limit theorem, convergence concepts and illustrative applications.

- **Approaches to Quantitative Analysis in the Life Sciences** - Case studies of common data analytic methods used in the life sciences. The case studies are designed to help students who are interested in applications of statistical thinking to biological sciences appreciate the scope of quantitative methods, their underlying concepts, assumptions and limitations.

- **Clinical Trials Design and Analysis** - Statistical methods and issues in the design of clinical trials and analysis of their data. Topic include clinical trial designs for phases 1-4, randomization principle and procedures, analysis of pharmacokinetic data for bioequivalence, multi-center trials, categorical data analysis, survival analysis, longitudinal data analysis, interim analysis, estimation of sample size and power, adjustment for multiplicity, evaluation of adverse events, and regulatory overview.

- **Statistical Inference** - Data reduction principles: sufficiency and likelihood. Theory and methods of point estimation and hypothesis testing, interval estimation, nonparametric tests, introduction to linear models.

- **Sampling Theory** - Role of sample surveys. Sampling from finite populations. Sampling designs, the Horowitz-Thompson estimator of the population mean. Different sampling methods, simple random sampling, stratified sampling, ratio and regression estimates, cluster sampling, systematic sampling.

- **Design and Analysis of Experiments** - Statistically designed experiments and their importance in data analysis, industrial experiments. Role of randomization. Fixed and random effect models and ANOVA, block design, latin square design, factorial and fractional factorial designs and their analysis.

Why study Clinical Trials: Design and Analysis at NJIT?

The NJIT Department of Mathematics offers two types of courses: theoretical and practical. Graduates from this program will understand the concepts of advanced statistical techniques as well as modern day software that utilize these concepts.

Into what industries might holders of this program find employment?

Data Science, Consultation Services, Auditing, Analytics, Census

Prerequisites

Applicants should have a bachelor's degree in an engineering or mathematics-based field. Undergraduate statistics coursework and Calculus III+ expected.

Related Degree Programs

All courses in this program related entirely to the NJIT MS in Applied Statistics (https://catalog.njit.edu/graduate/science-liberal-arts/mathematical-sciences/applied-statistics-ms/)

The Graduate Certificate in Clinical Trials: Design and Analysis is a short, but dense, selection of statistical courses from NJIT's Department of Mathematical Sciences. Topics will include: probability theory, binomial distribution, regression analysis, standard deviation, stochastic processes, Monte Carlo method, Bayesian statistics, non-parametric statistics, sampling theory, and statistical techniques. The theoretical approach that begins the program comes together within the elective courses in a practical sense, from pharmokinetic data to life science studies to business-oriented time series data sets.

Who would be suited to take this program?
The program is well suited for students with a baccalaureate degree, especially with higher level Calculus background, who are planning to pursue a statistics-oriented career in the pharmaceutical or other industries and in commercial enterprises where basic statistical skills and knowledge of contemporary methods of data analysis and modeling are required, such as computational data analytic or business intelligence positions.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Take this course:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives - Choose three (3) courses:</td>
<td>9</td>
</tr>
<tr>
<td>MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 654</td>
<td>Clinical Trials Design and Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td></td>
</tr>
<tr>
<td>MATH 698</td>
<td>Sampling Theory</td>
<td></td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td></td>
</tr>
</tbody>
</table>

M.S. in Applied Mathematics

Degree Requirements

Students with a baccalaureate degree in an area different from mathematics may be admitted and required by the department to take an individually-designed program of bridge courses that may include undergraduate courses before proceeding to the graduate curriculum. Such courses do not count towards a graduate degree.

The Master of Science in Applied Mathematics requires 30 credits: 15 credits in core courses, 15 credits in an area of specialization, of which six credits are required and nine credits are electives. Students must successfully complete at least 24 of these credits at the 600-level or higher, and no more than six credits at the 500-level will be counted towards the degree. Specific course requirements depend on the area of specialization. A master's thesis or a master's project is optional. (Advisor's permission is required)

Seminar: In addition to the minimum 30 degree credits required, all students who receive departmental or research-based awards must enroll every semester in MATH 791 Graduate Seminar.

M.S. in Applied Mathematics (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>MATH 613</td>
<td>Advanced Applied Mathematics I: Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 645</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 656</td>
<td>Complex Variables I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 689</td>
<td>Advanced Applied Mathematics II: Ordinary Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Courses in Areas of Specialization

Select one of the following Areas of Specialization: 6

Analysis

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 745</td>
<td>Analysis II</td>
<td></td>
</tr>
<tr>
<td>MATH 756</td>
<td>Complex Variables II</td>
<td></td>
</tr>
</tbody>
</table>

Applied Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 614</td>
<td>Numerical Methods I</td>
<td></td>
</tr>
<tr>
<td>MATH 690</td>
<td>Advanced Applied Mathematics III: Partial Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

Computational Mathematics
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 613</td>
<td>Advanced Applied Mathematics I: Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 645</td>
<td>Analysis I ¹</td>
<td>3</td>
</tr>
<tr>
<td>MATH 656</td>
<td>Complex Variables I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 689</td>
<td>Advanced Applied Mathematics II: Ordinary Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

|MATH 700B | Master's Project | 3 |

Required Courses in Areas of Specialization

Select one of the following Areas of Specialization: 6

Analysis

| MATH 745 | Analysis II | |
| MATH 756 | Complex Variables II | |

Applied Mathematics

| MATH 614 | Numerical Methods I | |
| MATH 690 | Advanced Applied Mathematics III: Partial Differential Equations | |

Computational Mathematics

| MATH 614 | Numerical Methods I | |
| MATH 712 | Numerical Methods II | |

Mathematical Biology

| MATH 635 | Analytical Computational Neuroscience | |
| MATH 637 | Foundations of Mathematical Biology | |

Electives

Select three courses with approval of graduate advisor. 9

Total Credits

| 33 |

¹ Students specializing in Applied Mathematics or Computational Mathematics may take MATH 545 Introductory Mathematical Analysis and MATH 546 Advanced Calculus, instead of MATH 645 Analysis I and 3 credits of elective.

M.S. in Applied Mathematics (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 613</td>
<td>Advanced Applied Mathematics I: Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 645</td>
<td>Analysis I ¹</td>
<td>3</td>
</tr>
<tr>
<td>MATH 656</td>
<td>Complex Variables I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 689</td>
<td>Advanced Applied Mathematics II: Ordinary Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Thesis

| Thesis |

Required Courses in Areas of Specialization

¹ Students specializing in Applied Mathematics or Computational Mathematics may take MATH 545 Introductory Mathematical Analysis and MATH 546 Advanced Calculus, instead of MATH 645 Analysis I and 3 credits of elective.
Select one of the following Areas of Specialization:

Analysis
MATH 745 Analysis II
MATH 756 Complex Variables II

Applied Mathematics
MATH 614 Numerical Methods I
MATH 690 Advanced Applied Mathematics III: Partial Differential Equations

Computational Mathematics
MATH 614 Numerical Methods I
MATH 712 Numerical Methods II

Mathematical Biology
MATH 635 Analytical Computational Neuroscience
MATH 637 Foundations of Mathematical Biology

Electives
Select three courses with approval of graduate advisor.

Total Credits

1 Students specializing in Applied Mathematics or Computational Mathematics may take MATH 545 Introductory Mathematical Analysis and MATH 546 Advanced Calculus, instead of MATH 645 Analysis I and 3 credits of elective.

Electives are chosen in consultation with a Departmental Graduate Advisor and consist of advanced courses in mathematics and advanced courses from biology, physics, computer science, and engineering, for example. Courses offered by appropriate departments at NJIT, RBHS, and Rutgers-Newark can be used as electives within the limits of the NJIT transfer policy. All elective courses must be approved by the graduate advisor.

M.S. in Applied Statistics

Degree Requirements

The Master of Science in Applied Statistics requires 30 credits: 21 credits in core courses and 9 credits of elective courses. Students must successfully complete at least 24 of these credits at the 600-level or higher, and no more than six credits at the 500-level will be counted towards the degree. A master's thesis or a master's project is optional.

Seminar: In addition to the minimum 30 degree credits required, all students who receive departmental or research-based awards must enroll every semester in MATH 791 Graduate Seminar.

M.S. in Applied Statistics (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 659</td>
<td>Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MATH 604</td>
<td>Mathematical Finance</td>
<td>3</td>
</tr>
<tr>
<td>MATH 605</td>
<td>Stochastic Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 654</td>
<td>Clinical Trials Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
<td>3</td>
</tr>
</tbody>
</table>
MATH 691 Stochastic Processes with Applications 3
MATH 698 Sampling Theory 3
MATH 763 Generalized Linear Models 3
MATH 768 Probability Theory 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 691</td>
<td>Stochastic Processes with Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 698</td>
<td>Sampling Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 763</td>
<td>Generalized Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>MATH 768</td>
<td>Probability Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 60

1 MATH 661 Applied Statistics and MATH 663 Introduction to Biostatistics cannot both be used toward degree credits at NJIT. The requirements of MATH 661 Applied Statistics may, in individual cases, be substituted by MATH 663 Introduction to Biostatistics, at the discretion of the Graduate Advisor.

M.S. in Applied Statistics (M.S. project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 659</td>
<td>Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics ¹</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
</tbody>
</table>

Master's Project

MATH 700B Master's Project 3

Electives

Select two of the following courses, or any other two related courses with the approval of the graduate advisor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 604</td>
<td>Mathematical Finance</td>
<td>3</td>
</tr>
<tr>
<td>MATH 605</td>
<td>Stochastic Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 654</td>
<td>Clinical Trials Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
<td>3</td>
</tr>
<tr>
<td>MATH 691</td>
<td>Stochastic Processes with Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 698</td>
<td>Sampling Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 763</td>
<td>Generalized Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>MATH 768</td>
<td>Probability Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 60

1 MATH 661 Applied Statistics and MATH 663 Introduction to Biostatistics cannot both be used toward degree credits at NJIT. The requirements of MATH 661 Applied Statistics may, in individual cases, be substituted by MATH 663 Introduction to Biostatistics, at the discretion of the Graduate Advisor.

M.S. in Applied Statistics (M.S. thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 659</td>
<td>Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics ¹</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
</tbody>
</table>

Master's Thesis
MATH 701B & 701B
or MATH 701C

Electives

Select one of the following course, or any other one related course with the approval of the graduate advisor.

- MATH 604 Mathematical Finance 3 credits
- MATH 605 Stochastic Calculus 3 credits
- MATH 611 Numerical Methods for Computation 3 credits
- MATH 630 Linear Algebra and Applications 3 credits
- MATH 654 Clinical Trials Design and Analysis 3 credits
- MATH 660 Introduction to Statistical Computing with SAS and R 3 credits
- MATH 691 Stochastic Processes with Applications 3 credits
- MATH 698 Sampling Theory 3 credits
- MATH 763 Generalized Linear Models 3 credits
- MATH 768 Probability Theory 3 credits

Total Credits 60

1. MATH 661 Applied Statistics and MATH 663 Introduction to Biostatistics cannot both be used toward degree credits at NJIT. The requirements of MATH 661 Applied Statistics may, in individual cases, be substituted by MATH 663 Introduction to Biostatistics, at the discretion of the Graduate Advisor.

Electives are chosen in consultation with a departmental graduate advisor and consist of advanced courses in mathematics and statistics and advanced courses from engineering, computer science, and biology that have a significant statistics content. Students are encouraged to choose courses in application areas. Courses offered by appropriate departments at NJIT, RBHS, and Rutgers University-Newark can be used as electives within the limits of the NJIT transfer policy. All elective courses must be approved by the graduate advisor.

M.S. in Biostatistics

Degree Requirements

A minimum of 30 credits is required for the degree. Bridge courses, if any, will not count toward degree credits. The graduate curriculum consists of seven core courses in background statistical theory and biostatistics, as described in the curriculum below. The remaining courses are electives, chosen in consultation with a departmental graduate advisor and consist of topics courses in statistics, biostatistics, epidemiology and biology that have significant statistics content or/and applications thereof. Students will be encouraged to choose courses in application areas. Courses offered by appropriate departments at NJIT, RBHS, and Rutgers University-Newark can be used as electives within the limits of the NJIT transfer policy. A masters project is optional, and is in addition to the minimum 30 approved credits, required for the degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 654</td>
<td>Clinical Trials Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 659</td>
<td>Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics ¹</td>
<td>3</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select at least three of the following illustrative list:

- MATH 664 Methods for Statistical Consulting 3 credits
- MATH 691 Stochastic Processes with Applications 3 credits
- MATH 698 Sampling Theory 3 credits
- MATH 707 Advanced Applied Mathematics IV: Special Topics (Advanced Applied Mathematics IV) 3 credits
- MATH 763 Generalized Linear Models 3 credits
- MATH 786 Large Sample Theory and Inference 3 credits
- MATH 787 Non-Parametric Statistics 3 credits
M.S. in Data Science - Statistics Track

Degree Requirements

Students in the Master of Science in Data Science (MSDS) program must successfully complete 30 credits based on any of the following options:

- Courses (30 credits)
- Courses (27 credits) + MS Project (3 credits)
- Courses (24 credits) + MS Thesis (6 credits)

Independent of the chosen option, all core courses in the respective tracks are required.

At most two courses can be chosen from outside the respective track with approval of the respective Program Co-Directors. Computational track students are allowed at most three electives that are non-Computer Science courses. Statistics track students are allowed at most three electives that are non-Math courses.

If a student chooses the MS project or MS thesis option, the project or thesis must be related to data science and requires approval from one of the Program Co-Directors.

The MSDS program has computational and statistics tracks that students must choose from at admission time. These tracks have different core courses but share the same admission requirements and electives.

Students may choose an elective outside the list after approval of their respective advisor.

M.S. in Data Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 680</td>
<td>Advanced Statistical Learning</td>
<td></td>
</tr>
</tbody>
</table>

Electives and Foundation Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 632</td>
<td>Advanced Database System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program (only available to students in the Math core)</td>
<td>3</td>
</tr>
<tr>
<td>CS 639</td>
<td>Elec. Medical Records: Med Terminologies and Comp. Imp.</td>
<td>3</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 645</td>
<td>Security and Privacy in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CS 659</td>
<td>Image Processing and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CS 661</td>
<td>Systems Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CS 670</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 676</td>
<td>Cognitive Computing</td>
<td>3</td>
</tr>
</tbody>
</table>
Recommended course sequence for M.S. in Data Science for Statistics Track

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Math 660 Intro to Statistical Computing with R and SAS</td>
<td>Math 678 Statistical Methods in Data Science</td>
</tr>
<tr>
<td></td>
<td>Math 661 Applied Statistics</td>
<td>CS 644 Big Data</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>Math 630 Linear Algebra and Applications</td>
</tr>
</tbody>
</table>

Total Credits: 30

Ph.D. in Mathematical Sciences

Degree Requirements

Ph.D. students are admitted to the applied mathematics track or the applied statistics and probability track. In either track, students must fulfill the requirements for the doctor of philosophy as specified in this catalog. Students entering with a bachelor’s degree must complete 36 credits of coursework. Those students entering with a master’s degree in mathematical sciences or equivalent must complete 12 credits of advanced 700-level coursework. Specific courses of study are planned in consultation with a faculty advisor and are subject to approval. In general, students are encouraged to take courses both in mathematics and in areas of application. To graduate, students must have an approved dissertation and are expected to attain an overall GPA of at least 3.0.

Seminar: In addition to the minimum degree credits required, all doctoral students must enroll each semester in MATH 791 (https://catalog.njit.edu/search/?P=MATH%20791) Graduate Seminar.

Ph.D. in Mathematical Sciences (students with a Master’s degree in Mathematical Sciences or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700-level courses 1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 790</td>
<td>Doct Dissertation & Res 2</td>
<td></td>
</tr>
<tr>
<td>MATH 792B</td>
<td>Pre Doctoral Research 2</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 791</td>
<td>Graduate Seminar 3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 12

1. No more than 6 credits may be MATH 725 Independent Study. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student’s dissertation committee may ask the student to take additional courses.

2. Ph.D. students who pass the written and oral qualifying examination must then register for the 1-credit dissertation course (MATH 790 (https://catalog.njit.edu/search/?P=CHE%20790) Doct Dissertation & Res) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 (Pre Doctoral Research) course as per Ph.D. program guidelines or dissertation committee recommendation.

3. Students must register eight semesters for this seminar. Part-time students may request that this requirement be waived for some semesters.

Ph.D. in Mathematical Sciences (students with a Bachelor’s degree in Mathematical Sciences or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 and 700-level courses 1</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 790</td>
<td>Doct Dissertation & Res 2</td>
<td></td>
</tr>
<tr>
<td>MATH 792B</td>
<td>Pre Doctoral Research 2</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 791</td>
<td>Graduate Seminar 3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 36

1. Ph.D. students with a recognized Baccalaureate degree are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits). No more than 6 credits may be MATH 725 Independent Study. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student’s dissertation committee may ask the student to take additional courses.

2. Ph.D. students who pass the written and oral qualifying examination must then register for the 1-credit dissertation course (MATH 790 (https://catalog.njit.edu/search/?P=CHE%20790) Doct Dissertation & Res) each semester until they complete all degree requirements. Students may...
take courses simultaneously with the 790 or 792 course (Pre Doctoral Research) as per Ph.D. program guidelines or dissertation committee recommendation. Students must register eight semesters for this seminar. Part-time students may request that this requirement be waived for some semesters.

Courses: A typical schedule of courses for the first two semesters in Applied Mathematics consists of the following:

<table>
<thead>
<tr>
<th>First Year</th>
<th>1st Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 599</td>
<td>Teaching in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 613</td>
<td>Advanced Applied Mathematics I: Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 645</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 651</td>
<td>Methods of Applied Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 614</td>
<td>Numerical Methods I</td>
</tr>
<tr>
<td>MATH 656</td>
<td>Complex Variables I</td>
</tr>
<tr>
<td>MATH 689</td>
<td>Advanced Applied Mathematics II: Ordinary Differential Equations</td>
</tr>
<tr>
<td>MATH 745</td>
<td>Analysis II</td>
</tr>
<tr>
<td>Term Credits</td>
<td>12</td>
</tr>
<tr>
<td>Total Credits</td>
<td>27</td>
</tr>
</tbody>
</table>

Courses: A typical schedule of courses for the first two semesters in Applied Probability and Statistics consists of the following:

<table>
<thead>
<tr>
<th>First Year</th>
<th>1st Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 599</td>
<td>Teaching in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 645</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 665</td>
<td>Statistical Inference</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
</tr>
<tr>
<td>MATH 745</td>
<td>Analysis II</td>
</tr>
<tr>
<td>MATH 768</td>
<td>Probability Theory</td>
</tr>
<tr>
<td>Term Credits</td>
<td>12</td>
</tr>
<tr>
<td>Total Credits</td>
<td>27</td>
</tr>
</tbody>
</table>

Also, there are advanced courses in:

- partial differential equations
- ordinary differential equations and dynamical systems
- optimization
- numerical methods
- computational electromagnetics
- computational fluid dynamics
- computational neuroscience
- financial mathematics
· integral equations
· materials science
· probability and statistics

Deadlines
· The required coursework for the Ph.D. program and the major part of the qualifying exams must be completed successfully by the end of the second year in the program. The written exams are typically completed by the end of the first summer, and the oral exam by the end of the second year.
· The dissertation proposal must be defended successfully by the end of the third year in the Ph.D. program.
· The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

Selection of Dissertation Advisor
Students select a dissertation topic and advisor in the second year of the program. In cases where more than one advisor is directing the dissertation, the primary advisor must be on the core departmental faculty.

Qualifying Examination

Applied Mathematics track: The qualifying examination for the applied mathematics track consists of a preliminary examination in three parts and an oral examination. The three components of the preliminary examination are: Applied Mathematics, Analysis, and Linear Algebra-Numerical Methods. Students must achieve a grade of A in each component to pass the preliminary examination and proceed to the oral examination. Components may be passed at different times. However, a student may attempt each component at most twice and must pass all three components before taking the oral examination. The qualifying examination must be passed by the end of the second year in the program. Typically, two opportunities to take each component are provided each year: Applied Mathematics (January and May), Analysis and Linear Algebra-Numerical Methods (May and August). The oral examination is usually offered in January and May. The oral exam is intended to test the students research readiness. Exam topics are chosen in consultation with the Ph.D. advisor, and include research papers and coursework relevant to the dissertation topic.

Applied Probability and Statistics track: The qualifying examination for the applied probability and statistics track consists of a preliminary examination in three parts and an oral examination. The three components of the preliminary examination are: Probability Distributions and Regression Analysis Methods, Real Analysis and Statistical Inference, Probability Theory and Design and Analysis of Experiments. Students must achieve a grade of A in each component to pass the preliminary examination and proceed to the oral examination. Components may be passed at different times. However, a student may attempt each component at most twice and must pass all three components before taking the oral examination. The qualifying examination must be passed by the end of the second year in the program. Typically, two opportunities to take each component are provided each year: Probability Distributions and Regression Analysis Methods (January and May), Real Analysis and Statistical Inference and Probability Theory and Design and Analysis of Experiments (May and August). The oral examination is usually offered in January and May. The oral exam is intended to test the students research readiness. Exam topics are chosen in consultation with the Ph.D. advisor, and include research papers and coursework relevant to the dissertation topic.

Dissertation Committee

The dissertation committee is an important resource for the doctoral student in the conduct of research for their dissertation. According to the regulations specified in this catalog, doctoral students are required to have a dissertation advisor selected, a dissertation committee formed, and research proposal approved within one year of passage of the qualifying examination.

Dissertation Proposal

Doctoral students must prepare a research proposal for approval by their dissertation committee. The student must offer an oral defense of this proposal before the dissertation committee and obtain its approval within one year of passing the qualifying examination. The committee determines if the proposal has an appropriate objective, if there is a reasonable plan to reach that objective, and if the student possesses the knowledge and skills needed to carry out the plan. The dissertation proposal can only be approved by unanimous consent of the committee members.

Dissertation Defense

A public oral defense of the dissertation before the dissertation committee is required. All members of the committee must be present for the defense. Success of the defense is determined by a majority vote of the dissertation committee.
Statistics for Data Science

Statistics for Data Science is about using statistical concepts and methods to extract and make sense of information contained in data. That information may be used for prediction, decision-making or understanding underlying phenomena, whether it is public health, finance, environmental studies, or technology.

The Statistics for Data Science Graduate Certificate from NJIT will provide an introduction to randomness, sampling, data generation, statistical modeling, data analysis and statistical computing, which participants can leverage to enter the fields of machine learning, data analytics and data science.

Who would be suited to take this program?

This program is suitable for people with a quantitative background and/or some experience with dealing with data, and who would like to obtain some grounding in statistical methods and concepts in the context of data science. Examples include actuaries who are seeking to add data science and statistical learning tools to the other quantitative methods they are already employing in their work; computer scientists who want to complement their computing skills with statistical training; people who are exploring transitioning into careers in data science.

The certificate program is designed to be flexible, requiring only one core course, allowing students to select three elective courses in order to tailor the certificate to their needs.

What are the prerequisites?

Some experience with programming, equivalent to CS100. A year of calculus, equivalent to Math 111 and 112. Although not required, Math 226 (Discrete Analysis) or equivalent is highly recommended.

What will I learn?

- **Math 661: Applied Statistics** – An introduction to basic foundational ideas in probability, statistical inference and data exploration and analysis methods.
- **Math 644: Regression Analysis Methods** – An in-depth study of linear regression, the most commonly used data analysis method. This course covers both the theoretical and applied aspects of regression.
- **Math 678: Statistical Methods for Data Science** – An introduction to statistical learning in data science, covering topics like regularization, K-means, regression and classification trees, and cross-validation.
- **Math 664: Methods for Statistical Consulting** – This course covers applied statistical methods for data analysis, with case studies, examples in R, and group projects.
- **CS 675: Machine Learning** – This course covers implementation of machine learning methods in Python as well as some machine learning theory.
- **CS 644: Introduction to Big Data** – This course covers topics in big data from data generation, storage, management, to analytics, with a focus on computing solutions in high-performance networks.

Suggested program of study

- Math 661, Math 644, Math 660 and Math 678 – this is the recommended sequence appropriate for most students.
- Math 661, Math 644, Math 678 and CS 675 – for students who already have ample experience with the R programming language.
- Math 661, Math 678, Math 664 and CS 675 – for students who already have ample knowledge of regression analysis and the R programming language.

Why Study Statistical Learning at NJIT?

NJIT is situated in Newark, minutes from Newark Penn Station. Jersey City and New York City are also a short train ride away, providing easy access to these commercial areas with many companies that employ statisticians and data scientists. NJIT is a top research university, with faculty performing cutting-edge research and publishing in leading journals. NJIT also consistently ranks highly on added-value and diversity. Finally, the certificate provides balanced training on theoretical and applied aspects of statistical learning.

Into what industries might holders of this program find employment?

Pharmaceuticals, insurance, public health, technology, banking, in fact, any industry that can improve its business through better use of its data.

Prerequisites

Applicants should have a bachelor’s degree with one year of calculus, and some experience with programming.

Related Degree Programs
All courses in this program are related to the NJIT MS in Data Science (especially the Statistics track).

Take Note

Check the course descriptions for more information. Some courses have prerequisites and must be taken in order.

Faculty Advisor: Ji Meng Loh/Andrew Pole

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select three (3) courses of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
<td>3</td>
</tr>
<tr>
<td>or CS 636</td>
<td>Data Analytics with R Program</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 664</td>
<td>Methods for Statistical Consulting</td>
<td>3</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
</tbody>
</table>

* Only a maximum of 2 CS electives are allowed.

Physics

Applied Physics

The NJIT and Rutgers-Newark departments of physics offer a unique opportunity to pursue master's and doctoral degree physics in a joint program combining the resources of two of New Jersey's public research universities.

Interdisciplinary physics research is available in collaboration with faculties of NJIT, Rutgers-Newark and Rutgers-New Brunswick, and RBHS in areas such as device physics, materials research, ultrafast optical and optoelectronic phenomena, imaging technology, surface physics, free electron laser physics, biophysics, discharge physics, solar physics, and applied laser physics. Cooperative research efforts are underway with the National Renewable Energy Laboratory, National Solar Observatory, Lucent Technologies Bell Labs Innovations, U.S. Army Research Laboratory, and other industrial and federal research laboratories.

Master of Science in Applied Physics

The program is for students with an undergraduate degree in physics, applied physics, or engineering, who wish to apply physics to biological problems, optical science, microelectronics, device physics, materials science, solar cells, surface science, laser physics, solar phenomena, and other related areas.

Admission Requirements

A bachelor's degree in physics, applied physics, or related areas from an accredited institution is required. An undergraduate GPA above 3.0 is required. Students must submit GRE (general test) scores. In addition, applicants are required to provide letters of recommendation from their previous academic institutions. Students for whom English is not their native language are required to have TOEFL scores no lower than 550 (pencil and paper) and 213 (computer-based).

Doctor of Philosophy in Applied Physics

This program is for students in applied physics that are interested in and committed to scholarly research.

Admission Requirements

Applicants are expected to have a master's degree in physics, applied physics, or related engineering disciplines from an accredited institution. Highly qualified students with bachelor's degrees may be accepted directly into the doctoral program. A GPA of at least 3.5 in undergraduate and previous graduate studies is normally required for admission. The GRE (general test) and advanced (physics) test scores are required. Applicants are required to provide three letters of recommendation from their previous academic institutions. Students for whom English is not their native language are required to have TOEFL scores no lower than 550 (pencil and paper) and 213 (computer-based).
Materials Science and Engineering
This intercollegiate (CSLA and NCE), interdepartmental, and interdisciplinary degree program is intended for individuals with a strong background in science and/or engineering.

Master of Science in Materials Science and Engineering
Admissions Requirement
Applicants are expected to have an undergraduate degree from an accredited institution. A minimum undergraduate GPA of 3.0 on a 4.0 scale, or equivalent is normally required for admission. An undergraduate major in physics, chemistry, materials science, or a related engineering discipline is preferred. GRE quantitative scores of 700 or higher are highly desirable. Students from countries where English is not the native language should demonstrate TOEFL scores higher than 550 (pencil and paper) and 213 (computer-based).

Doctor of Philosophy in Materials Science and Engineering
This is an intercollegiate (CSLA and NCE), interdepartmental, and interdisciplinary degree program for superior students who wish to do advanced research in an area of materials science and engineering. Current areas of research include electronic and photonic materials, nano and particulate materials, polymer and biomaterials, and other areas of materials science and engineering.

Admission Requirements
Applicants are expected to have an appropriate master's degree in materials science or related field, physics, chemistry, or engineering from an accredited institution. Students entering with a master's degree must have at least a 3.5 GPA on a 4.0 scale in previous graduate study. Highly qualified students with bachelor's degrees may be accepted directly into the doctoral program. These students must have at least a 3.5 GPA in undergraduate work.

NJIT Faculty
A
Ahn, Keun Hyuk, Associate Professor
Ahn, Kwangsu, Assistant Research Professor

C
Cao, Wenda, Associate Professor
Chin, Ken K., Professor
Chen, Bin, Assistant Professor

D
Delahoy, Alan E., Research Professor
Deng, Na, Research Professor
Dias, Cristiano Luis, Assistant Professor

F
Farrow, Reginald C., Research Professor
Federici, John F., Distinguished Professor
Fleishman, Gregory David, Distinguished Research Professor

G
Gary, Dale E., Distinguished Professor
Gatley, Ian, Distinguished Professor
Georgiou, George E., University Lecturer
Gerrard, Andrew J., Professor
Gokce, Oktay Huseyin, Senior University Lecturer
Goode, Philip R., Distinguished Research Professor

J
Janow, Richard H., University Lecturer
Jerez, Andres, University Lecturer
Jing, Ju, Research Professor

K
Kosovichev, Alexander G., Professor

L
Lanzerotti, Louis J., Distinguished Research Professor
Levy, Roland A., Distinguished Professor
Liu, Chang, Research Professor

M
Maljian, Libarid A., University Lecturer

N
Nita, Gelu M., Research Professor

O
Opyrchal, Halina, Senior University Lecturer

P
Platek, Slawomir, Senior University Lecturer
Prodan, Camelia, Associate Professor

R
Ravindra, N. M., Professor
Russo, Onofrio L., Associate Professor

S
Shneidman, Vitaly A., Senior University Lecturer
Sirenko, Andrei, Professor

T
Thomas, Benjamin, Assistant Professor
Thomas, Gordon A., Professor
Towfik, Nissim M., Associate Professor
Tyson, Trevor A., Distinguished Professor

V
Varsik, John R., Research Professor

W
Wang, Haimin, Distinguished Professor
Physics

X
Xu, Yan, Research Professor

Y
Yurchyshyn, Vasyl, Research Professor

Z
Zhou, Tao, Associate Professor

Programs

- Applied Physics - M.S. (p. 386)
- Materials Science and Engineering - M.S. (p. 387)

Programs

- Applied Physics - Ph.D. (p. 390)
- Materials Science & Engineering - Ph.D. (p. 391)

Physics Courses

MTSE 590. Grad Coop Work Exp I. 1 credit, 1 contact hour.

MTSE 591. Grad Coop Work Experience II. 1 credit, 1 contact hour.

MTSE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisites: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

MTSE 601. Fundamentals of Engineering Materials. 3 credits, 3 contact hours.
Prerequisite: graduate standing. Core course for students in Material Science and Engineering. The effect of structure on the properties and behavior of engineering materials. Topics include atomic structure, bonding, crystallography, and defects in solids; properties of metals, semiconductors, ceramics, and polymers and their behavioral response to mechanical, chemical, optical, electrical, and magnetic stimuli.

MTSE 602. Thermodynamics of Materials. 3 credits, 3 contact hours.
Prerequisite: undergraduate thermodynamics. Core course for students in Material Science and Engineering. Review of first, second, and third laws of thermodynamics and their applications to materials. Stability criteria, simultaneous chemical reactions, binary and multicomponent solutions, phase diagrams, surfaces, adsorption phenomena, thermochemistry of homogeneous and heterogeneous reactions are covered.

MTSE 603. Intro to Phys Prin of Material. 3 credits, 3 contact hours.
Introduction to physical principles useful to understand materials properties. Topics include Schrodinger equations, harmonic oscillators, observables, operators, angular momentum, hydrogen atom, atoms, matrix representation of operators, perturbation theory, molecules, metals, insulators, semiconductors, and low dimensional materials.

MTSE 610. Mechanical Properties of Materials. 3 credits, 3 contact hours.
Prerequisite: graduate standing. Elements of elasticity and plasticity theory, deformation and fracture behavior of materials, the concept of dislocations and their interaction with other lattice defects, strengthening mechanisms in solids, and principles of failure analysis. Materials to be studied include metals, polymers, ceramics, glasses, and composites.

MTSE 615. Composite Materials. 3 credits, 3 contact hours.
Prerequisites: MTSE 605 and MTSE 610. Introduction to fundamental principles of design and technology of composite materials. Materials based on polymer, ceramic, and metal matrices are discussed. Properties of the constitutive materials, their structure, methods of structural arrangements, as well as properties and characterization of the final products are described. The different perspectives, examples, and problems in composite applications are outlined.

MTSE 619. Nano-scale Characterization of Materials. 3 credits, 3 contact hours.
The course presents the basics of nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy, near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.

MTSE 625. Introduction to Ceramics. 3 credits, 3 contact hours.
Prerequisite: MTSE 605. Mechanical, thermal, electrical, magnetic, and optical properties of crystalline and glassy ceramics are discussed from a structural viewpoint. Important processing methods, design and evaluation of properties, and modern applications of ceramic materials are emphasized.
MTSE 627. Glass Science and Engineering. 3 credits, 3 contact hours.
Prerequisites: MTSE 605 and MTSE 630. Formation and structure of inorganic, polymeric, and metallic glasses. Transport phenomena, kinetics of crystallization, glass transition, and phase separation; chemical, mechanical and optical properties of glasses.

MTSE 630. Thermodynamics of Materials. 3 credits, 3 contact hours.
Prerequisite: undergraduate thermodynamics. Review of first, second, and third laws of thermodynamics and their applications to materials. Stability criteria, simultaneous chemical reactions, binary and multicomponent solutions, phase diagrams, surfaces, adsorption phenomena, thermochemistry of homogeneous and heterogeneous reactions are covered.

MTSE 650. Physical Metallurgy. 3 credits, 3 contact hours.
Prerequisite: MTSE 605. Processing-structure-property relationships in metallic alloys. Alloy systems covered include carbon steels, stainless steels, aluminum and titanium alloys, and super alloys. Topics to be presented include elementary theory of metals, defects and related phenomena, solidification, phase phenomena, solid state diffusion, nucleation and growth kinetics, as well as transformation and deformation processes.

MTSE 655. Diffusion and Solid State Kinetics. 3 credits, 3 contact hours.
Prerequisite: MTSE 605. The atomic theory of diffusion and mathematical derivation of the diffusion equations. Diffusion phenomena in dilute alloys as well as in ionic and covalent solids are considered. High atom mobility effects at defect sites and surfaces are examined. Chemical kinetics and kinetics of phase transformations including nucleation, growth, and spinodal decomposition are discussed.

MTSE 681. Composite Materials. 3 credits, 3 contact hours.
Prerequisites: MTSE 601 and MTSE 610. Introduction to fundamental principles of design and technology of composite materials. Materials based on polymer, ceramic, and metal matrices are discussed. Properties of the constitutive materials, their structure, methods of structural arrangements, as well as properties and characterization of the final products are described. The different perspectives, examples, and problems in composite applications are outlined.

MTSE 682. Introduction to Ceramics. 3 credits, 3 contact hours.
Prerequisite: MTSE 601. Mechanical, thermal, electrical, magnetic, and optical properties of crystalline and glassy ceramics are discussed from a structural viewpoint. Important processing methods, design and evaluation of properties, and modern applications of ceramic materials are emphasized.

MTSE 684. Physical Metallurgy. 3 credits, 3 contact hours.
Prerequisite: MTSE 601. Processing-structure-property relationships in metallic alloys. Alloy systems covered include carbon steels, stainless steels, aluminum and titanium alloys, and super alloys. Topics to be presented include elementary theory of metals, defects and related phenomena, solidification, phase phenomena, solid state diffusion, nucleation and growth kinetics, as well as transformation and deformation processes.

MTSE 685. Glass Science and Engineering. 3 credits, 3 contact hours.
Prerequisites: MTSE 601 and MTSE 602. Formation and structure of inorganic, polymeric, and metallic glasses. Transport phenomena, kinetics of crystallization, glass transition, and phase separation; chemical, mechanical and optical properties of glasses.

MTSE 686. Mathematical and Statistical Methods in Materials Science. 3 credits, 3 contact hours.
Prerequisites: MATH 111, MATH 112 and (MATH 211 or MATH 213). The course introduces mathematical methods necessary for materials science with emphasis on practical applications. Topics include power series, complex numbers, linear algebra, partial differentiation, multiple integrals, vector analysis, Fourier series and transformation, ordinary and partial differential equations, functions of complex variables, probability, and statistics.

MTSE 690. Directed Study in Materials Science and Engineering. 3 credits, 3 contact hours.
Prerequisite: As specified by the instructor. Directed study at the Master's level under the guidance of a faculty member on a topic in materials science and engineering.

MTSE 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. A written report must be submitted to the project advisor. The student cannot register in MTSE 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTSE 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in MTSE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTSE 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (MTSE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).
MTSE 702. Characterization of Solids. 3 credits, 3 contact hours.
Current methods for characterizing the chemical composition, crystallographic structure, electrical mapping, and morphology of solid materials. Principles and application of Auger Electron Spectroscopy (AES), Secondary Ion Mass Spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS), X-ray Emission Spectroscopy (XES), and Rutherford Backscattering Spectroscopy (RBS) for chemical analysis, X-ray Diffraction (XRD) and electron diffraction for crystallographic analysis, Electron Beam Induced Current (EBIC) microscopy, voltage contrast microscopy, Cathodoluminescence for electrical mapping, and Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Nomarski interference contrast microscopy (DIC) for morphology.

MTSE 719. Physical Principles of Characterization of Solids. 3 credits, 3 contact hours.

MTSE 722. Science and Technology of Thin Films. 3 credits, 3 contact hours.
Prerequisite: graduate standing. Methods of preparing thin films by physical and chemical means are examined. Topics pertinent to nucleation and growth mechanism of single and polycrystalline films, structure determination, film thickness and compositional evaluation properties are discussed. The electrical, magnetic, optical, and mechanical properties of metallic, semiconductor, and insulating thin films are studied with particular relevance to integrated circuit applications.

MTSE 723. Defects in Solids. 3 credits, 3 contact hours.
Prerequisites: MTSE 601 and MTSE 725. Crystallographic defects in solids, namely point defects such as vacancies and interstitial, line defects such as dislocations, and planar defects such as grain boundaries. Correlation of these defects to the mechanical, electrical and optical behavior of materials is examined in particular. Experimental methods for observation and characterization of defects including TEM, EBIC, DLTS are described.

MTSE 724. Transport of Electrons and Phonons in Solids. 3 credits, 3 contact hours.
Prerequisite: PHYS 687 or R755 687. Basic transport processes involving electrons and phonons in solids. Topics include transport-related phenomena such as Hall effect, quantum Hall effect, magneto-resistance, size effects, thermal conductivity, thermolectric effects, phonon drag, ballistic phonons, and ballistic electrons. Applications of transport to the characterization of new electronic materials including thin films are stressed.

MTSE 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

MTSE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for MTSE 726 if they have taken MTSE 725 in a prior semester.

MTSE 737. Transport of Electrons and Phonons in Solids. 3 credits, 3 contact hours.
Prerequisite: PHYS 687 or R755 687. Basic transport processes involving electrons and phonons in solids. Topics include transport-related phenomena such as Hall effect, quantum Hall effect, magneto-resistance, size effects, thermal conductivity, thermolectric effects, phonon drag, ballistic phonons, and ballistic electrons. Applications of transport to the characterization of new electronic materials including thin films are stressed.

MTSE 757. Defects in Solids. 3 credits, 3 contact hours.
Prerequisites: MTSE 605 and MTSE 725. Crystallographic defects in solids, namely point defects such as vacancies and interstitial, line defects such as dislocations, and planar defects such as grain boundaries. Correlation of these defects to the mechanical, electrical and optical behavior of materials is examined in particular. Experimental methods for observation and characterization of defects including TEM, EBIC, DLTS are described.

MTSE 765. Science and Technology of Thin Films. 3 credits, 3 contact hours.
Prerequisite: graduate standing. Methods of preparing thin films by physical and chemical means are examined. Topics pertinent to nucleation and growth mechanism of single and polycrystalline films, structure determination, film thickness and compositional evaluation properties are discussed. The electrical, magnetic, optical, and mechanical properties of metallic, semiconductor, and insulating thin films are studied with particular relevance to integrated circuit applications.

MTSE 780. Current Topics in Materials Science and Engineering. 3 credits, 3 contact hours.
Prerequisites: As specified by the program for the semester's offering. Topics of current interest in materials science and engineering.

MTSE 788. Appl Comp Meth-Phys & Matls II. 3 credits, 3 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.
MTSE 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Co-requisite: MTSE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. For PhD students who have successfully defended their dissertation proposal. The student must register in MTSE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

MTSE 790B. Doc Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: MTSE 791. Since the MTSE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

MTSE 790C. Doc Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: MTSE 791. Since the MTSE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in materials science. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

MTSE 790D. Doc Dissertation & Res. 9 credits, 9 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.

MTSE 790E. Doct Dissertat & Resrch. 12 credits, 12 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.

MTSE 790F. Doct Distwrn & Research. 15 credits, 15 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for 6 credits each semester until 36 credits are reached. If the dissertation is not yet complete, registration for an additional 3 credits is required each semester thereafter.

MTSE 790G. Doctr Dissrrtn & Resrch. 18 credits, 18 contact hours.

MTSE 791. Graduate Seminar. 0 credits, 1 contact hour.
Required of all students enrolled in the M.S. or Ph.D. Program in Materials Science and Engineering. Faculty, students, and invited speakers will present and discuss current topics of research in materials science and engineering.

MTSE 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: MTSE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in materials science. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

MTSE 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

PHYS 590. Graduate Coop Work Exp I. 1 credit, 1 contact hour.

PHYS 591. Graduate Coop Work Exp II. 1 credit, 1 contact hour.

PHYS 607. Topics in Astronomy and Cosmology. 3 credits, 3 contact hours.
Prerequisites: college-level physics and mathematics. A survey of recent progress in astronomy, the physical principles involved, and the impact these new discoveries have on our understanding of the universe. Includes results from recent and ongoing planetary probes of our solar system, discovery of planetary systems around other stars, the evolution of stars, exotic objects such as neutron stars and black holes, the formation of galaxies, and current understanding of the birth and final fate of the universe. Observing sessions familiarize students with the sun, moon, and night sky.

PHYS 611. Adv Classical Mechanics. 3 credits, 3 contact hours.
Restrictions: Permission of the course instructor (Equivalent undergraduate junior- or senior-level coursework required at a B or higher grade).

PHYS 621. Classical Electrodynamics. 3 credits, 3 contact hours.
Restrictions: Permission of the course instructor (Equivalent undergraduate junior- or senior-level coursework required at a B or higher grade).

PHYS 641. Statistical Mechanics. 3 credits, 3 contact hours.

PHYS 652. Fund of Optical Imaging. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 (Classical Electricity and Magnetism I) This is designed as a principal course of introducing optical engineering to master students in applied optics. The goal is to help students acquire the practical technical knowledge on optical systems and their design. The general approach throughout the course is to emphasize the application of basic optical principles to practice. Topics include general principles of geometric and physical optics, elemental geometric optics under paraxial ray approximation, aberrations, prisms and mirrors, the eye, stops and apertures, optical materials and interference coating, radiometry and photometry, basic optical devices, optical computation, image evaluation and optical system design, particularly computer aided designs.
PHYS 661. Solid-State Physics. 3 credits, 3 contact hours.
Properties of solid state materials are explained based on principles of physics. Electronic, magnetic, thermal, optical, and lattice properties of materials are studied. Various experimental and theoretical approaches are introduced.

PHYS 681. Solar Phys & Instrumentn. 3 credits, 3 contact hours.

PHYS 682. Introduction To Memrs. 3 credits, 3 contact hours.

PHYS 687. Physics of Materials. 3 credits, 3 contact hours.
Prerequisite: PHYS 441 or equivalent (see undergraduate catalog for description). Fundamentals of quantum mechanics; energy bands in crystals; electrical conduction in metals and alloys, semiconductors; optical properties of materials; quantum mechanical treatment of optical properties; magnetic properties of materials; thermal properties, heat capacity, and thermal expansion in solids.

PHYS 688. Mathematical and Statistical Methods in Materials Science. 3 credits, 3 contact hours.
More emphasis on analytical methods and statistics. Course will be required for Ph.D. students in Materials Science.

PHYS 690. Directed Study Appl Phys. 3 credits, 3 contact hours.

PHYS 698. ST:. 3 credits, 3 contact hours.

PHYS 700. Master'S Project. 3 credits, 3 contact hours.
Prerequisite: Written approval from graduate advisor. For students admitted to the Master of Science program in applied physics who do not take Phys 701 Master's Thesis. An extensive paper involving experimental or theoretical investigation of a topic in microelectronics or other applied physics area is required. Cooperative projects with industry or government agencies may be acceptable. The project is carried out under the supervision of a designated physics graduate faculty member.

PHYS 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics. A written report must be submitted to the project advisor. The student cannot register in PHYS 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PHYS 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in PHYS 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PHYS 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (PHYS 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

PHYS 721. Classical Electrodynamics II. 3 credits, 3 contact hours.
Prerequisite: PHYS 621 or equivalent; basic knowledge of tensor analysis. Simple radiating systems, scattering and diffraction; special theory of relativity; dynamics of relativistic particles and electromagnetic fields; collisions between charged particles, energy loss, and scattering; radiation from accelerated charge, synchrotron radiation, and bremsstrahlung.

PHYS 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

PHYS 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for PHYS 726 if they have taken PHYS 725 in a prior semester.

PHYS 728. Radio Astronomy. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 and PHYS 641 or the equivalent, or approval of the instructor. An introduction to radio emission processes, radiative transfer, radio diagnostics, and radio instrumentation. Topics include radio flux measurements with single antenna, radio imaging with interferometer arrays (Fourier Transform imaging), and image reconstruction techniques (CLEAN, MEM). Application is to astronomical objects with special emphasis on the Sun.

PHYS 731. Quantum Mechanics II. 3 credits, 3 contact hours.
Prerequisite: PHYS 631 or equivalent. Review of quantum mechanics and theory of special relativity; second quantization; relativistic one-particle problem; Klein-Gordon equation and Dirac equation; canonical field theory; relativistic scattering theory; introduction to quantum electrodynamics and quantum field theory; Feynman diagrams and applications.
PHYS 741. Basic Plasma Phys w Space, Lab. 3 credits, 3 contact hours.
Prerequisites: PHYS 611, PHYS 621, other equivalent, or approval of the instructor. Corequisites: PHYS 611, PHYS 621. The course will introduce students to basic concepts of plasma physics and its applications to laboratory experiments and space research. The course will cover the following topics: particle motions in magnetic field, adiabatic invariants, magnetic traps, radiation belts, electromagnetic waves in plasma, electrostatic oscillations, waves in magnetized plasma, collisional processes in plasma, kinetic effects on plasma waves, Landau damping, wave instabilities, plasma as fluid, magnetohydrodynamics, magnetic configurations of laboratory and space plasma, MHD instabilities, reconnection, helicity, dynamo theories, the origin of cosmic magnetic fields, stochastic processes, particle acceleration, and cosmic rays.

PHYS 747. Intro to Helioseismology. 3 credits, 3 contact hours.
Prerequisites: PHYS 611, PHYS 621 or other equivalent. The course will introduce the physical principles and methods to study wave oscillations, and the interior structure of the Sun. The course covers processes of acoustic and gravity wave excitation and propagation, interaction with turbulence and magnetic fields, oscillation spectrum, sunquakes, inferences of the structure and composition, the differential rotation, large-scale flows and meridional circulation. It includes the theory of normal modes, inversion techniques, wave dispersion analysis, acoustic tomography and holography, applications to the solar dynamo and magnetic activity.

PHYS 751. Applied Optics. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 (Classical Electricity and Magnetism I) The course will introduce students to basic concepts of applied optics, light propagation and light and matter interactions. The course will cover the following topics: light propagation through mirrors and lenses, matrix optics, basic concepts of wave optics, reflection, refraction and transmission, equations governing wave propagation, Gaussian beams, Maxwell’s equations, absorption, dispersion, light polarization states, temporal and spatial coherences.

PHYS 753. Light Sources & Photodetectors. 3 credits, 3 contact hours.
Prerequisites: PHYS 621 and PHYS 631. This is a survey course on theory and practical aspects of light sources and photodetectors. The specific light sources covered will be: black body, discharge tubes, X-ray, light.

PHYS 774. Fundamentals of Spectroscopy. 3 credits, 3 contact hours.
The major objectives of this course are to integrate theory and practice and to bring together different branches of Academic Studies and Industrial Research through the presentation of critical aspects of modern Spectroscopy. The course will provide a valuable theoretical introduction and an overview of modern topics in spectroscopy, which are of current interest and importance in Semiconductor Industry and Biomedicine. A wide range of techniques is considered, including optical Near field spectroscopy, X-ray, Raman, Neutron scattering, and FT-IR spectroscopy.

PHYS 780. Curr Topics Applied Phys. 3 credits, 3 contact hours.

PHYS 787. New Concepts of Semiconductor. 3 credits, 3 contact hours.
Prerequisite: PHYS 687 and ECE 657. This is an advanced course on semiconductor physics targeted at describing polycrystalline materials, e.g. cadmium telluride or copper indium diselenide, that are currently used in thin-film photovoltaic panels. An overview of classical semiconductor and solar cell theory is followed by topics such as non-shallow dopants, multi-level defects, defect transition energy level, and metastability. These concepts are applied to examine minority carrier lifetime and carrier collection in devices, and to extend the theories of admittance and deep level transient spectroscopy.

PHYS 789. Physics of Advanced Semiconductor Device Processing. 3 credits, 3 contact hours.
Prerequisites: NJIT: EE 657, R755 687; or equivalent. Intended for doctoral students in applied physics, electrical engineering, and materials science. (Rutgers = R755 789)Silicon and GaAs technologies: crystal growth methods, epitaxy, oxidation, lithography, dry and wet etching techniques, polysilicon, diffusion, ion implantation, metallization (including silicidation), process integration, analytical characterization techniques, assembly and packaging, and yield and reliability.

PHYS 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Corequisite: PHYS 791. Passing grade on departmental qualifying examination and approval of doctoral candidacy. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester. Registration for additional credits, up to 12 per semester, is permitted with the approval of the department graduate advisor. Experimental or theoretical investigation of a topic in applied physics, including microelectronics, materials science, and laser physics. Cooperative projects with industry or government agencies may be acceptable. Research and writing is carried out under the supervision of a designated graduate faculty member. The completed written dissertation should be a substantial contribution to the knowledge of the topic under research, and should be of sufficient merit to warrant publication in a leading scientific or technical journal.

PHYS 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: PHYS 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics. For PhD students who have successfully defended their dissertation proposal. The student must register in PHYS 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

PHYS 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: PHYS 791. Since the PHYS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in applied physics. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).
PHYS 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: PHYS 791. Since the PHYS 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in applied physics. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

PHYS 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

PHYS 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

PHYS 790F. Doct Dissertation & Res. 15 credits, 3 contact hours.

PHYS 790G. Doct Dissertation & Res. 18 credits, 3 contact hours.

PHYS 791. Doctoral Seminar. 0 credits, 0 contact hours.

PHYS 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: PHYS 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in applied physics. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

Rutgers-Newark Courses

R750 501. Quantum Mechanics. 3 credits, 3 contact hours.
R750 504. Elect & Magnetism II. 3 credits, 3 contact hours.
R750 509. Physics Appli Cmpters. 3 credits, 3 contact hours.
R750 537. Recent Intl. Relations. 3 credits, 0 contact hours.
R750 543. Galaxies And Milky Ways. 3 credits, 3 contact hours.
R750 501. Solid State Physics I. 3 credits, 0 contact hours.
R750 502. Solid State Physics II. 3 credits, 3 contact hours.
R750 617. Genl Theo Relativity. 3 credits, 0 contact hours.
R750 620. Many Body Physics. 3 credits, 3 contact hours.
R750 621. Adv Many Body. 3 credits, 3 contact hours.
R750 681. Adv Top Sol State. 3 credits, 3 contact hours.
R750 771. Quantum Electronics. 3 credits, 3 contact hours.
R750 611. Special Topics in PHYS. 3 credits, 3 contact hours.
R750 631. Quantum Mechanics. 3 credits, 3 contact hours.
R750 701. Dissertation Research. 3 credits, 0 contact hours.
R750 702. Diss Research. 3 credits, 0 contact hours.
R755 710. ST:. 3 credits, 3 contact hours.
R755 771. Quantum Electronics. 3 credits, 0 contact hours.
R755 772. Plasma Physics. 3 credits, 0 contact hours.
R755 774. Intro To Spectro. 3 credits, 0 contact hours.
R755 780. Adv Quantum Mech. 3 credits, 3 contact hours.
R755 791. Doctoral Seminar. 0 credits, 0 contact hours.
R755 866. Grad Assistant. 6 credits, 3 contact hours.

M.S. in Applied Physics

A minimum of 30 degree credits (600 or 700 level), including a 6-credit thesis or a 3-credit project is required. Of the 30 credits, 18 must be physics courses (including 3 credits of mathematical physics or applied mathematics). The remaining 12 to 15 credits are elective courses.

Seminar: In addition to the minimum 30 degree credits required, all students who receive departmental or research-based awards must enroll each semester in PHYS 791 Doctoral Seminar.
M.S. in Applied Physics (Master’s project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamic</td>
<td>3</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Five electives \(^1\) 15

Total Credits 30

\(^1\) Selected in consultation with a graduate advisor.

M.S. in Applied Physics (Master’s thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamic</td>
<td>3</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 701C</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

Electives

Four electives \(^1\) 12

Total Credits 30

\(^1\) Selected in consultation with a graduate advisor.

M.S. in Materials Science and Engineering

The program is offered in two options, the Materials Science option and the Materials Engineering option. These options are administered by the CSLA (College of Science and Liberal Arts) and NCE (Newark College of Engineering) colleges, respectively. A joint committee involving CSLA and NCE faculty will be in charge of overseeing this program.

Students learn about the synthesis, properties, modeling, and applications of various materials in this program. There are two options in this program - Materials Science Option and Materials Engineering Option.

Materials Science Option

Administered by Department of Physics, CSLA

Degree Requirements

Students who lack appropriate undergraduate preparation for the program may be admitted and required to make up deficiencies by taking a program of bridge courses which is designed in consultation with the graduate advisor. These courses are taken in addition to the degree requirements and may include undergraduate courses.

Candidates must complete a minimum of 30 credits, including 12 credits of required materials science courses and 18 credits in a track, which are selected in consultation with the program director or graduate advisor. The 30 credits could include 3 credits of MTSE 700 Master’s Project or 6 credits of MTSE 701 Master’s Thesis, but not both.

Seminar

All students must enroll each semester in MTSE 791 (Graduate Seminar, 0 credit), unless the requirement is waived by the Director for Materials Science Option of Materials Science and Engineering program.
Track

The range of possible tracks and courses is broad and is not limited to the tracks and courses listed here. Students should consult the graduate advisor in designing the track and the course requirements of the track.

Cross-listed courses

Any cross-listed courses will not be offered simultaneously, but only one of the two will be offered at a time.

M.S. in Materials Science and Engineering – Materials Science Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 601</td>
<td>Fundamentals of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 610</td>
<td>Found of Materials Sci & Engr</td>
<td></td>
</tr>
<tr>
<td>MTSE 602</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 612</td>
<td>Thermodynamics of Materials</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following four courses: 6

- MTSE 603 Intro to Phys Prin of Material
- MTSE 688 Mathematical and Statistical Methods in Materials Science
- MTSE 765 Science and Technology of Thin Films
- CHEM 748 Nanomaterials
- or MTEN 712 Nanomaterials

Area of Specialization 1

Select six courses from one of the following areas: 18

Electronic and Photonic Materials

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
</tr>
<tr>
<td>MTSE 765</td>
<td>Science and Technology of Thin Films</td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
</tr>
<tr>
<td>or MTEN 712</td>
<td>Nanomaterials</td>
</tr>
<tr>
<td>MTSE 610</td>
<td>Mechanical Properties of Materials</td>
</tr>
<tr>
<td>MTSE 655</td>
<td>Diffusion and Solid State Kinetics</td>
</tr>
<tr>
<td>or MTEN 611</td>
<td>Diffusion & Solid State Kineti</td>
</tr>
<tr>
<td>MTSE 681</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
</tr>
<tr>
<td>MTSE 724</td>
<td>Transport of Electrons and Phonons in Solids</td>
</tr>
<tr>
<td>MTSE 725</td>
<td>Independent Study I</td>
</tr>
<tr>
<td>PHYS 661</td>
<td>Solid-State Physics</td>
</tr>
<tr>
<td>PHYS 682</td>
<td>Introduction To Mems</td>
</tr>
<tr>
<td>PHYS 687</td>
<td>Physics of Materials</td>
</tr>
<tr>
<td>PHYS 789</td>
<td>Physics of Advanced Semiconductor Device Processing</td>
</tr>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamic</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS 731</td>
<td>Quantum Mechanics II</td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Advanced Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
</tr>
<tr>
<td>CHEM 737</td>
<td>Applications of Computational Chemistry and Molecular Modeling</td>
</tr>
<tr>
<td>CHEM 764</td>
<td>Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>CHE 702</td>
<td>Selected Topics in Chemical Engineering II</td>
</tr>
<tr>
<td>ECE 625</td>
<td>Fiber and Integrated Optics</td>
</tr>
<tr>
<td>ECE 626</td>
<td>Optoelectronics - Nonlinear Modulators for Optical Communication</td>
</tr>
<tr>
<td>ECE 657</td>
<td>Semiconductor Devices</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>ECE 658</td>
<td>VLSI Design I</td>
</tr>
<tr>
<td>ECE 659</td>
<td>Fabrication Principles of Electronic and Optoelectronic Devices</td>
</tr>
<tr>
<td>ECE 739</td>
<td>Laser Systems</td>
</tr>
</tbody>
</table>

Particulate and Nano Materials

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
</tr>
<tr>
<td>MTSE 765</td>
<td>Science and Technology of Thin Films</td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
</tr>
<tr>
<td>or MTEN 712</td>
<td>Nanomaterials</td>
</tr>
<tr>
<td>MTSE 610</td>
<td>Mechanical Properties of Materials</td>
</tr>
<tr>
<td>MTSE 655</td>
<td>Diffusion and Solid State Kinetics</td>
</tr>
<tr>
<td>or MTEN 611</td>
<td>Diffusion & Solid State Kinetics</td>
</tr>
<tr>
<td>MTSE 681</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
</tr>
<tr>
<td>MTSE 655</td>
<td>Diffusion and Solid State Kinetics</td>
</tr>
<tr>
<td>or MTEN 611</td>
<td>Diffusion & Solid State Kinetics</td>
</tr>
<tr>
<td>MTSE 725</td>
<td>Independent Study I</td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Advanced Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>CHEM 737</td>
<td>Applications of Computational Chemistry and Molecular Modeling</td>
</tr>
<tr>
<td>CHEM 764</td>
<td>Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>BME 669</td>
<td>Engineering Physiology</td>
</tr>
<tr>
<td>BME 672</td>
<td>Biomaterials</td>
</tr>
<tr>
<td>CHE 681</td>
<td></td>
</tr>
<tr>
<td>CHE 682</td>
<td></td>
</tr>
<tr>
<td>CHE 627</td>
<td>Introduction to Biomedical Engineering</td>
</tr>
<tr>
<td>PHYS 661</td>
<td>Solid-State Physics</td>
</tr>
<tr>
<td>PHYS 682</td>
<td>Introduction To Mems</td>
</tr>
<tr>
<td>PHYS 687</td>
<td>Physics of Materials</td>
</tr>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamic</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS 731</td>
<td>Quantum Mechanics II</td>
</tr>
<tr>
<td>ME 676</td>
<td>Applied Plasticity</td>
</tr>
<tr>
<td>ME 678</td>
<td>Engineering Design of Plastic Products</td>
</tr>
</tbody>
</table>

Mathematical and Computational Materials Science Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
</tr>
<tr>
<td>MATH 613</td>
<td>Advanced Applied Mathematics I: Modeling</td>
</tr>
<tr>
<td>MATH 666</td>
<td>Simulation for Stochastic Systems</td>
</tr>
<tr>
<td>MATH 671</td>
<td>Asymptotic Methods I</td>
</tr>
<tr>
<td>MATH 675</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 677</td>
<td>Calculus of Variations</td>
</tr>
<tr>
<td>MATH 689</td>
<td>Advanced Applied Mathematics II: Ordinary Differential Equations</td>
</tr>
<tr>
<td>MATH 690</td>
<td>Advanced Applied Mathematics III: Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 712</td>
<td>Numerical Methods II</td>
</tr>
<tr>
<td>MATH 713</td>
<td>Advanced Scientific Computing: Multi-Dimensional Finite-Difference Schemes and Spectral Methods</td>
</tr>
<tr>
<td>MATH 722</td>
<td>Wave Propagation</td>
</tr>
</tbody>
</table>
Ph.D. in Applied Physics

Qualifying Examination and Research Examination
The student must pass a written qualifying examination and oral research examination. The written qualifying examination is administered yearly to test general academic preparation and competence for research in applied physics. Within one year after passing the written qualifying examination, the student is required to pass the oral qualifying examination to achieve Ph.D. candidacy, in which the prospective Ph.D. candidate presents a preliminary research proposal for approval by the dissertation committee. The student will be allowed two attempts to pass the written or oral qualifying examination.

Dissertation and Defense
An oral presentation and defense of the doctoral dissertation is required. A five-member committee, chaired by the dissertation advisor, must approve the content and presentation of the dissertation research.

Degree Requirements
Ph.D. in Applied Physics (with bachelor's degree)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 721</td>
<td>Classical Electrodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 731</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>Two</td>
<td>additional 700-level physics courses</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>(Four 3-credit courses)</td>
<td>12</td>
</tr>
<tr>
<td>PHYS 791</td>
<td>Doctoral Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

1 No less than 12 credits must be at the 700 level.
2 All doctoral students must enroll in each semester, including each semester they are enrolled in.
3 PHYS 792B Pre-doctoral Research
 Students who pass the Qualifying Examination (QE) must then register in PHYS 792B every semester until they defend successfully the dissertation proposal
4 PHYS 790A Doctoral Dissertation and Research
 Students who defend the dissertation proposal successfully must then register in PHYS 790A every semester until they complete all degree requirements
Ph.D. in Applied Physics (with master's degree)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 721</td>
<td>Classical Electrodynamics II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 731</td>
<td>Quantum Mechanics II</td>
<td>5</td>
</tr>
</tbody>
</table>

Two additional 700-level physics courses: 6 credits

PHYS 791 | Doctoral Seminar | 0

1. No less than 12 credits must be at the 700 level.
2. All doctoral students must enroll in the seminar course every semester they are enrolled in PHYS 792B or PHYS 790A.
3. PHYS 792B Pre-doctoral Research
 - Students who pass the Qualifying Examination (QE) must then register in PHYS 792B every semester until they defend successfully the dissertation proposal. 3 credits
4. PHYS 790A Doctoral Dissertation and Research
 - Students who defend the dissertation proposal successfully must then register in PHYS 790A every semester until they complete all degree requirements. 1 credit

Ph.D. in Materials Science and Engineering

The program is offered in two options, the Materials Science option (p. 391) and the Materials Engineering option (p. 470). These options are administered by the CSLA (College of Science and Liberal Arts) and NCE (Newark College of Engineering) colleges, respectively. A joint committee involving CSLA and NCE faculty will be in charge of overseeing this program.

Materials Science Option

Administered by Department of Physics, CSLA

Degree Requirements

Students with an appropriate master's degree in materials science or related field, physics, chemistry or engineering, are required to complete a course work of 12 credits in 700 level courses beyond the master's degree. Students must also complete sufficient credits of dissertation research (MTSE 790) and meet the milestone deadlines, as specified by the Office of Graduate Studies. Specific course selection, the track and dissertation topics are approved by the program advisor on an individual basis.

Students entering with bachelor's degrees are required to complete a course work of 36 credits. Students must also complete sufficient credits of dissertation research (MTSE 790) and meet the milestone deadlines, as specified by the Office of Graduate Studies. For the course work, the required courses for the M.S. in Materials Science are mandatory; no less than 12 credits must be at the 700 level and none at the 500 level. Specific course selection, the track, and dissertation topics are approved by the program advisor on an individual basis.

Seminar

All students must enroll each semester in MTSE 791 (Graduate Seminar, 0 credit), unless the requirement is waived by the Director for Materials Science Option of Materials Science and Engineering program.

Tracks

The range of possible tracks and courses is broad and is not limited to the tracks and courses listed here. Students should consult the graduate advisor in designing the track and course requirements of the track.

Cross-listed courses

Any cross-listed courses will not be offered simultaneously, but only one of the two will be offered at a time.

Ph.D. in Materials Science and Engineering – Materials Science option (entering with master's degree)
Ph.D. in Materials Science and Engineering – Materials Science option (entering with bachelor's degree)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses (2 common and 2 selective courses)</td>
<td></td>
</tr>
<tr>
<td>MTSE 601</td>
<td>Fundamentals of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 610</td>
<td>Found of Materials Sci & Engr</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 602</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 612</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two of the following four courses</td>
<td>9</td>
</tr>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
<td></td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
<td></td>
</tr>
<tr>
<td>MTSE 765</td>
<td>Science and Technology of Thin Films</td>
<td></td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
<td></td>
</tr>
<tr>
<td>or MTEN 712</td>
<td>Nanomaterials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remaining courses</td>
<td></td>
</tr>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 765</td>
<td>Science and Technology of Thin Films</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 712</td>
<td>Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 610</td>
<td>Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 655</td>
<td>Diffusion and Solid State Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 611</td>
<td>Diffusion & Solid State Kinet</td>
<td></td>
</tr>
<tr>
<td>MTSE 681</td>
<td>Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 724</td>
<td>Transport of Electrons and Phonons in Solids</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 661</td>
<td>Solid-State Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 682</td>
<td>Introduction To Mem</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 687</td>
<td>Physics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 789</td>
<td>Physics of Advanced Semiconductor Device Processing</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamic</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 731</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Advanced Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

No less than 12 credits must be at the 700 level, including credits from the required courses.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 737</td>
<td>Applications of Computational Chemistry and Molecular Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 764</td>
<td>Advanced Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 702</td>
<td>Selected Topics in Chemical Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 625</td>
<td>Fiber and Integrated Optics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 626</td>
<td>Optoelectronics - Nonlinear Modulators for Optical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ECE 657</td>
<td>Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECE 658</td>
<td>VLSI Design I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 659</td>
<td>Fabrication Principles of Electronic and Optoelectronic Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECE 739</td>
<td>Laser Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Particulate and Nano Materials Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 765</td>
<td>Science and Technology of Thin Films</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 748</td>
<td>Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 712</td>
<td>Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 610</td>
<td>Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 655</td>
<td>Diffusion and Solid State Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 611</td>
<td>Diffusion & Solid State Kineti</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 681</td>
<td>Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 719</td>
<td>Physical Principles of Characterization of Solids</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Advanced Organic Chemistry I: Structure</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Advanced Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 737</td>
<td>Applications of Computational Chemistry and Molecular Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 764</td>
<td>Advanced Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>BME 669</td>
<td>Engineering Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 672</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 661</td>
<td>Solid-State Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 682</td>
<td>Introduction To Mems</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 687</td>
<td>Physics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 611</td>
<td>Adv Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 621</td>
<td>Classical Electrodynamic</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 641</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>R755 631</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 731</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>ME 676</td>
<td>Applied Plasticity</td>
<td>3</td>
</tr>
<tr>
<td>ME 678</td>
<td>Engineering Design of Plastic Products</td>
<td>3</td>
</tr>
</tbody>
</table>

Mathematical and Computational Materials Science Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 603</td>
<td>Intro to Phys Prin of Material</td>
<td>3</td>
</tr>
<tr>
<td>MTSE 688</td>
<td>Mathematical and Statistical Methods in Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 613</td>
<td>Advanced Applied Mathematics I: Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 666</td>
<td>Simulation for Stochastic Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 671</td>
<td>Asymptotic Methods I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 675</td>
<td>Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 677</td>
<td>Calculus of Variations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 689</td>
<td>Advanced Applied Mathematics II: Ordinary Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>
Qualifying Examination

The student must pass a written and an oral qualifying examination. The written qualifying exam given every summer is administered to test general academic preparation and competence in the research of Materials Science. Within one year after passing the written qualifying exam, the student is required to pass the oral qualifying exam to achieve Ph.D. candidacy, in which the potential Ph.D. candidate presents a preliminary research proposal for approval by the dissertation committee. The student will be allowed two attempts to pass the written or oral qualifying exam.

Students take written qualifying exams on the following common required courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSE 601</td>
<td>Fundamentals of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 610</td>
<td>Found of Materials Sci & Engr</td>
<td></td>
</tr>
<tr>
<td>MTSE 602</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTEN 612</td>
<td>Thermodynamics of Materials</td>
<td></td>
</tr>
</tbody>
</table>

Formation of Dissertation Committee

Within one year of passing the written qualifying examination, doctoral students must form a five-member dissertation committee that meets the approval of the graduate program director for Materials Science Option of Materials Science and Engineering. The committee must include the dissertation advisor, three additional faculty members from the program, and at least one member from outside the program or NJIT.

Dissertation and Defense

An oral presentation and public defense of the doctoral dissertation is required.

Newark College of Engineering

One of the oldest and largest professional engineering schools in the United States, Newark College of Engineering offers 10 undergraduate degree programs, 21 master’s and 9 doctoral degree programs. Undergraduate enrollment is more than 3,500, and more than 1,400 are enrolled in graduate study. The 150-member faculty includes engineers and scholars who are widely recognized in their fields.

Programs

- Biomedical Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/biomedical/ms/)
- Chemical Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/chemical-materials-engineering/chemical-ms/)
- Civil Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/civil-ms/)
- Civil Engineering - M.S. online (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/civil-ms-online/)
- Computer Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/computer-ms/)
- Critical Infrastructure Systems - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/critical-infrastructure-systems-ms/)
- Electrical Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/electrical-ms/)
• Engineering Management - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/mechanical-industrial/engineering-management-ms/)
• Engineering Science - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/interdisciplinary-engineering-science/ms/)
• Environmental Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/environmental-ms/)
• Industrial Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/mechanical-industrial/industrial-ms/)
• Internet Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/internet-ms/)
• Mechanical Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/mechanical-industrial/mechanical-ms/)
• Pharmaceutical Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/chemical-materials-engineering/pharmaceutical-ms/)
• Power and Energy Systems - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/power-energy-systems-ms/)
• Telecommunications - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/telecommunications-ms/)
• Transportation - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/transportation-ms/)

Double Majors (http://catalog.njit.edu/archive/2022-2023/graduate/academic-policies-procedures/special-programs/)
• Architecture - M.Arch. and Civil Engineering - M.S. (http://catalog.njit.edu/archive/2022-2023/graduate/architecture-design/architecture/march-civil-engineering-ms/)

Programs
• Biomedical Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/biomedical/phd/)
• Chemical Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/chemical-materials-engineering/chemical-phd/)
• Civil Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/civil-phd/)
• Computer Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/computer-phd/)
• Electrical Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/electrical-computer/electrical-phd/)
• Environmental Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/environmental-phd/)
• Industrial Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/mechanical-industrial/industrial-phd/)
• Mechanical Engineering - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/mechanical-industrial/mechanical-phd/)
• Transportation - Ph.D. (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/transportation-phd/)

Programs
• Biomedical Device Development (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/biomedical/cert/)
• Construction Management (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/civil-environmental/construction-management-cert/)
• Data Science for Chemical and Materials Engineers (http://catalog.njit.edu/archive/2022-2023/graduate/newark-college-engineering/chemical-materials-engineering/data-science-for-chemical-and-materials-engineers-cert/)
BME 590. Graduate Co-Op Work Exper I. 1 credit, 1 contact hour.
BME 591. Graduate Co-Op Work Exper II. 1 credit, 1 contact hour.
BME 592. Graduate Co-Op Work Exper III. 1 credit, 1 contact hour.
BME 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.
BME 601. Seminar. 1 credit, 1 contact hour.
Required every semester of all master's students in biomedical engineering who receive departmental or research-based support and all doctoral students. To receive a satisfactory grade, students must attend at least five seminars per semester, as approved by the seminar supervisor.
BME 611. Engineering Aspect of Molecular and Cellular Bio I. 1 credit, 1 contact hour.
Molecular and cellular biology is a foundation of the understanding of the biological sciences and is vital to the study of advanced biomedical engineering. This course is to be taken simultaneously with UMDNJ N551 to enrich the crossover between engineering and life sciences. Course topics parallel those covered in N551 and both add engineering relevance, and provide engineering students with a stronger understanding of molecular and cellular biology. For students in joint BME PhD program.
BME 612. Engineering Aspects of Molecular and Cellular Bio II. 1 credit, 1 contact hour.
Molecular and cellular biology is a foundation of the understanding of the biological sciences and is vital to the study of advanced biomedical engineering. This course is to be taken simultaneously with UMDNJ N552 to enrich the crossover between engineering and life sciences. Course topics parallel those covered in N552 and both add engineering relevance, and provide engineering students with a stronger understanding of molecular and cellular biology. For students in joint BME PhD program.
BME 650. Clinical Physiology & Neurophy. 3 credits, 3 contact hours.
Prerequisites: BME 111, BME 303, BME 382 or permission of the instructor. Topics to be covered include gastrointestinal tract, pulmonary respiratory system, renal and liver functions, blood and hemodynamic, cardiovascular and cerebrovascular function, and understanding of neurophysiology in human neurological diseases.
BME 651. Principles of Tissue Engineering. 3 credits, 3 contact hours.
Tissue Engineering is a therapeutic approach to treating damaged or diseased tissues in the biotechnology industry. In essence, new and functional living tissue can be fabricated using living cells combined with a scaffolding material to guide tissue development. Such scaffolds can be synthetic, natural, or a combination of both. This course will cover the advances in the fields of cell biology, molecular biology, and materials science towards developing novel "tissue engineered" materials.
BME 652. Cellular and Molecular Tissue Engineering. 3 credits, 3 contact hours.
This course explores molecular, cellular and tissue level interactions that are an important component of all tissue engineering strategies. Topics include how a cell moves, reacts and maintains viability and function based on its surroundings. We will discuss how to engineer our materials, tissue scaffolds, and implant to integrate with the body. We will also learn about bodily reactions and the biocompatibility of tissue engineered devices such as immunoreactivity and blood coagulation.

BME 653. Micro/Nanotechnologies for Interfacing Live Cells. 3 credits, 3 contact hours.
In this course, we will study technologies and tools available for interfacing live cells from a sub-cellular, single-cell, and multi-cellular (tissue models) approach. We will introduce key concepts of the biology of cells and tissues and will explore the technologies (micro-/nanotechnologies) and tools (sensors and actuators) available for the investigation of cell and tissue biology. Same as ECE 653.

BME 654. Cardiovascular Mechanics. 3 credits, 3 contact hours.
Fundamental biomechanical mechanisms at work in the cardiovascular system. Topics include the fundamental molecular structure of heart muscle, the biomechanical principles that transform the contraction of heart muscle into stress-strain functions of muscle fibers, pressure-volume flow relations in the vasculature when it is considered as a hemodynamic (blood hydraulic) system, growth and disease of the cardiovascular system, resistance, compliance, inerterance, and catheter-tip transducers.

BME 655. Advanced Characterization of Biomaterials. 3 credits, 3 contact hours.
Prerequisites: MTSE 301 or undergraduate equivalent, BIOL 201 or undergraduate equivalent, one semester of undergraduate organic chemistry. With a focus on contemporary biomaterials in the published literature and clinical practice, biomaterial chemical and mechanical testing will complement the synthesis theory. Communication and articulation of ideas will be honed in the form of literature debates, write-ups, demonstration/performance of analytical techniques, and concluding with translation of biomaterials that will include entrepreneurship and regulatory aspects.

BME 656. Research Skills in Stem Cell. 3 credits, 3 contact hours.
Stem cells have emerged as new therapeutic potential and offer great opportunities for regenerative medicine, biotechnology and the pharmaceutical industry. This course is intended for graduate students interested in stem cell bioengineering and tissue engineering. The course will cover stem cell biology and biomedical engineering applications for cell-based regeneration therapies. It will discuss techniques for engineering of stem cells and the current literature in this rapidly evolving field.

BME 661. Neural Engineering. 3 credits, 3 contact hours.
Neural Engineering focuses on understanding how the brain functions using engineering principles. The course discusses different instrumentation and signal processing algorithms to study how the brain functions, how to detect different pathologies and new applications for research. Topics include: basic overview of neurology, vector populations, neural networks, vision research, functional MRI, functional electrical stimulation, neural prosthetics, and other advanced research topics studying neurology.

BME 667. Bio-Control Systems. 3 credits, 3 contact hours.
The course provides an introduction to dynamic and control in biological systems, with particular emphasis on engineering aspects of biological oscillators/waves which govern the basic operations of all living organisms and especially higher order life forms. A combination of theoretical and simulation tools will be applied to analyze the qualitative and quantitative properties of selected biological systems. Feedback and control mechanisms in selected biological systems will be introduced. Same as ECE 667.

BME 669. Engineering Physiology. 3 credits, 3 contact hours.
To enable students to apply basic tools in engineering analysis, mathematics, computer science, general physics and chemistry courses so that they can develop models that quantitatively predict the functioning of physiological systems in the human body. To enable students to apply engineering systems analysis to systematic physiology and employ the ideas of feedback control, signal processing, mathematical modeling and numerical simulation. Same as ECE 669.

BME 670. Introduction to Biomechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, statics, and dynamics. Introduction to biomechanical engineering of physiological systems; fluid flow, structural, motion, transport, and material aspects; energy balance of the body, and the overall interaction of the body with the environment. Same as ME 670.

BME 671. Biomechanics of Human Structure and Motion. 3 credits, 0 contact hours.
Prerequisites: undergraduate statics, kinematics, and dynamics. Principles of engineering mechanics and materials science applied to human structural and kinematic systems and to the design of prosthetic devices. Topics include anatomy; human force systems; human motion; bioengineering materials; and design of implants, supports, braces, and replacements limbs.

BME 672. Biomaterials. 3 credits, 3 contact hours.
Prerequisite: MECH 320 (see undergraduate catalog for description) or the equivalent. Materials and processes used to develop devices that are implanted in the human body; clinical aspects of biomechanical engineering; federal government requirements for design and testing of human implant devices; biocompatibility, metal implant devices, material design parameters, plastic and ceramic devices, sterilization techniques, and their effect on biocompatibility.
BME 673. Biomechatronics. 3 credits, 3 contact hours.
Basics of control of a robot and telemanipulation are studied. Computer simulations, MATLAB are used to explore biomimetic autonomous robots. This is a studio-based course with hands-on exercises with small robots and actuators. Topics include understanding how biological robots (humans and animals) differ from designed robots, as well as sensors (touch, stereo and position), actuators (muscles, smart materials), and intelligent (neural and computer controlled systems).

BME 674. Principles of Neuromuscular Engineering. 3 credits, 3 contact hours.
Neurophysiology, motor control and robotics are used to study the human motor system. Sensorimotor learning and acquisition of new motor skills are emphasized. Topics include the central nervous system, muscle properties, spinal motor circuitry and dynamics of limb motion. The relation of motor control problems to neurophysiology of the motor system and how motor disorders affect movement control are studied. MATLAB and Simulink are used in simulations and movement analysis.

BME 675. Computer Methods in Biomedical Engineering. 3 credits, 3 contact hours.
This course uses MATLAB to concentrate on methods that allow students to produce original software that can be used to acquire, process, analyze and present data. Topics include advanced graphics and animation, graphical user interfaces, interfacing to and data acquisition from laboratory instrumentation, filtering and processing of acquired data, and interfacing to user interfaces (e.g. joysticks). Applications in speech, bioelectrical signals, images and virtual reality will be included.

BME 676. Computational Biomechanics. 3 credits, 3 contact hours.
Prerequisites: BME 670 or equivalent. The use of commercially available software to solve complex engineering problems has become standard practice to reduce time and cost and results in a better product. This is an intro course on computational methods and the use of commercial software such as ANSYS, Fluent, and MATLAB to solve problems related to the BME device industry. Suitable for students interested in Computer Aided Design and Engineering (CAD/CAE).

BME 677. CAD for Biomechanics and Biomaterials. 3 credits, 3 contact hours.
Introduction to Computer Aided Design theory and application using software. Topics include datum planes, extrude, cut, sweep, swept cuts, and parallel, rotational, and general. Assemblies and generating, dimensioning, editing, and modifying drawing views and creation of balloons, imaging and scanning techniques of anatomical structures such as bone and arteries and 3D printing are also covered.

BME 678. Biomechanics of Orthopedic Implants. 3 credits, 3 contact hours.
Prerequisites: BME 677. First of a two part course on design of orthopedic implants using ProEngineer. Additional topics include mechanical properties of implant materials, material selection and introduction to FEA. Methods for prototype development with the use of 3D printing will also be discussed. A critical objective of this course is the preparation of design reports and project presentations.

BME 679. Advanced Design of Orthopedic Implants. 3 credits, 3 contact hours.
Prerequisites: BME 677, BME 678 or equivalent. Advanced modeling techniques for the design of hip, knee, and spine implants. Mechanical properties of materials, including wear and failure modes associated with typical implants. Kinematics and surgical protocols of implants will be discussed. Course will cover assembles and FEA analysis of implants. Additional topics include large deformations, fatigue, optimization, review and analysis of results.

BME 680. BioMEMS Design and Applications. 3 credits, 3 contact hours.
The advance of bioMEMS (Micro Electrical Mechanical Systems) technology is a key component in making the next generation medical diagnostic tools possible. We will learn how bioMEMS devices are fabricated and combine engineering analysis with knowledge of known biological responses and biomolecule interactions to understand how bioMEMS are designed and function. Topics will include biological, mechanical, electrical, and chemical biosensors, and microfluidics as applied to biotechnology.

BME 682. System Mgmt for Medical Device. 3 credits, 3 contact hours.
This course will provide a detailed overview of Project Management techniques and methods applied to medical devices and show the integration of medical device Design Controls from 21 CFR820.30. General knowledge from the field of Project Management will be conveyed from the perspective of engineering or science personnel in the industrial medical field, particularly with regard to FDA Quality System Regulations (QSR), ISO 13485 guidelines, and Good Clinical Practices (GCP’s) for running clinical trials. Students will also take part in practical problem solving simulations based on real-world examples of medical device project anomalies. The combination of specialized project management knowledge for a heavily regulated area and realistic classroom simulation will provide a basis for those interested in commercial medical device development.

BME 684. Medical Device Development. 3 credits, 3 contact hours.
This course will provide a detailed overview of medical device development from a realistic industrial and academic perspective. The processes used in corporations and academic laboratories to conceive and develop devices will be explored from a research, regulatory, clinical, QA/QC, marketing, engineering, and legal perspective under the umbrella of project management techniques. Material will be presented as an aide to students who wish to decide on careers in either industry or academia.

BME 686. Intro. to Instrumentation for Physiomeasurements. 3 credits, 3 contact hours.
Introduction to instrumentation for students without instrumentation background only. This course teaches the hardware and instrumentation needed to measure variables from different physiological systems. Electrodes, sensors and transducers, bioelectric amplifiers safety and digital acquisition will be discussed. Hardware for measurement of the ECG, EEG, EMG, respiratory system, nervous system, clinical laboratory instruments, electrical safety and computers in biomedical instrumentation.

BME 687. Design of Medical Instrumentation. 3 credits, 3 contact hours.
BME 688. Virtual Biomedical Instrument. 3 credits, 3 contact hours.
Introductory course to the programming language, LabVIEW™. Topics include loops, arrays, clusters, data acquisition, and file input/output. Students will learn how to apply these basic concepts into the development of algorithms. Examples relevant to the biomedical industry will be given how to debug and solve complex programming problems. By the completion of the course, students will be able to develop programs to automate processes and experimental designs.

BME 698. Selected Topics. 3 credits, 3 contact hours.
Selected topics for Biomedical Engineering.

BME 700B. Master’s Project. 3 credits, 3 contact hours.
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BME 701B. Master’s Thesis. 3 credits, 3 contact hours.
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BME 701C. Master’s Thesis. 6 credits, 3 contact hours.
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty.

BME 725. Independent Study I. 3 credits, 3 contact hours.
Restriction: departmental approval. Program of study prescribed and approved by student's faculty coordinator. This special course covers areas of study in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course offering. Master's degree students cannot count BME 725 as degree credit but can count these credits to qualify for full-time status.

BME 726. Independent Study II. 3 credits, 3 contact hours.
Restriction: departmental approval. Program of study prescribed and approved by student’s faculty coordinator. This special course covers areas of study in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course offering. Master’s degree students cannot count BME 725 as degree credit but can count these credits to qualify for full-time status. This course is not available to master's students.

BME 741. Basic Plasma Physics with Spac. 3 credits, 3 contact hours.
Prerequisites: PHYS 611, PHYS 621 or other equivalent, or approval of the instructor. The course will introduce students to basic concepts of plasma physics and its applications to laboratory experiments and space research. The course will cover the following topics: particle motions in magnetic field, adiabatic invariants, magnetic traps, radiation belts, electromagnetic waves in plasma, electrostatic oscillations, waves in magnetized plasma, collisional processes in plasma, kinetic effects on plasma waves, Landau damping, wave instabilities, plasma as fluid, magnetohydrodynamics, magnetic configurations of laboratory and space plasma, MHD instabilities, reconnection, helicity, dynamo theories, the origin of cosmic magnetic fields, stochastic processes, Fermi process, particle acceleration, and cosmic rays.

BME 760. Modeling in Func Brain Imaging. 3 credits, 3 contact hours.
Prerequisites: Although no prerequisites are required, BME 310, ECE 640 or other undergraduate and graduate courses covering knowledge on signals and systems in discrete time domain are suggested to prepare for this course. This course will focus on introducing biomedical computing techniques needed for functional MRI data pre-processing, and individual-level and group-level analyses. Several projects will be assigned for hands-on training in implementing the introduced knowledge.

BME 772. Adv Biomats for Lab and Clinic. 3 credits, 3 contact hours.
Prerequisite: BME 672 or equivalent. Background in Materials Science is encouraged. Advanced course on the design, characterization and clinical/ research performance of biomaterials that have or may receive acceptance in medicine or as a biomedical research tool. The course requires the student to integrate background in chemistry, physics, cell and molecular biology, tissue engineering and materials science to review and summarize the scientific rationale for materials that have gained acceptance as medical devices, cell culture or diagnostic tools.

BME 774. Principles of Neurorehabilitation. 3 credits, 3 contact hours.
This is a research-focused course providing in-depth review of current studies in the following fields: Pathophysiology of disability; Advanced therapeutic interventions; Emerging neurorehabilitation technologies that are intended to encourage neural reorganization and relearning; Novel interfaces through chronic implementation in the brain, spinal cord and muscles used in deep brain stimulation, brain-machine interfaces, and functional electrical stimulation and Methods of assessing outcomes.

BME 788. Selected Topics. 3 credits, 3 contact hours.
Selected topics for Biomedical Engineering.
CE 506. Remote Sensing of Environment. 3 credits, 3 contact hours.
Prerequisite: PHYS 234 (see undergraduate catalog for description). Covers the principles of remote sensing, general concepts, data acquisition procedures, data analysis and role of remote sensing in terrain investigations for civil engineering practices. Data collection from airborne and satellite platforms will be emphasized. Photographic and non-photographic sensing methodologies will be covered as well as manual and computer assisted data analysis techniques for site investigations and examination of ground conditions.
CE 531. Design of Masonry and Timber Structures. 3 credits, 3 contact hours.
Prerequisite: CE 332 (see undergraduate catalog for description). Study of basic properties of clay and concrete masonry units and wood. The masonry section includes discussion of unreinforced bearing walls subjected to concentric as well as eccentric loads. Lateral-force resistance of unreinforced and reinforced masonry systems are introduced and new developments to strengthen and retrofit unreinforced masonry walls are discussed. The timber design portion includes design and behavior of wood fasteners, beams, columns, and beam-columns as well as introduction to plywood and glued laminated members.

CE 552. Geometric Design of Transportation Facilities. 3 credits, 3 contact hours.
Prerequisite: CE 350 or equivalent (see undergraduate catalog for description). Design principles and criteria related to highways and railroads resulting from requirements of safety, vehicle performance, driver behavior, topography, traffic, design speed, and levels of service. Elements of the horizontal and vertical alignments and facility cross-section, and their coordination in the design. Computer-aided design procedures including COGO, CADAM, Digital Terrain Modeling. Same as TRAN 552.

CE 553. Design and Construction of Asphalt Pavements. 3 credits, 3 contact hours.
Importance of designing proper asphalt pavements. Topics include the origin of crude, refining crude, types of asphalts, desired properties of asphalt cement, specification and tests for asphalt cement, aggregates for asphalt mixtures, aggregate analysis, gradation and blending, hot-mix asphalt (HMA) mix design, manufacture of HMA and HMA-paving, hot and cold recycling. Same as TRAN 553.

CE 590. Grad Coop Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from the civil engineering department and the Division of Career Development Services. Cooperative education/internship providing on-the-job reinforcement of academic programs in civil engineering. Work assignments and projects are developed by the co-op office in consultation with the civil engineering department; and evaluated by civil engineering faculty co-op advisors.

CE 591. Grad Coop Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from the civil engineering department and the Division of Career Development Services.

CE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: permission from the civil engineering department and the Division of Career Development Services.

CE 593. Graduate Co-Op Work Exp IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

CE 602. Geographic Information System. 3 credits, 3 contact hours.
Restriction: course or working knowledge of CAD or permission of instructor. Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control. Introduces this emerging technology and its applications. Same as MIP 652 and TRAN 602.

CE 605. Research Methods in Remote Sensing. 3 credits, 3 contact hours.
Prerequisites: CE 601 and MATH 661. Major components of RS data acquisition systems, overview of image processing techniques with emphasis on neural network and traditional pattern recognition, principal component transformations, and data reduction. Emphasizes geometric and mapping aspects of RS/GIS techniques for linking RS images with spatial data, sources of error, and accuracy assessment techniques. Hands-on experience with existing hardware/software (ERDAS & GENESIS).

CE 606. Geospatial Data Applications. 3 credits, 3 contact hours.
Prerequisite: CE 602. The course focuses on geospatial data processing, information extraction and analysis tools. It provides visualization and decision support applications using desktop GIS software. Examples of the student projects include: Applications of integrated geospatial data in environmental, infrastructure, urban planning and homeland security.

CE 610. Construction Management. 3 credits, 3 contact hours.
Restriction: B.S. degree in CE, technology, architecture, or related field. Managerial aspects of contracting. Study of an individual firm in relation to the entire construction industry. Topics include contractor organization and management, legal aspects of construction, and financial planning.

CE 611. Project Planning and Control. 3 credits, 3 contact hours.
Prerequisite: CE 610. Management tools as related to construction projects are analyzed and applied to individual projects. Emphasis is on network scheduling techniques, time-cost analysis, resource allocation and leveling, cost estimating, bidding strategy, and risk analysis.

CE 612. Machine Learning and Data Analytics for Civil Engineering Systems. 3 credits, 3 contact hours.
Prerequisites: CS 101, MATH 211, and MATH 279, or approval of instructor. This course provides students with hands-on and fundamental knowledge of machine learning, data science, and data mining methodologies for scraping, manipulating, transforming, cleaning, visualizing, summarizing, and modeling large-scale data in civil engineering and infrastructure systems using analytical tools. This course includes data management and analysis, data wrangling and exploration, unsupervised learning, pattern recognition, supervised learning for classification and regression purposes, data preprocessing, and model training and evaluation. Students will explore the capabilities of these concepts in addressing the challenging and interesting problems in the field of civil engineering, and they will develop skills to apply these techniques to solve multiple real-world civil engineering problems. Python programming language will be introduced and used throughout this course to illustrate practical examples and to show students how to apply the learned techniques in the civil engineering practice.
CE 614. Underground Construction. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in soil mechanics. Various aspects of underground construction, including rock and soft ground tunneling; open cut construction; underpinning; control of water; drilling and blasting rock; instrumentation; and estimating underground construction costs. Case studies and a field trip to an underground construction site will be included.

CE 615. Infrastructure and Facilities Remediation. 3 credits, 3 contact hours.
Restriction: graduate standing in civil engineering and basic knowledge of structures, and material science. Examines the methodology of inspection, field testing, evaluation and remediation of existing infrastructure and facilities, which include pipelines, tunnels, bridges, roadways, dams, and buildings. Typical materials distress and failure scenarios will be covered with remediation options through the use of case studies.

CE 616. Construction Cost Estimating. 3 credits, 3 contact hours.
Prerequisite: CE 610. Full range of construction cost-estimating methods including final bid estimates for domestic building and heavy/highway projects; computerized takeoff and estimating techniques; international construction; financial and cost reporting; databases; indices; risk; competition; performance; and profit factors.

CE 617. Historic Preservation. 3 credits, 3 contact hours.
This course addresses the many aspects of structural preservation from both an engineering and aesthetic perspective. Course topics include: permits and regulations, an overview of architectural styles, designation of historic structures, past methods of construction, current methods of preservation and the availability of grants and funding. Knowledge gained from the course will be applied directly to course projects involving the evaluation and recommendations needed for the proposed preservation of an existing structure.

CE 618. Applied Hydrogeology. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in earth science/geology, fluid mechanics, and calculus or permission of instructor. Examines ground water and contaminant movement through the subsurface environment. A basic understanding of the aquifer geology is emphasized. Hydrogeologic applications including well design, pumping tests, and computer modeling of subsurface flow, and methods to monitor and remediate contaminated groundwater are introduced.

CE 620. Open Channel Flow. 3 credits, 3 contact hours.
Prerequisite: undergraduate fluid mechanics. The principles developed in fluid mechanics are applied to flow in open channels. Steady and unsteady flow, channel controls, and transitions are considered. Application is made to natural rivers and estuaries.

CE 621. Hydrology. 3 credits, 3 contact hours.
Prerequisite: undergraduate fluid mechanics. The statistical nature of precipitation and runoff data is considered with emphasis on floods and droughts. The flow of groundwater is analyzed for various aquifers and conditions. Flood routing, watershed yield, and drainage problems are considered.

CE 622. Coastal Engineering. 3 credits, 3 contact hours.
Prerequisite: fluid mechanics and calculus. An introductory course covering basic wave theory, sediment transport and ocean circulation. The application of these principles to various coastal engineering problems will be discussed, including beach erosion, pollution transport in coastal waters, and the design of shore protection structures.

CE 623. Groundwater Hydrology. 3 credits, 3 contact hours.
Prerequisites: undergraduate fluid mechanics and computer programming, or consent of instructor. Basic principles of groundwater hydraulics; Darcian analysis of various aquifer systems; unsaturated flow into porous mediums; transport of contaminants in soil media; and mathematical models for fluid and contaminant transport.

CE 630. Matrix Analysis of Structures. 3 credits, 3 contact hours.
A review of matrix operations and energy methods, and development of flexibility and stiffness methods used in linear-elastic structural analysis. Behavior of continuous beams, plane trusses, space trusses, and frames are studied.

CE 631. Advanced Reinforced Concrete Design. 3 credits, 3 contact hours.
Prerequisites: an undergraduate course in theory and design of reinforced concrete. A review of basic concepts of elastic and ultimate strength theories and a study of the present design codes. Topics include: design of concrete building frames, two-way slabs, flat slabs, deep beams, and other structural elements using the above two theories.

CE 632. Prestressed Concrete Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate course in theory and design of reinforced concrete. Analysis and design of pre-tensioned and post-tensioned prestressed concrete elements for both determinate and indeterminate structures will be studied. Examples of prestressed elements used in buildings and bridges will be discussed, as well as the source and magnitude of prestress losses.

CE 634. Structural Dynamics. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in structural analysis. Dynamic analysis of beams, frames, and other types of structures. Practical methods developed are applied to problems such as the analysis of the effects of earthquakes on buildings and moving loads on bridges.

CE 635. Fracture Mechanics of Engineering Materials. 3 credits, 3 contact hours.
Restriction: graduate standing in civil and/or mechanical engineering and basic knowledge of structures and mechanics of materials. Basic principles of fracture mechanics to increase understanding of cracking and fracture behavior of materials and structures. Emphasis on practical applications of fracture mechanics.
CE 636. Mechanics and Stability of Structures. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in theory of structural analysis. Topics include structural design concept; stability criteria; elastic and inelastic buckling; column buckling; lateral buckling of beams; stability of frames; stability of plates and shell; local buckling and post-buckling.

CE 637. Short Span Bridge Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in steel design and concrete design, and some knowledge of prestressed concrete fundamentals. Design and performance of highway and railroad bridges, particularly steel and prestressed concrete structures since they are most common in the northeast; and computer applications including bridge geometry, abutment design and composite beam design.

CE 638. Nondestructive Testing Methods in Civil Engineering. 3 credits, 3 contact hours.
Familiarizes the civil engineering student with nondestructive testing (NDT) techniques currently employed for evaluation and condition monitoring of civil structures and construction materials. Major emphasis in the application of NDT methodologies to steel, concrete, and timber as the construction material. Covers theories, principles, and testing methodologies associated with individual technologies from specific material point of view. Discusses advantages and limitations pertaining to the application of individual NDT technologies to construction materials.

CE 639. Applied Finite Element Methods. 3 credits, 3 contact hours.

CE 641. Engineering Properties of Soils. 3 credits, 3 contact hours.
Prerequisite: approved undergraduate course in soil mechanics within last five years. An in-depth study of physical and mechanical properties of soils. Topics include clay mineralogy, shear behavior and compressibility of fine and coarse grained soil; and in-situ measuring techniques such as vane shear, core penetration and pressure meter. Laboratory work includes consolidation test and triaxial test, with emphasis on analysis, interpretation and application of data to design problems.

CE 642. Foundation Engineering. 3 credits, 3 contact hours.
Prerequisites: approved undergraduate courses in soil mechanics and foundation engineering. The salient aspects of shallow foundation design such as bearing capacity and settlement analyses. Topics are relevant to the deep foundation, selection of the type and the determination of load bearing capacity from soil properties, load tests, and driving characteristics utilizing wave equation analyses. Earth pressure theory and retaining wall design.

CE 643. Advanced Foundation Engineering. 3 credits, 3 contact hours.
Prerequisites: Approved undergraduate or graduate course in foundation designs within the last five years is required. Lateral and earth pressure computations for the design of retaining walls, bulkheads, cellular cofferdams, and sheetpiles. Also considers the design of internal bracing systems and anchors, soil nailing and reinforced earth. Slope stability of embankments and dams.

CE 644. Geology in Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate course in geology or permission of instructor. Geology has a significant influence on how we plan, design, and construct engineering works. This course examines how the geologic formations underlying a locale will ultimately determine land use, control structure design, and affect construction material availability. Included is a study of the various rock-forming processes and geologic agents that have shaped Earth's surface. The course also explores the role of geologic factors in assessing environmental impacts and natural hazards such as earthquakes, subsiding soils, and landslides. Case study applications and a field trip are included.

CE 645. Rock Mechanics. 3 credits, 3 contact hours.
Prerequisite: CE 342. Restriction: approved undergraduate course in soil mechanics within last five years or permission of instructor. Theoretical and experimental aspects of rock mechanics and rock engineering. Review of laboratory and field rock testing; empirical and analytical methods for describing strength, deformability and conductivity of intact rock and rock masses. Fracture mechanics and mechanics of discontinuous media, including flow through discontinuous media and hydraulic fracturing. Design and analysis of rock slopes, underground structures in rock and foundations on rock. Includes a term paper/design project.

CE 646. Geosynthetics & Soil Imp. 3 credits, 3 contact hours.
Prerequisite: CE 341 (see undergraduate catalog for description). Includes engineering properties of geosynthetics and their application in civil engineering, such as filtration, seepage, and erosion control; subgrade and slope stabilization. Soil improvement topics include preloading, electrokinetic stabilization, soil modification, admixtures and grouting.

CE 647. Geotechnical Aspects of Solid Waste. 3 credits, 3 contact hours.
Prerequisites: CE 341, CE 341A or equivalents (see undergraduate catalog for descriptions). Geotechnical aspects of solid waste such as municipal landfill, dredged materials, coal and incinerator ashes, identification and classification of waste materials, geological criteria for siting, laboratory and field testing, design for impoundment and isolation of waste, methods of stability analyses of landfill sites, techniques for stabilizing waste sites, leachate and gas collection and venting systems. Primary emphasis is on municipal wastes.

CE 648. Flow Through Soils. 3 credits, 3 contact hours.
Prerequisites: Approved undergraduate or graduate course in soil mechanics within the last five years is required. Explains the fundamentals of fluid flow through saturated and unsaturated soils and the use of computer programs for the solution of boundary value fluid flow problems in soils. The first two-thirds of the course are devoted to flow through saturated soils. The topics are mathematical description of flow through soils, solutions for steady state and transient state fluid flow and geotechnical applications. The last one-third is devoted to flow through unsaturated soils. Topics include steady state of transient state fluid flow and a presentation of how these concepts are applied to geoenvironmental problems.
CE 649. Design & Construction of Concr. 3 credits, 3 contact hours.
Importance of designing concrete pavements to resist distress or failure. Topics include the stresses in Rigid Pavement, Traffic and Loading, Material Characterization, Drainage, Pavement Performance, Rigid Pavement Design and Overlay Design.

CE 659. Flexible and Rigid Pavements. 3 credits, 3 contact hours.
Prerequisite: CE 341 or equivalent (see undergraduate catalog for description). Types of rigid (Portland cement) and flexible (bituminous) pavements. Properties of materials, including mineral aggregates. Design methods as functions of traffic load and expected life. Importance and consequences of construction methods. Maintenance and rehabilitation of deteriorated pavements. Same as TRAN 659.

CE 671. Performance and Risk Analysis of Infrastructure Systems. 3 credits, 3 contact hours.
This course presents a comprehensive systems approach to infrastructure asset management across areas of public and private infrastructure. Topics include the framework of integrated asset management illustrated in transportation, water and wastewater systems, the economic evaluation of infrastructure options, using life cycle cost analysis (LCCA) and cost-benefit analysis (CBA). The elements of performance measurement and modeling, including condition assessment and information management, failure and impact analysis are covered. Decision and risk analysis are covered to enable students to develop a holistic economic, performance and risk analysis approach to infrastructure management illustrated in a term project.

CE 672. Security Management of Critical Infrastructure. 3 credits, 3 contact hours.
This course focuses on the areas of vulnerability assessment and security management of critical infrastructure systems. A review of techniques for facility and network modeling and performance simulation, leads to sector-specific approaches to vulnerability analysis and critical infrastructure protection strategies using a Model-Based Vulnerability Analysis (MBVA). Covered critical infrastructure systems include water supply/environmental, transportation, power and energy systems, SCADA systems, cyber-infrastructure and telecommunications. The course ends with a review of the combined use of multi-criteria analysis techniques, expert heuristic response to scenarios and network analysis techniques in a general framework for vulnerability and security management of infrastructure systems in its key aspects: prevention, warning/detection and event mitigation and response planning and execution.

CE 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. A written report must be submitted to the project advisor. The student cannot register in CE 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CE 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CE 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CE 702. Special Topics in Civil Engineering. 3 credits, 3 contact hours.
Restriction: advisor's approval. Topics of special current interest in civil engineering.

CE 703. Concrete Durability. 3 credits, 3 contact hours.
Prerequisites: Undergraduate course in construction materials or reinforced concrete design, or permission of the instructor. This course will cover the design and maintenance of concrete structures and pavements from a material choice point of view. Students will learn how to design concrete mixtures, choose alternative and sustainable concrete materials, produce concrete specifications, protect concrete from long-term deterioration, and design solutions for repairing existing concrete. Students will learn about the mechanisms and chemistry and concrete deterioration. The following key topics will be covered: cement production, supplementary cementitious materials, mixture design and proportioning, concrete durability, dimensional stability, freeze-thaw attack, sulfate attack, corrosion, alkali-silica reaction, alternative cements, concrete specifications, and concrete construction.

CE 705. Mass Transportation Systems. 3 credits, 3 contact hours.
Prerequisites: CE 625 and TRAN 610 or IE 610. An investigation of bus, rapid transit, commuter railroad, and airplane transportation systems. Existing equipment, economics, capacity, and terminal characteristics are discussed, as well as new systems and concepts. Long- and short-range transportation systems are compared. Same as TRAN 705.

CE 711. Methods Improvement in Construction. 3 credits, 3 contact hours.
Prerequisite: CE 610. Improved methods in construction; various techniques of work sampling and productivity measurement; and current innovations in the construction industry for increasing efficiency.

CE 720. Water Resource Systems. 3 credits, 3 contact hours.
Prerequisites: CE 620, CE 621. A system methodology is applied to the analysis of water resource development and operation. Topics include operational hydrology, water quality criteria, streamflow requirements, resource allocation, and economics. Mathematical models are developed and employed in the evaluation of a case study.
CE 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

CE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for CE 726 if they have taken CE 725 in a prior semester.

CE 727. Independent Study III. 3 credits, 3 contact hours.
Restriction: written permission from department chairperson plus courses to be prescribed by the supervising faculty member. Covers areas of study in which one or more students may be interested but which is not of sufficiently broad interest to warrant a regular course offering.

CE 730. Plastic Analysis and Design. 3 credits, 3 contact hours.
Prerequisite: CE 639. Theory of plasticity applied to structural design. Study of methods of predicting strength and deformation of single and multi-story steel frames in the plastic range. Comparison of plastic and prestressed concrete.

CE 733. Design of Metal Structures. 3 credits, 3 contact hours.
Prerequisites: CE 639 and CE 636. Methods of design of metal structural systems. Topics include combined action of unsymmetrical sections, torsion of open and closed sections, buckling of columns and plates with various end conditions, and design of curved and boxed girders.

CE 734. Design of Tall Buildings and Space Structures. 3 credits, 3 contact hours.
Prerequisites: CE 639 and CE 636. Design of tall buildings and space structures emphasizing framing systems, and recent developments and current research related to the design of such structures.

CE 736. Finite Element Methods in Structural and Continuum Mechanics. 3 credits, 3 contact hours.
Prerequisites: MECH 630 and CE 630. Restriction: a working knowledge of computer programming. Finite element approaches for analysis of plane stress problems, plates in flexure, shells, and three-dimensional solids; and choice of interpolation functions, convergence, and the capabilities of the methods.

CE 737. Earthquake Engineering. 3 credits, 3 contact hours.
Prerequisite: CE 634. Practical design solutions for resisting the damaging effects of earthquake ground motions and other severe dynamic excitations. Factors which control dynamic response in elastic and inelastic ranges, and the nature of severe dynamic excitations. Theories of structural analysis and dynamics, and modern design methodologies on the behavior of structures.

CE 739. Structural Optimization. 3 credits, 3 contact hours.
Prerequisite: CE 639. Application of methods of mathematical programming to problems of optimal structural design. Optimal criteria methods, discrete and continuous systems, and code design will be covered.

CE 742. Geotechnology of Earthquake Engineering. 3 credits, 3 contact hours.
Prerequisite: CE 641. Explains the fundamentals of propagation of the earthquakes through soils to supporting structures and the use of computer programs in the solution of boundary value problems in soils. The first half is devoted to synthesis of earthquakes, mathematical formulation of the problem, measurement of applicable soil parameters, use of computer programs to solve 1-D wave propagation problems in soils with structures. The second half is devoted to soil liquefaction, soil-structure interaction, and design of machine foundations.

CE 753. Airport Design and Planning. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or EM 693 and CE 660. Planning of individual airports and statewide airport systems. Functional decision of air and landside facilities. Orientation, number and length of runways. Concepts of airport capacity. Passenger and freight terminal facility requirements. Airport access systems. FAA operating requirements. Financial, safety and security issues. Same as IE 753 and TRAN 753.

CE 756. Multi-modal Freight Transportation Systems Analysis. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or equivalent and CE 650 or EM 602 or equivalent. Quantitative methods for the analysis and planning of freight transportation services. The supply-performance-demand paradigm for freight transportation systems. Cost and performance as determined by system design and operations. Relationship of traffic and revenue to service levels and pricing. Optimal service design and redesign for transportation enterprises and operations planning. Fleet and facility investment planning. Applications to various modes. Same as EM 765 and TRAN 765.

CE 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for at least 6 credits of dissertation per semester until 36 credits are reached. Registration for additional credits may be permitted beyond the 6, with the approval of the advisor, to a maximum of 12 credits per semester. If the dissertation is not completed after 36 credits, registration for an additional 3 credits per semester is required thereafter. Registration for 3 credits is permitted during the summer session, hours to be arranged.
CE 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: CE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in CE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

CE 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: CE 791. Since the CE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

CE 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: CE 791. Since the CE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in civil engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

CE 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

CE 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

CE 790F. Doct Dissertation & Res. 15 credits, 3 contact hours.

CE 791. Graduate Seminar. 0 credits, 1 contact hour.
A seminar in which faculty or others present summaries of advanced topics suitable for research. Students and faculty discuss research procedures, thesis organization, and content. Students present their own research for discussion and criticism. Required of all doctoral students registered for CE 790 unless requirement is waived, in writing, by the dean of graduate studies.

CE 792. Pre-Doctoral Dissertation. 3 credits, 3 contact hours.
Co-requisite: CE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in civil engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

CE 793A. Doct Dissertation & Res. 1 credit, 1 contact hour.

CE 793B. Doct Dissertation & Res. 3 credits, 3 contact hours.

CE 793C. Doct Dissertation & Res. 6 credits, 3 contact hours.

CE 793D. Doct Dissertation & Res. 9 credits, 3 contact hours.

CE 793E. Doct Dissertation & Res. 12 credits, 3 contact hours.

CE 793F. Doct Dissertation & Res. 15 credits, 3 contact hours.

CHE 501. Fundamentals of Chemical Engineering I. 6 credits, 6 contact hours.
Prerequisites: MATH 222 or equivalent, CHEM 231 or equivalent (see undergraduate catalog descriptions). An intensive course in basic chemical engineering science intended for students in the bridge program. Topics include material and energy balances, thermodynamics, kinetics and reactor design, and staged separation processes. May not be taken for degree credit in any chemical engineering program.

CHE 502. Fundamentals of Chemical Engineering II. 4 credits, 4 contact hours.
Prerequisites: MATH 222 or equivalent (see undergraduate catalog for description), CHE 501 or equivalent. A continuation of CHE 501. An intensive course in basic chemical engineering science intended for students in the bridge program. Topics include fluid mechanics, heat transfer and diffusion-controlled processes. May not be taken for degree credit in any chemical engineering program.

CHE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from department and Division of Career Development Services. Cooperative education internship provides on-the-job reinforcement of the academic program by placement in major-related work situations. Work assignment developed or approved by the co-op office and evaluated by the department. Cannot be used for degree credit.

CHE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from department and Division of Career Development Services.

CHE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: permission from department and Division of Career Development Services.

CHE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

CHE 599. Methods for Teaching Assistants and Graduate Assistants. 3 credits, 3 contact hours.
Restriction: graduate standing. Required for all chemical engineering teaching assistants and graduate assistants. Covers techniques of teaching, interaction with students, and safety. Does not count as degree credit.

CHE 602. Selected Topics in Chemical Engineering I. 3 credits, 3 contact hours.
Restriction: graduate standing. Topics of current interest in chemical engineering.
CHE 603. Separation Process Principles. 3 credits, 3 contact hours.
Prerequisites: CHE 342, CHE 349, CHE 363, CHE 364, CHE 367, CHE 471. The course covers the basic principles of separation with or without chemical reaction in phase equilibrium-based, external field-driven and membrane-based separation processes.

CHE 604. Membrane Separation Processes. 3 credits, 3 contact hours.
Prerequisites: CHE 342, CHE 349, CHE 363, CHE 364, CHE 367, CHE 471. This course covers the science, technology, engineering analysis and design of membrane separation processes, membrane reactors, membrane-based equilibrium separation processes and hybrid membrane processes.

CHE 611. Thermodynamics. 3 credits, 3 contact hours.
Prerequisite: undergraduate courses in physical chemistry and thermodynamics, or equivalent. Principles of thermodynamics developed quantitatively to include thermodynamic functions and their application to chemical engineering processes.

CHE 612. Kinetics of Reactions and Reactor Design. 3 credits, 3 contact hours.
Prerequisites: Undergraduate course in chemical engineering kinetics or equivalent. Elements of optimum design for various reactor types, multiple reactions, and temperature effects. Yield and selectivity optimization with emphasis on small-scale pharmaceutical production. Introduction to non-ideal reactor design. Study of various models for catalytic and non-catalytic solid-fluid reactions.

CHE 619. Nano-scale Characterization of Materials. 3 credits, 3 contact hours.
The course presents the basics of nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy; near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.

CHE 623. Heat Transfer. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in heat transfer. Heat transmission applied to practical problems in design. An introduction will include review of conduction, convection and radiation heat transfer modes. Related topics covered will be heat exchangers, types and design principles (including Kern & Bell’s methods), effectiveness, (NTU Design and Rating methods), Fired Heaters, Design & Rating and Cooling Towers, Design & Rating.

CHE 624. Transport Phenomena I. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in fluid mechanics, heat transfer, and mass transfer. A unified treatment of molecular and turbulent momentum, energy, and mass transport. Emphasis is on the mathematical description of physical mechanisms in momentum and energy transport.

CHE 626. Mathematical Methods in Chemical Engineering. 3 credits, 3 contact hours.
Prerequisites: MATH 222 or equivalent undergraduate degree in Chemical Engineering. This course aims to provide students with advanced knowledge–skills to formulate mathematical models, derive analytical solutions, and find numerical solutions of steady- and unsteady-state problems encountered in chemical engineering systems. First and higher order ordinary differential equations as well as their systems are presented along with applications to dynamic systems. Sturm-Liouville eigenvalue problems, eigenfunction expansion, orthogonality of functions, and Fourier and generalized Fourier series are presented with the dual purpose of solving boundary-value problems and building the foundation needed for solving partial differential equations. Separation of variables is used to solve partial differential equations in 2D-3D steady-state and 1D-3D transient problems that arise in Cartesian, cylindrical, and spherical coordinates. Laplace transform and similarity transformation are used to solve semi-infinite domain problems. Numerical methods based on finite differences, full or semi-discretization of partial differential equations, accuracy, and error estimates are covered.

CHE 627. Introduction to Biomedical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in thermodynamics and differential equations. Introduction to the structure and composition of the body followed by an exploration of the properties of blood and its flow in the cardiovascular system; the body as a heat source and as a series of compartments involved in mass transfer of materials (such as those in the kidneys and lungs). Design of artificial kidneys and heart-lung machines is also explored. Same as BME 627.

CHE 628. Biochemical Engineering. 3 credits, 3 contact hours.
Prerequisite: undergraduate degree in chemical engineering. The application of chemical engineering to biological processes, biochemical reaction systems, and their technological use. Special attention given to problems in momentum, energy, and mass transport, as well as chemical reaction kinetics in biological systems.

CHE 632. Visual Communication with Chemical & Materials Engineering Data. 3 credits, 3 contact hours.
Prerequisites: BS degree in Chemical, Mechanical, Electrical or Biomedical Engineering, or in Physics or Chemistry. This course will focus on training students to communicate data relevant to chemical and materials engineering and related professions. Students will learn both the theoretical and practical aspects of data communication, including visualization aesthetics and design principles, as well as how to critically analyze and interpret engineering data. Throughout the course, students will also gain a broader understanding of data visualization best practices and how data can be used to enhance engineering analysis, using digital tools. A special emphasis will be placed on making engineering data accessible to all individuals, using the principles of Universal Design. Students will incorporate each of these design principles into a capstone multimedia course project.

CHE 654. Corrosion. 3 credits, 3 contact hours.
Prerequisite: undergraduate courses in Chemistry. Fundamental principles including thermodynamics and kinetics of corrosion; forms of corrosion (e.g. galvanic, crevice and stress); methods of corrosion measurement; high temperature corrosion; and special case histories.

CHE 675. Statistical Thermodynamics. 3 credits, 3 contact hours.
Prerequisites: CHE 611 or permission of instructor. Application of equilibrium statistical mechanics to chemical engineering problems. Basic postulates and relationships of statistical thermodynamics, including the ideal gas, ideal crystal, and virial equation; statistical theories of fluid mixtures and other advanced topics.
CHE 683. Polymer Processing. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in transport phenomena, fluid flow, or heat transfer or approval of graduate advisor. The course provides a systematic approach to the physical phenomena occurring in polymer processing machinery. The synthesis of the elementary steps of polymer processing are shown in relation to the development of extrusion die flow and extrusion products and injection mold flows and molded products. Structural and residual stresses are examined.

CHE 684. Materials and Process Selection for Polymer Product Design. 3 credits, 3 contact hours.
Prerequisites or corequisites: CHE 681, CHE 682, CHE 683 or approval of graduate advisor. The course provides methodologies for designing polymer-based products by considering materials and processing methods. Methods for selecting homopolymers, polymer blends and composites for specific applications will be presented in terms of properties, processability, manufacturing methods and economics. Process/structure/property correlations are presented as well as approaches to product design including CAD, prototyping, and strength and failure criteria. Case studies from biomedical, packaging and other applications are discussed.

CHE 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemical engineering. A written report must be submitted to the project advisor. The student cannot register in CHE 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CHE 701B. Masters Thesis. 3 credits, 3 contact hours.
Corequisite for full-time students: CHE 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CHE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CHE 701C. Masters Thesis. 6 credits, 6 contact hours.
Co-requisite for full-time students: CHE 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CHE 701B course) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CHE 702. Selected Topics in Chemical Engineering II. 3 credits, 3 contact hours.
Restriction: graduate standing. Topics of current interest in chemical engineering.

CHE 705. Independent Study. 3 credits, 3 contact hours.
Restriction: permission from the graduate advisor (not dissertation advisor) in chemical engineering. Students working on their PhD or MS theses cannot register for this course with their respective thesis advisors. This special course covers areas of study in which one or more students may be interested, but which isn't of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

CHE 706. Independent Study II. 3 credits, 3 contact hours.
Pre-requisite: CHE 705. Restriction: permission from the graduate advisor (not dissertation advisor) in chemical engineering. Students working on their PhD or MS theses cannot register for this course with their respective thesis advisors. This special course covers areas of study in which one or more students may be interested, but which isn't of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

CHE 709. Adv Separation Processes. 3 credits, 3 contact hours.
Prerequisites: CHE 360, CHE 460, CHE 612, CHE 624 and CHE 626 or permission of instructor. Students having a background in undergraduate separations courses will be introduced to advanced concepts in separations. These include: descriptions of separation; forces causing separation in equilibrium, field and membrane separation processes; flux-force relations; chemical potential profiles; role of chemical reactions in separations; four different combinations of directions of force and bulk motions in separators; time-dependent processes. Advanced analysis of important individual separation processes of three types, namely, equilibrium-based, membrane-based and external field-based processes will be carried out.

CHE 710. Adv Membrane Separation Proc. 3 credits, 3 contact hours.
Prerequisites: CHE 460, CHE 603, CHE 624, CHE 626 or permission of instructor. This course will provide advanced treatments of science, technology, engineering analysis and design of the following membrane separation processes: reverse osmosis, nanofiltration, ultrafiltration, dialysis, electrodialysis, Donnan dialysis, liquid membrane permeation, microfiltration, gas permeation through polymeric membranes, pervaporation, membrane-based equilibrium separation processes, membrane reactors and hybrid membrane processes. Membrane structure/function and device design for each technology are of interest.

CHE 714. Micromechanics of Part Tech Pr. 3 credits, 3 contact hours.
Prerequisite: CHE 624 or equivalent. Corequisite: PHEN 601 or equivalent (not required but suggested). Presents methodologies for analyzing the macroscopic properties of particulate systems. Includes characterization and processing of particulate systems at the microlevel, predicting macroscopic properties from microlevel models, and analysis of particulate manufacturing processes involving solids processing, such as solids characterization, blending, milling, granulation, tableting, etc. Course includes laboratory demonstrations and a class project involving use of surface modification.
CHE 721. Combustion Reaction Engineering. 3 credits, 3 contact hours.
Restriction: undergraduate degree in Chemical or Mechanical Engineering. Topics related to the engineering of combustion systems will be discussed. These include laminar flames, turbulent combustion, ideal reactor modeling of complex combustion systems, combustion chemistry, heterogeneous combustion and incineration.

CHE 722. Additive Manufacturing & Appl. 3 credits, 3 contact hours.
Prerequisites: CHE 624 and CHE 626 are both prerequisites or can be taken concurrently. Other equivalent courses can be acceptable for non-chemical engineering students with permission of the instructor. This course describes additive manufacturing technologies and current (and emerging) applications of 3D printing. The course will be composed of a lecture and a hands-on laboratory session, during which students will create 3D designs and print functional prototypes.

CHE 724. Sustainable Energy. 3 credits, 3 contact hours.
The course is a project-based advanced graduate course which requires strong background in engineering thermodynamics and transport phenomena. The main goals of this course are to gain an understanding of the cost-benefit ratio of various alternative energy sources and to understand some of the various obstacles associated with current and conventional technologies and industrial applications. Different renewable and conventional energy technologies will be discussed in class. Course materials include biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, hydropower, and fuel cells. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology systems in the context of engineering, political, social, economic, and environmental goals.

CHE 725. Transport Phenomena II. 3 credits, 3 contact hours.
Prerequisite: CHE 624 or equivalent. Transport in laminar and turbulent flow: in solids, between phases, and macroscopic transport in flow systems.

CHE 734. Chem Process Dynamic & Control. 3 credits, 3 contact hours.
Prerequisite: CHE 626 or equivalent. Corequisites: CHE 611, CHE 612 or equivalent Mathematical principles of process dynamics and control; derivation and solution of differential equations describing the behavior of typical chemical engineering processing units; and mathematical analysis and design of control systems. Digital and sampled data control systems also discussed.

CHE 750. Environmental Catalysis. 3 credits, 3 contact hours.
Prerequisites: CHE 612 or equivalent. An introduction to catalytic processes used for environmental abatement. The course provides background information necessary to understand environmental catalytic processes. Mobile and stationary pollution abatement technologies are reviewed.

CHE 756. Industrial Catalysis. 3 credits, 3 contact hours.
Prerequisites: CHE 612 or equivalent. The class provides an introduction to catalytic phenomena as well as catalysts with the background information necessary to understand industrial catalytic processes. Examples discussed are hydrogen, ammonia and methanol synthesis, inorganic and organic oxidation reactions, petrochemical processes, pollution abatement and other important processes. The course provides insight into the theory of catalytic phenomena and information about related technologies from an industrial perspective.

CHE 775. Molecular Simulations in CHE. 3 credits, 3 contact hours.
Prerequisites: CHE 611 and CHE 626. Minimal programming experience in any programming language (e.g. Matlab, Python or Fortran). The course is aimed to introduce graduate students to the basics of molecular simulation. Two simulation techniques will be discussed in detail: Monte Carlo and molecular dynamics methods. The students will study the algorithms, and the statistical mechanics basis of these algorithms. Then they will use popular open source codes to simulate systems relevant for chemical engineers.

CHE 781. Polymerization-Principles and Practice. 3 credits, 3 contact hours.
Pre or Corequisite: CHE 611. The course focuses on the structural and synthetic aspects of polymers and examines in detail a number of bench and industrial scale polymerization methods. In addition to kinetics and mechanisms of commercially important polymerization systems, the course examines reactive modification of synthetic and natural polymers and provides an introduction to applicable characterization methods.

CHE 782. Polymer Structures and Properties. 3 credits, 3 contact hours.
Pre or Corequisite: CHE 611. The course provides an overview of polymer structures and properties and their relationships from the molecular viewpoint to phenomenological descriptions. Topics include thermodynamics of a single molecule, dynamic theory and viscoelasticity of polymers, polymer solids and mechanical properties, rubbers, polymer blends and composites, biological polymers, and special applications. New areas and innovative applications of polymers will be introduced.

CHE 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Co-Requisite: CHE 791. For students admitted before Fall 2015. Required of all students for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Students must register for at least 6 credits of dissertation per semester until 36 credits are reached and then for 3 credits each semester thereafter until a written dissertation is approved.

CHE 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: CHE 791. For students admitted to the Doctor of Philosophy Program in Chemical Engineering who have passed the Qualifying Examination and Research Proposal. Required of all students for the degree of Doctor of Philosophy. Approval of dissertation advisor is necessary for registration. Experimental or theoretical investigation of a topic in chemical engineering. Students must register for 1 credit of dissertation per semester until a written dissertation is approved.
CHE 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: CHE 791. For students admitted to the Doctor of Philosophy Program in Chemical Engineering who have passed the Qualifying Examination but have not defended Research Proposal. Required of all students for the degree of Doctor of Philosophy. Approval of dissertation advisor is necessary for registration. Experimental or theoretical investigation of a topic in chemical engineering. Students must register for 3 credits of dissertation per semester after passing Qualifying Examination until they successfully defend their Research Proposal.

CHE 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.

CHE 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

CHE 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

CHE 790F. Dissertation & Res. 15 credits, 3 contact hours.

CHE 790G. Doct Dissertatopm & Resrch. 18 credits, 0 contact hours.

CHE 791. Graduate Seminar. 0 credits, 1 contact hour.
Required of all chemical engineering students receiving departmental or research-based awards and all doctoral students. The student must register each semester until completion of the degree. Outside speakers and department members present their research for general discussion.

CHE 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite for full time students: CHE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in chemical engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well, for students who have completed the required coursework but have not passed the qualifying examination.

CHE 792C. Pre-Doctoral Research. 6 credits, 0 contact hours.

CHE 794. Professional Presentations for Ph.D. Students. 0 credits, 0 contact hours.
Intended to help students make better technical presentations. Each student is required to make a presentation on a research topic; guest lectures will occur during the semester.

CHE 795. Research Methods for Doctoral. 3 credits, 3 contact hours.
Prerequisites: Doctoral standing in CBPE or permission of the instructor. This course is designed to enhance professional development of our doctoral students in order to significantly increase their research productivity, communications, and leadership skills while preparing them for a successful career. Concepts include setting priorities, time management, and learning best practices in research planning, execution, communication, writing and presentation. Advanced topics include understanding innovation, intellectual property and writing better proposals.

ECE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from Department of Electrical and Computer Engineering and Division of Career Development Services. Cooperative education/internship providing on-the-job reinforcement of academic programs in electrical and computer engineering. Assignments and projects are developed by the co-op office in consultation with the electrical and computer engineering department. Work assignments are related to student's major and are evaluated by faculty coordinators in the ECE department. Credits for this course may not be used to fulfill any electrical or computer engineering degree requirement.

ECE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: ECE 590 and permission from Department of Electrical and Computer Engineering and Division of Career Development Services. See ECE 590 course description. Credits for this course may not be used to fulfill any electrical or computer engineering degree requirement.

ECE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: graduate standing and permission from Department of Electrical and Computer Engineering and Division of Career Development Services. See ECE 590 course description. Credits for this course may not be used to fulfill any electrical or computer engineering degree requirement.

ECE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ECE 601. Linear Systems. 3 credits, 3 contact hours.
Methods of linear-system analysis, in both time and frequency domains, are studied. Techniques used in the study of continuous and discrete systems include state-variable representation, matrices, Fourier transforms, LaPlace transforms, inversion theorems, sampling theory, discrete and fast Fourier transforms, and Z-transforms. Computer simulation of linear systems is used, and, where feasible, computer solutions are obtained.

ECE 605. Discrete Event Dynamic Systems. 3 credits, 3 contact hours.
Covers the theory of discrete event dynamic systems with applications in modeling, control, analysis, validation, simulation, and performance evaluation of computer systems, flexible manufacturing systems, robotic systems, intelligent supervisory control systems, and communication networks. Emphasis on Petri net and automation based approaches.

ECE 610. Power System Steady-State Analysis. 3 credits, 3 contact hours.
Prerequisite: B.S. in EE or ME. Steady-state analysis of power system networks, particularly real and reactive power flows under normal conditions and current flows under faulty conditions. Symmetrical components and digital solutions are emphasized.
ECE 611. Transients in Power Systems. 3 credits, 3 contact hours.
Prerequisite: ECE 610. Transient performance of power systems with lumped properties, interruption of arcs, re-ignition inertia effects, switching of rotational systems, magnetic saturation in stationary networks, harmonic oscillations, saturated systems, transient performance of synchronous machines.

ECE 612. Computer Methods Applied to Power Systems. 3 credits, 3 contact hours.
Prerequisite: undergraduate computer programming. Digital computer techniques proven successful in the solution of power system problems, particularly in the electric utility industry. Emphasis on short-circuit, load flow, and transient stability problems. Matrix sparsity is considered.

ECE 613. Protection of Power Systems. 3 credits, 3 contact hours.
Prerequisite: ECE 610 or equivalent. Coils, condensers, and resistors as protective devices; fundamental principles of protective relaying; relay operating characteristics; power and current directional relays; differential relays; distance and wire pilot relays; heating and harmonic effects; and Computer-based protective device coordination.

ECE 616. Power Electronics. 3 credits, 3 contact hours.
Prerequisite: B.S. in electrical engineering. Principles of thyristor devices, dynamic characteristics of choppers, commutation, protection, voltage-fed and current-fed inverter drives, cycloconverters, pulse width modulation, phase control, and microcomputer control, with case studies.

ECE 617. Economic Control of Interconnected Power Systems. 3 credits, 3 contact hours.
Economic Control of Interconnected Power Systems: Advanced techniques for operating power systems in the most economic manner while meeting various network constraints; economic dispatch, penalty factors, optimal power flow, short-term electricity markets and locational marginal prices will be studied.

ECE 618. Photovoltaic Semiconductors and Renewable Energy. 3 credits, 3 contact hours.
This course introduces renewable energy systems. It covers the fundamental concepts of energy and radiation with specific solar energy applications and photovoltaics, electrical energy storage systems, and thermal energy and storage. The second part covers the basic science of wind energy systems and their electrical system designs. The third part covers the bioenergy systems from resources to final products and conversion technologies. It finally introduces other promising energy sources.

ECE 619. Intelligent Sensing for Smart Grid and Smart City. 3 credits, 3 contact hours.
Prerequisites: Basic knowledge on electromagnetics and circuit theory, ECE361 Electromagnetic Fields I or equivalent. This course introduces the fundamentals and applications of intelligent sensing technology to smart grid and smart city. The course covers the fundamental sensing principles, types and selection of sensors including electromagnetic field sensors, amplifiers and bridge circuits, and sensing system architecture. Estimation and evaluation of sensor calibration and their responses by using finite element method, sensor noise and shielding design will be addressed. Signal analysis techniques such as wavelet analysis and sensor fusion will be discussed. Anomaly detection, fault classification and prediction and decision making on sensor data by machine learning, and the applications of electromagnetic sensing in power systems will be covered. Advanced sensor applications topics in IoT, smart grid and smart city will also be included.

ECE 620. Electromagnetic Field Theory. 3 credits, 3 contact hours.
Prerequisite: undergraduate electromagnetic field theory or equivalent. Maxwell's equations, boundary conditions and formulation of potentials. Laplace and Poisson equations for electrostatic and magnetostatic problems and the method of images. Dielectric and magnetic materials, force and energy concepts. Quasi-static and time varying fields, plane, cylindrical and spherical waves. Green's functions, transmission lines.

ECE 622. Wave Propagation. 3 credits, 3 contact hours.
Prerequisite: ECE 620 or equivalent. Fundamentals of electromagnetics; radiation and scattering; Green's functions; integral equations; numerical methods; ray optics and asymptotics.

ECE 624. Optical Engineering. 3 credits, 3 contact hours.
This course covers basic optical concepts, emphasizing those common to many optical instruments, such as light sources and their characteristics, polarization, coherence, and interferometry. The course introduces CAD tools for lenses, optical filters, and instrument design. The course also focuses on topics concerning optical systems, such as flat panel displays and micromechanical optical systems.

ECE 625. Fiber and Integrated Optics. 3 credits, 3 contact hours.
Prerequisite: undergraduate electromagnetic field theory and solid-state circuits. Planar dielectric waveguides, step and graded index fibers and dispersion in fibers. The p-n junction and heterostructures, light emitting diodes and semiconductor lasers, p-i-n and avalanche photodetectors, optical transmitter and receiver designs, optical fiber communication system design concepts.

ECE 626. Optoelectronics - Nonlinear Modulators for Optical Communication. 3 credits, 3 contact hours.

ECE 630. Microwave Engineering. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in electromagnetic field theory. Review of transmission line theory and the Smith chart; scattering matrix representation, LC and microstrip matching networks; signal flow graph analysis; micro-wave transistor amplifier design, which includes power gain, stability, noise figure circles; oscillator design.
ECE 632. Antenna Theory. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in electromagnetic field theory. Fundamentals of electromagnetic field theory; far field approximation, antenna characteristics (gain, impedance, pattern, etc.); elementary antenna types (dipoles, loops, etc.), antenna array theory, wire antennas; broadband antennas.

ECE 636. Computer Networking Laboratory. 3 credits, 3 contact hours.
This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e.g. RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the OPNET modeling tool and perform simulations that will help them evaluate their design approaches and expected network performance.

ECE 637. Internet and Higher-Layer Protocols. 3 credits, 3 contact hours.
The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

ECE 638. Network Management and Security. 3 credits, 3 contact hours.
Prerequisites: ECE 683 or CS 652, and ECE 637 or CS 656. Through thorough introduction to current network management technology and techniques, and emerging network management standards. In-depth study of the existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and from protecting systems for network-based attacks. SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management. Various types of security attacks (such as intruders, viruses, and worms), Conventional Encryption and Public Key Cryptology, Various security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility). Same as CIS 696.

ECE 639. Principles of Broadband Networks. 3 credits, 3 contact hours.
Prerequisites: ECE 673, ECE 683 or CS 652 or equivalent. This course covers fundamental concepts of broadband networks. Topics include Broadband ISDN, Switching Techniques, ATM, SONET/SDH, Congestion Control, High-Speed Switching Architectures, Traffic Modeling of Broadband Services, Admission Control, Traffic Scheduling, IP/ATM Convergence, QoS Provisioning in IP Networks, and Optical Networks.

ECE 640. Digital Signal and Data Processing. 3 credits, 3 contact hours.
Prerequisite: ECE 601 or equivalent. The fundamentals of signal theory and transforms are introduced in this course. The representation of signals in the time and complex domains is covered. Z-transform is presented and Laplace transform to Z-transform mapping techniques are studied. Fourier analysis tools for analog and discrete-time signals are developed and tied with popular engineering applications. The subspace methods and eigendecomposition are studied. Their big data applications are presented. Basic design techniques to design digital filters are covered in this course.

ECE 641. Laboratory for High Performance Digital Signal Processing. 3 credits, 3 contact hours.

ECE 642. Introduction to Communication Systems: Evolution to 5G and Beyond. 3 credits, 3 contact hours.
Corequisite: ECE 673. Principles of communication theory applied to the representation and transmission of information, starting from analog communication to digital communication and ending at modern cellular systems as 5G and beyond. Topics include analysis of deterministic and random signals, amplitude modulation, angle modulation, sampling, quantization, geometric representation of signals, digital modulation as QAM, PSK, and OFDM, error probability, matched filter and correlation receivers, and the performance analysis of communication systems.

ECE 643. Digital Image Processing I. 3 credits, 3 contact hours.
Prerequisite: ECE 601. Introductory course in digital image processing. Topics include image models, digitization and quantization, image enhancement in spatial and frequency domains, image restoration, image segmentation and analysis.

ECE 644. Wireless Communications: Fundamentals to 5G. 3 credits, 3 contact hours.
Prerequisites: ECE 321 or MATH 333. This course is focused on the technical challenges and solutions to physical and link layer design of wireless communication systems. Course topics include characterization of the wireless channel, the cellular concept, digital modulation techniques, spread spectrum, multiple access techniques including CDMA and OFDM, diversity techniques. Advanced techniques such as LTE, MIMO, 5G NR technologies are introduced. Matlab is used for examples and assignments.

ECE 645. Design of Wireless Networks: 5G Architecture and Services. 3 credits, 3 contact hours.
Prerequisites: EE 321 or MATH 333, or equivalent (see undergraduate catalog for descriptions). Introduction to wireless network design, management, and planning stages. Topics include demand modeling, radio planning, network optimization, and information handling architecture with emphasis on resource allocation and mobility management aspects. Investigation of signaling load optimizations and internetworking problems.

ECE 650. Electronic Circuits. 3 credits, 3 contact hours.
Prerequisite: senior undergraduate level semiconductor circuits. Methods of analysis and design of linear and digital semiconductor circuits are studied. Topics include low and high frequency models, passive and active biasing techniques, I-C analysis and design, op-amp circuits, and active filters.

ECE 653. Micro/Nanotechnologies for Interacing Live Cells. 3 credits, 3 contact hours.
In this course, we will study technologies and tools available for interfacing live cells from a sub-cellular, single-cell, and multi-cellular (tissue models) approach. We will introduce key concepts of the biology of cells and tissues and will explore the technologies (micro-/nanotechnologies) and tools (sensors and actuators) available for the investigation of cell and tissue biology. Same as BME 653.
ECE 657. **Semiconductor Devices. 3 credits, 3 contact hours.**
Fundamental principles of solid state materials necessary for understanding semiconductor devices. Topics include crystal structure; energy bands; electron and hole generation, and transport phenomena; generation and recombination processes, and high field effects. P-N junction diode, metal semiconductor contact, and bipolar and metal oxide semiconductor transistors, including switching phenomena and circuit models. Introduction to: photonic devices—light emitting diodes, semiconductor lasers, photodetectors, and solar cells; microwave devices—tunnel and IMPATT diodes, transferred electron devices, and charge-coupled capacitors.

ECE 658. **VLSI Design I. 3 credits, 3 contact hours.**
Analysis and design of digital integrated circuits; basic building blocks and dependence on circuit parameters of propagation delay; noise margin; fan-out; fan-in; and power dissipation for circuits of different logic families, including NMOS, CMOS and BICMOS; subsystem designs in combinational and sequential logic; Memory Systems; HSPICE circuit simulation is used for digital characteristics evaluation. Mentor Graphics Layout design tools are used for chip design.

ECE 659. **Fabrication Principles of Electronic and Optoelectronic Devices. 3 credits, 3 contact hours.**
Prerequisite: ECE 657 or equivalent. Overview of all major processing steps in fabrication of integrated circuits such as crystal growth, epitaxy, oxidation, diffusion, ion implantation and etching. Formation of thin film structures along with techniques for defining submicron structures. Emphasizes silicon device technology but also includes processing of compound semiconductors such as gallium arsenide.

ECE 660. **Control Systems I. 3 credits, 3 contact hours.**
Prerequisites: undergraduate course equivalent to EE 333 or ME 305 (see undergraduate catalog for descriptions) and ECE 601 or equivalent or permission from instructor. Introduction to feedback control. Review of state-space analysis. Frequency-domain methods for analysis: Routh-Hurwitz stability algorithms, Root-loci; Nyquist and Bode plots; system ?type.? Controllability and observability. The separation principle and design by pole placement. Linear observers. Optimization of quadratic performance criteria. Elements of random processes. The Kalman filter as an optimum observer. Robustness considerations.

ECE 661. **Control System Components. 3 credits, 3 contact hours.**
Prerequisite: ECE 660. The theoretical and practical requirements for analog and digital state-of-the-art control system components are covered. Actuators, amplifiers, sensors, encoders, resolvers and other electromagnetic devices are included. A complete system is designed using current vendor catalog data. Problems affecting the system performance are analyzed using measures of functionality, reliability and cost.

ECE 664. **Applied Advanced Control Systems. 3 credits, 3 contact hours.**
Prerequisite: EE 486 or equivalent (see undergraduate catalog for description). Emphasizes the practical aspects of modern computer control systems. Topics include: Architecture of digital signal processors (DSP) and microcontrollers, real-time data acquisition devices and interface, programming a DSP, review of sampling theorems and properties of discrete-time systems, introduction of control systems theory, design and implementation of parameter optimized controllers, state variable controllers, and cancellation controllers. An experimental project using a TMS320C2x DSP-based data acquisition system is an integral part of this course.

ECE 667. **Bio-Control Systems. 3 credits, 3 contact hours.**
The course provides an introduction to dynamic and control in biological systems, with particular emphasis on engineering aspects of biological oscillators/waves which govern the basic operations of all living organisms and especially higher order life forms. A combination of theoretical and simulation tools will be applied to analyze the qualitative and quantitative properties of selected biological systems. Feedback and control mechanisms in selected biological systems will be introduced. Same as BME 667.

ECE 673. **Random Signal Analysis. 3 credits, 3 contact hours.**
Fundamentals of the theory of random variables. Introduction to the theory of random processes. Topics include functions of random variables, sequences of random variables, central limit theorem, properties of random processes, correlation, spectral analysis and linear systems with random inputs.

ECE 681. **High Performance Routers and Switches. 3 credits, 3 contact hours.**
The course introduces the different system comprising and Internet routing including the processors for networking function and protocol compliance, switching functions and packet classification for deep-layer inspection capable routers or network appliances. This course material describe the different functions that Internet routers perform and discusses the different approaches used for improving performance of high-end routers. The content includes a discussion on switch architectures.

ECE 683. **Cloud and IoT Networking and Security. 3 credits, 3 contact hours.**
This course will introduce the students to the basic networking concepts that enable the management and security of cloud and IoT networks. This course will start with the study of the fundamentals of computer networking and layering. Then, several techniques and protocols that enable and secure these technologies will be studied such as, specialized and advanced packet capture tips, virtualization / IEEE 802.15 Bluetooth / IEEE 802.15.4 ZigBee / IEEE 802.16e WiMAX / Home RF / ZWave / RFID / Infrared / PBCC / 3G / 4G / 5G, and specialized data traffic reconstruction and viewing techniques.

ECE 684. **Advanced Microprocessor Systems. 3 credits, 3 contact hours.**
Prerequisite: undergraduate course in computer architecture and microprocessors, and some experience in assembly language programming. Architecture of advanced microprocessors; CPU architecture, memory management and protection, interrupt and exception facilities, instruction sets, systems aspects including peripheral interfaces, communications ports, and real-time systems.
ECE 689. Computer Arithmetic Algorithms. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in logic design. Data representation, integers, floating point and residue representation. Bounds on arithmetic speed, algorithms for high speed addition, multiplication, and division. Pipelined arithmetic. Hardware implementation and control issues.

ECE 690. Computer Systems Architecture. 3 credits, 3 contact hours.
Prerequisites: ECE 684 and COE 353 (see undergraduate catalog for description) or CS 650. Discusses advanced topics in modern computer systems architecture such as pipelined and superscalar processors, parallel computers (vector, SIMD, MIMD), multithreaded and dataflow architectures, cache and memory hierarchy, and system interconnect architectures. Also discusses relevant system software design issues such as shared memory and message-passing communication models, cache coherence and synchronization mechanisms, latency-hiding techniques, virtual memory management, program partitioning and scheduling. Examples are drawn from real systems.

ECE 692. Embedded Computing Systems. 3 credits, 3 contact hours.
Pre-requisites: ECE 353 (COE) or ECE 684 (EE) and CS 105 (or equivalents). Introduction of the methodology for the design and implementation of embedded computing systems, and its application to real-world problems. Topics include Embedded System Design Process, UML, ARM Instruct Set Architectures, CPU's Hardware Platforms, Software Design and Analysis, Embedded Operating Systems, Real-Time Scheduling, Hardware Accelerators, Distributed Embedded Systems, and Design Methodology and Quality Assurance.

ECE 698. Selected Topics in Electrical and Computer Engineering. 3 credits, 3 contact hours.
See description for ECE 698 above.

ECE 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. A written report must be submitted to the project advisor. The student cannot register in ECE 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ECE 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ECE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ECE 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ECE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ECE 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

ECE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for ECE 726 if they have taken ECE 725 in a prior semester.

ECE 739. Laser Systems. 3 credits, 3 contact hours.
Prerequisite: ECE 620 or permission of instructor. Optical resonators, laser radiation and oscillation. Laser characteristics: semiconductor lasers, gas and glass lasers; mode-locking, Q-switching. Quantum-well lasers, noise; modulation and detection of laser light, optical systems for communication and computation.

ECE 740. Advanced Digital Signal Processing. 3 credits, 3 contact hours.
Prerequisites: ECE 601, ECE 640 and ECE 673. Topics in stationary discrete time stochastic processes; modeling of discrete time processes, Yule-waker equations, aspects of discrete wiener theory; principle of orthogonality, linear predictors; Levinson-Durbin recursion and algorithm, lattice predictors, method of least squares (RLS) algorithm, systolic array implementation of QRD-Ls.

ECE 742. Communication Systems II. 3 credits, 3 contact hours.
Prerequisites: ECE 642 and ECE 673 or equivalents. Principles of digital communication. Topics include fundamentals of information theory, digital modulation techniques, optimum detector receivers for digitally modulated signals, the bandlimited gaussian channel and intersymbol interference, equalization, spread spectrum, CDMA.
ECE 743. Image Data Hiding, Forensics. 3 credits, 3 contact hours.
Prerequisites: ECE 643 or CS 659 or equivalent. As we have entered digital world, information forensics and security have become critically important. With digital images as media, this course covers digital watermarking, reversible data hiding, steganography and steganalysis, forensics and counter-forensics, including image tampering detection, classification of double JPEG/MPEG compressions, camera classification from given images, classification of photographic images from computer graphic images, and so on.

ECE 744. Optimization for Data Engineering. 3 credits, 3 contact hours.
With the emergence of advanced sensing and monitoring technologies, data has become the new oil of our digital economy. In all the engineering fields, ranging from power systems and transportation systems to online shopping, web servers, sensors and cameras are continuously collecting huge amounts of data, but this data will not have any meaning without proper processing, analysis, and learning. Optimization techniques provide the core foundation for the processing of the data and learning from it. This course covers the basic analytical and algorithmic optimization tools that lay the foundation for the data analytics and deep learning systems. Specific topics include single-objective convex optimization (duality, optimality conditions, algorithms), gradients-based methods, and the fundamentals of multi-objective optimization and game theory. The theoretical foundation and the fundamental algorithms are applied to real-world scenarios that utilize supervised learning models, including nonlinear regression, logistic regression, support vector machines, and deep neural networks.

ECE 747. Signal Decomposition Techniques. Transforms, Sub-bands, and Wavelets. 3 credits, 3 contact hours.
Prerequisites: ECE 640 and ECE 673. Multiresolution signal decomposition techniques, transforms, sub-bands, and wavelets. Time-frequency localization properties of multiresolution algorithms. Evaluation and critique of proposed decomposition strategies from compression and performance standpoints. Applications to speech and video compression, and localized feature extraction. These are basic signal processing tools used in diverse applications such as speech and image processing and storage, seismology, machine vision.

ECE 754. Statistical Machine Learning and Pattern Recognition. 3 credits, 3 contact hours.
Prerequisites: Good knowledge of graduate probability, as in ECE 673 or equivalent, and linear algebra; or permission of instructor. This course provides a systematic introduction to machine learning and pattern recognition using information-theoretic performance criteria as guiding principles. Topics covered include linear and kernel models for classification and regression, sample complexity and VC dimension, probabilistic graphical models and approximate inference.

ECE 755. Advanced Topics in Digital Communications. 3 credits, 3 contact hours.
Prerequisites: ECE 642 and ECE 673 or equivalent. Advanced topics in digital communication systems in the presence of intersymbol interference, noise, and fading: modulation and demodulation in the presence of gaussian noise, efficient signaling with coded modulation, Viterbi algorithm, digital transmission with intersymbol interference, and digital signaling over imperfect channels.

ECE 756. Advanced Topics in Semiconductor Devices. 3 credits, 3 contact hours.
Prerequisite: ECE 657 or permission of instructor. Builds on ECE 657. Covers photonic devices particularly semiconductor laser and photodetectors for optical systems; microwave and other high speed devices; scaled advanced MOS, FET, and bipolar transistors.

ECE 758. VLSI Design II. 3 credits, 3 contact hours.
Prerequisite: ECE 658 (with ECE 657 suggested). Use of CMOS, BiCMOS and bipolar semiconductor technology for VLSI design. Digital techniques are emphasized with minor coverage of analog design. Application areas for full custom, gate arrays, standard cell, and compiled designs are compared. Mentor VLSI design tools running on the HP and Sun workstations are used in the course projects for each enrollee. The course attempts to provide a design environment for projects that is similar to that encountered by VLSI designers in industry.

ECE 760. Control Systems II. 3 credits, 3 contact hours.
Prerequisites: ECE 601 and ECE 660. Properties of nonlinear systems and basic concepts of stability including small-signal linearization. State plane methods are introduced, with emphasis on controller design for systems that can be represented by second-order approximations. Concepts of equivalent gain, describing function, and dual-input describing function as applied to a large class of nonlinear systems. Representation of linear sampled-data systems in discrete state variable form, stability and performance of discrete-event systems. Full-state feedback, pole placement and observer design. Linear quadratic control and Kalman filtering.

ECE 765. Statistical Decision Theory in Communications. 3 credits, 3 contact hours.
Prerequisite: ECE 642 or equivalent. Relation between detection theory and statistical hypothesis testing problem. Use of Bayes decision criteria, Neyman-Pearson, and mini-max tests; receiver operating characteristics. Representation of signals in signal space, probability of error calculations. Estimation of random and non-random signal parameters, Cramer-Rao Inequality. The general Gaussian problem and the use of covariance matrices.

ECE 783. Computer Communication Networks. 3 credits, 3 contact hours.
Prerequisites: ECE 673 and ECE 683. Data link control and communication channels. Delay models in data networks. Queueing analysis techniques are taught in detail. Multi-access communication techniques. Routing in computer communication networks.

ECE 788. Selected Topics in Electrical and Computer Engineering. 3 credits, 3 contact hours.
Special-area course given when suitable interest develops. Advance notice of forthcoming topics will be given.

ECE 789. Selected Topics in Electrical and Computer Engineering II. 3 credits, 3 contact hours.
See description for ECE 788.
ECE 790. Doctrl Dissrtn & Research. 0 credits, 0 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790A. Doctrl Dissrtn & Research. 1 credit, 1 contact hour.
Co-requisite: ECE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in ECE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

ECE 790B. Doctrl Dissrtn & Research. 3 credits, 3 contact hours.
Co-requisite: ECE 791. Since the ECE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ECE 790C. Doctrl Dissertation & Resrch. 6 credits, 6 contact hours.
Co-requisite: ECE 791. Since the ECE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ECE 790D. Doctrl Dissertation & Resrch. 9 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790E. Doctrsstion & Resrch. 12 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790F. Doctrsstion & Resrch. 15 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790G. Doctrsstion & Resrch. 18 credits, 3 contact hours.

ECE 791. Graduate Seminar. 0 credits, 0.5 contact hours.
All master's and doctoral students must register for two semesters and six semesters of ECE 791 Graduate Seminar, respectively. To receive a satisfactory grade, students must attend at least five seminars during the semester, as approved by the seminar supervisor.

ECE 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: ECE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ECE 792C. Pre-Doctoral Research. 6 credits, 3 contact hours.

EM 501. Industrial Management. 3 credits, 3 contact hours.
Prerequisite: approval from the engineering management graduate advisor or program director. Operational aspects of management techniques: organization, product design and development, distribution logistics, marketing, plant location and layout, materials handling, production planning and control, inventory control, quality control, work analysis, and incentive plans.

EM 502. Engineering Cost Analysis. 3 credits, 3 contact hours.
Restriction: approval from the engineering management graduate advisor or program director. Financial, engineering, economic, and cost-control aspects of industrial management; the accounting cycle; cost accounting procedure; and cost-model techniques of making cost comparisons through engineering economic studies.
EM 503. Methods and Applications of Industrial Statistics and Probability. 3 credits, 3 contact hours.
Restriction: approval from the engineering management graduate advisor or program director, undergraduate course in calculus. An analytical approach to basic engineering probability and statistics, with applications drawn from both manufacturing and process industries. Emphasis is placed upon the utility of statistical inference derived from engineering data.

EM 602. Management Science. 3 credits, 3 contact hours.
Prerequisite: undergraduate calculus and probability and statistics. Linear programming: formulation, methodology, and application; the transportation problem; the assignment problem; Markov chains and their applications in decision making; queueing systems; deterministic and stochastic inventory models.

EM 617. Environmental Risk Assessment. 3 credits, 3 contact hours.
Prerequisite: undergraduate courses in calculus and economics. Application of management technique methodology to recognize, evaluate, and make decisions regarding expenditures for the mitigation of potentially hazardous environmental risks. Basic analytical techniques applicable to social and economic risk assessment; methodology and application to current air and water resources; and rationale for cost-benefit and trade-off analysis. Technical characteristics of materials: half-life, decomposition rates, and temperature sensitivity determining environmental probabilities and expectations.

EM 631. Legal Aspects in Environmental Engineering. 3 credits, 3 contact hours.
Control of air, water, and solid waste pollution by federal, state, and local government statutes and international law. Preparation of environmental impact statements and the right of private citizens to bring suit under federal clean air and water pollution legislation are discussed, as well as limitations on these rights.

EM 632. Legal Aspects in Construction. 3 credits, 3 contact hours.
Introduction to the legal factors affecting construction activities: contract responsibilities of contractors, engineers, and owners; subcontracts and third-party liability; construction law and code compliance; and insurance and bonds.

EM 633. Legal Aspects of Health and Safety. 3 credits, 3 contact hours.
Review of key laws and regulations pertaining to occupational health, safety, and product liability; methods to determine which codes apply in given situations and to prepare operating procedures to be used for internal compliance.

EM 634. Legal, Ethical and Intellectual Property Issues for Engineering Managers. 3 credits, 3 contact hours.
Introduction to various environmental, product liability, health and safety, and intellectual property, legal, as well as ethical, issues facing engineering managers. Current New Jersey and federal laws and pending legal actions in these fields. Case studies and advanced multimedia learning tools are used.

EM 635. Management of Engineering Research and Development. 3 credits, 3 contact hours.
Prerequisites: principles of management and statistics, or EM 501 and EM 503. A systems approach to management of resources, and tasks needed for engineering research and development. Identification, analysis, and evaluation of the operational characteristics and structure of the research laboratory and engineering office; functions of planning, organizing, staffing, direction, control, innovation, and representation; and planning and control theories, techniques, and current practices in scientific and engineering management.

EM 636. Project Management. 3 credits, 3 contact hours.
Prerequisites: IE 492 (see undergraduate catalog for description), IE 603 or equivalents. Introduction to concepts of project management and techniques for planning and controlling of resources to accomplish specific project goals. While the focus is on technically oriented projects, the principles discussed are applicable to the management of any project. Topics include time, cost considerations, cash flow forecasting, financial and performance control, documentation.

EM 637. Project Control. 3 credits, 3 contact hours.
Prerequisite: EM 636 or equivalent. Focuses on the methodology that can be employed to plan project implementation and control progress. Topics include work breakdown construction, task and schedule development budgetary control, earned value analysis, and behavioral considerations. Project management software utilization is emphasized.

EM 640. Distribution Logistics. 3 credits, 3 contact hours.
Prerequisite: EM 602 or TRAN 650 or equivalent. Distribution logistics emphasizing systems engineering techniques used to optimize corporate profit and customer service: transportation modes; inventory policies; warehousing and order processing; and the best logistics gross margin. Same as TRAN 640.

EM 641. Engineering Procurement and Materials Management. 3 credits, 3 contact hours.
Prerequisites: EM 602, EM 640, and EM 674 or equivalents. Study of the logistics life cycle, involving planning, analysis, design, testing, distribution and life cycle support. Make versus buy engineering design decision. Various tools and techniques for an effective life cycle support program. Benchmarking approach to survey available internal and external resources and competitor solutions. Constructing life cycle cost models for acquisitions. Build adequate specification. Application of the latest techniques in supplier chain quality management. Case studies and advanced multimedia learning tools are used.

EM 655. Management Aspects of Information Systems. 3 credits, 3 contact hours.
Prerequisite: computer programming experience. Information flow in an organization as an integrated system and management resource: techniques of data analysis, design, and processing; characteristics of computerized information-handling equipment; data acquisition, storage, processing, retrieval, and transmission to decision-makers; and information systems for finance, production, inventory, accounting, marketing, and distribution.
EM 660. Financing an Industrial Enterprise. 3 credits, 3 contact hours.
Prerequisites: undergraduate economics, accounting, and engineering economy. Principles of financial practice and management in modern business corporations emphasizing financial planning and control; capital project and working capital needs; internal and external financing; and finance as a major function of the management process.

EM 661. Advanced Engineering Economics. 3 credits, 3 contact hours.
Prerequisite: undergraduate engineering economics or equivalent. Economic use of a firm's capital resources. Feasibility studies of potential major capital investments likely to be considered by an enterprise. Risk assessment, cost engineering, effect of financing sources, life cycle, and technologies forecasting models. Case studies are used.

EM 674. Benchmarking and Quality Function Deployment. 3 credits, 3 contact hours.
Prerequisite: IE 673 or equivalent. Continuation of IE 673. Benchmarking surveys of competition, process analysis of engineering activities, statistical process control mathematics, Taguchi methods of process and product design, current total quality management innovations, quality functional deployment. Case studies and advanced multimedia learning tools are used.

EM 691. Cost Estimating for Capital Projects. 3 credits, 3 contact hours.
Prerequisites: EM 502 and EM 503, or equivalent. Cost estimating techniques and procedures for budgeting used in evaluation, planning, and control of capital investments. Emphasis on updating for change, escalation, and statistical and computer methods.

EM 693. Managerial Economics. 3 credits, 3 contact hours.
Prerequisite: undergraduate economics. Internal and external influences on the economic practices of business; classical and current theories of economic behavior; contemporary analytical techniques; behavior of costs, prices, and profits; demand analysis, competition and monopoly; capital expenditure planning; profit theories and business cycles; and econometric models of market strategies, competitive action, and demand behavior.

EM 695. Public Utility Energy Management. 3 credits, 3 contact hours.
Prerequisite: EM 602 or equivalent. Managing loads on electric power systems. Influence of variable rate structure and description of several projects currently in progress.

EM 696. Nuclear Power Reactor Management. 3 credits, 3 contact hours.
Prerequisites: undergraduate economics and physics. Nuclear power reactor management and power generation alternatives: optimum performance; maximum control; minimum cost; capacity planning; cost estimating; investment requirements; plant location and safety; separation technology for fuel enrichment; transportation and storage of spent fuel; reprocessing and nuclear waste storage; and regulatory aspects of nuclear power.

EM 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in engineering management. A written report must be submitted to the project advisor. The student cannot register in EM 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EM 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in engineering management that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in EM 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EM 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in engineering management that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (EM 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EM 714. Multicriteria Decision Making. 3 credits, 3 contact hours.
Prerequisite: some background in operations research. Multobjective programming and conflict analysis to evaluate alternatives in decision making, utility, assessment methodology, interactive and noninteractive multiple mathematical programming methods, and surrogate worth trade-off methods are covered.

EM 715. Design of an Enterprise. 3 credits, 3 contact hours.
Prerequisites: undergraduate economics, industrial management accounting, engineering economy, probability and statistics; 9 credits of EM courses at 600-level or above; and advisor's approval. Organization and management of an enterprise, from initial planning through production and distribution of manufactured products. Students choose the industry that they study.

EM 716. Seminar in the Design of an Enterprise. 3 credits, 3 contact hours.
Prerequisite: EM 715. Continuation of EM 715. Depending on the student's interest, report on design of the particular enterprise emphasizing either the management of research and development; the management of production; the management of distribution; or the management of manpower.
EM 725. Independent Research. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

EM 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for EM 726 if they have taken EM 725 in a prior semester.

EM 740. Management of Transportation Carriers. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or equivalent and TRAN 650 or EM 602 or equivalent. Presents theory and practice of managing transportation carriers, including the concepts of costing, pricing, designing and marketing transportation service; the concepts of financial efficiency and resource productivity with application to the selected freight carriers in each mode of transportation. Selected case studies of carriers? operations management practices in various modes. Comparative studies of service characteristics, market share, cost structures both within a particular transportation mode and between the modes. Same as TRAN 740.

EM 750. Multi-modal Freight Transportation Systems Analysis. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or equivalent and TRAN 650 or EM 602 or equivalent. Quantitative methods for the analysis and planning of freight transportation services. The supply-performance-demand paradigm for freight transportation systems. Cost and performance as determined by system design and operations. Relationship of traffic and revenue to service levels and pricing. Optimal service design and redesign for transportation enterprises and operations planning. Fleet and facility investment planning. Applications to various modes. Same as TRAN 750.

EM 770. Operations Cost and Management Control. 3 credits, 3 contact hours.
Prerequisites: 6 credits of EM courses at 600-level or above. Analysis and control of cost and other operational aspects of enterprises: manufacturing, distribution and overhead budgets; cost accounting; management information systems; relevant behavioral factors; financial and other management reports. Case studies used.

ENE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ENE 630. Physical Processes of Env Syst. 3 credits, 3 contact hours.

ENE 660. Introduction to Solid and Hazardous Waste Problems. 3 credits, 3 contact hours.
Pre or Corequisite: ENE 663. (May be taken concurrently.) Introduction to solid waste disposal. Industrial and urban sources of solid waste and conventional methods of waste disposal. Application of engineering principles related to these topics.

ENE 661. Environmental Microbiology. 3 credits, 3 contact hours.

ENE 662. Site Remediation. 3 credits, 3 contact hours.
Prerequisite: EM 631. Can be taken concurrently with EM 631. Examines site remediation from start to finish. Includes regulations, cleanup standards, remedial investigations, feasibility studies, risk assessment, and safety. Examines established and innovative cleanup technologies such as incineration, containment, bioremediation, vapor extraction and ground water recovery.

ENE 663. Water Chemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate general chemistry. The ability to analyze and solve a wide range of chemical equilibrium problems in water chemistry is developed.

ENE 664. Physical and Chemical Treatment. 3 credits, 3 contact hours.
Prerequisite: ENE 663. Physical and chemical operations and processes employed in the treatment of water and wastewater. Topics include gas transfer, coagulation, flocculation, solid-liquid separation, filtration, and disinfection.

ENE 665. Biological Treatment. 3 credits, 3 contact hours.
Pre or Corequisites: ENE 663, ENE 661. (May be taken concurrently.) Principles of evaluation and control of water pollution that describe aerobic treatment processes: oxidation ponds, trickling filters, and activated sludge. Anaerobic digestion and sludge handling and disposal as well as biodegradability study techniques for various wastes.

ENE 666. Analysis of Receiving Waters. 3 credits, 3 contact hours.
Pre or Corequisites: ENE 663 and ENE 661. Ecological responses of various types of receiving waters to municipal and industrial waste loadings. Mathematical models for water quality prediction and planning.

ENE 667. Solid Waste Disposal Systems. 3 credits, 3 contact hours.
Prerequisite: ENE 663. Review and evaluation of design criteria, methods, and equipment employed in handling and disposal of industrial and municipal solid wastes. Emphasis is on hazardous toxic waste, resource recovery, and regulatory constraints.

ENE 670. Environmental Impact Analysis. 3 credits, 3 contact hours.
Pre or Corequisite: ENE 663. A graduate course dealing with physical aspects of the environment. Overview of environmental problems, federal and state standards, methodology for developing impact statements, case studies based on recent experience, basis for assessment and decision making.
ENE 672. Stormwater Management. 3 credits, 3 contact hours.
This course provides a comprehensive study of stormwater management with emphasis on design practices. Topics include regulatory framework, an overview of structural and non-structural BMPs, groundwater recharge analysis, estimate of runoff, and design of detention basin and drainage systems.

ENE 673. Sustainability and Life Cycle Analysis. 3 credits, 3 contact hours.
The course provides a systematic foundation for the connection between evolving technology and human activity impacts on natural systems by emphasizing the sources of environmental degradation and energy use and strategies to reduce risk and promote sustainability. The course provides hands-on experience with life cycle assessment computer tools and approaches. The course emphasizes relationships between industrial activities and regional and global natural systems-physical, chemical and biological-focusing on the importance of sustainability goals and practices.

ENE 700B. Master's Project. 3 credits, 3 contact hours.
Prerequisite: student must have sufficient experience and/or graduate courses in major field to work on the project. Subject matter to be approved by the department. Permission to register must be obtained from the project advisor. Extensive investigation, analysis, or design of environmental engineering problems not covered by regular graduate course work is required. A student with an exceptional project in ENE may, upon his/her own initiative and with the approval of his/her advisor, substitute the work of this course as the equivalent of the first 3 credits for ENE 701 Master's Thesis. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ENE 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ENE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ENE 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ENE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ENE 702. Special Topics in Environmental Engineering. 3 credits, 3 contact hours.
Restriction: advisor's approval. Topics of special current interest in environmental engineering.

ENE 703. Biogeochemical Applications in Environmental Engineering. 3 credits, 3 contact hours.
Pre or Corequisites: ENE 663 Water Chemistry, ENE 661 Environmental Microbiology. This class will combine theoretical concepts (lectures) with laboratory and field studies to integrate the basic principles of environmental engineering, chemistry and microbiology to solve practical problems of assessment and treatment of contaminated sites. In the lectures, the students will be introduced to environmental regulations, the theoretical concepts for environmental sampling design, the procedures for analytical techniques, and traditional and cutting-edge remediation approaches. These lectures will be supplemented with peer-reviewed articles, technical reports, and operational methods. The field studies will consist in sampling collection methods, where the students will participate in a one-day sampling trip to a contaminated site to collect water, sediments, and plants samples. The students will then process the samples in the laboratory for further analysis for the contaminants of interest. Using this information, the students will prepare a Feasibility Study/Remedial Investigation (FS/RI) for their targeted site where they will evaluate three to five remediation strategies and will propose one final remediation design. The final RI/RI will be presented to the whole class in a mock Community Advisory Group (CAG) session.

ENE 720. Environmental Chemodynamics. 3 credits, 3 contact hours.
Introduction to concepts, mechanisms and models used to describe the transport of chemicals in the environment. Concepts and models are applied to air-water, sediment-water and soil-air interfaces.

ENE 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

ENE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for ENE 726 if they have taken ENE 725 in a prior semester.

ENE 790. Doctoral Dissert & Res. 0 credits, 0 contact hours.
Required of all students working toward the doctoral degree. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student has not completed the dissertation after completion of 36 credits, continued registration of 3 credits per semester is required.
ENE 790A. Doctoral Dissert & Res. 1 credit, 1 contact hour.
Co-requisite: ENE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in ENE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

ENE 790B. Doctoral Dissert & Res. 3 credits, 3 contact hours.
Co-requisite: ENE 791. Since the ENE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ENE 790C. Doctoral Dissertation. 6 credits, 6 contact hours.
Co-requisite: ENE 791. Since the ENE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ENE 790D. Doctoral Dissertation. 9 credits, 9 contact hours.

ENE 790E. Doctoral Dissert & Res. 12 credits, 3 contact hours.
Required of all students working toward the doctoral degree. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student has not completed the dissertation after completion of 36 credits, continued registration of 3 credits per semester is required.

ENE 790F. Doctoral Dissertation & Res. 15 credits, 3 contact hours.
Required of all students working toward the doctoral degree. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student has not completed the dissertation after completion of 36 credits, continued registration of 3 credits per semester is required.

ENE 791. Graduate Seminar. 0 credits, 0 contact hours.
Seminar in which faculty or others present summaries of advanced topics suitable for research. Students and faculty discuss research procedures, thesis organization, and content. Students present their own research for discussion and criticism. Required of all doctoral students registered for ENE790 unless requirement is waived, in writing, by the dean of graduate studies.

ENE 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: ENE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in environmental engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ENE 792C. Pre-Doctoral Research. 6 credits, 3 contact hours.

ESC 601. Fundamentals of Geomatics Engineering. 3 credits, 3 contact hours.
Prerequisites: Fundamental knowledge of calculus, MATH 111 or MATH 138 or equivalent. Restrictions: Graduate Standing or Approval from the Course Instructor. Covers basic knowledge of spatial reference systems and geodetic coordinates. Examines the first fundamental form and theory of distortion in map projection with application to conformal mapping within state plane coordinate systems. Introduction of the geopotential model and computational methods for geodetic positioning, physical and geometric heights, and gravity anomalies to quantify crustal movement and change detection. Examines geomatics engineering methodologies for sustainable development and risk mitigation through case studies.

ESC 603. Artificial Intelligence for Geospatial Decisions. 3 credits, 3 contact hours.
Prerequisites: Fundamental knowledge of statistics MATH 105 or equivalent and computer programming CS 106 or equivalent. Restrictions: Graduate Standing or Approval from the Course Instructor. Statistical learning theory with a focus on artificial intelligence (AI) for geospatial data. Two perspectives through machine learning include supervised and unsupervised learning of geospatial patterns. Course outcomes include knowledge and skills necessary to investigate patterns in geospatial data to support decision-making within the context of engineering and geoscience disciplines.

ESC 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in engineering science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ESC 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.
ESC 705. Advances in Engineering Education Research. 3 credits, 3 contact hours.
For PhD students in an engineering program. For master’s students, approval from Instructor/Course Coordinator (to confirm completion of core courses in the program). This course prepares students to apply theoretical work and research methodologies from the field of education to improve teaching of engineering students. Students will be able to conduct assessment and translate research findings into classroom and instructional methods. Topics include learning theories and conceptual frameworks, research design, qualitative and quantitative data collection and analysis, assessment and accreditation in engineering, student-centered instructional design and development of teaching statements.

IE 501. Fundamentals of Industrial Engineering. 3 credits, 3 contact hours.
Basic concepts of industrial engineering for students who lack an undergraduate degree in the discipline, including: manufacturing processes, work methods and measurement concepts, basics of human factors, quality control, facilities design, production planning, operations research tools, and simulation models.

IE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from the industrial engineering program director and the Division of Career Development Services. Cooperative education internship providing on-the-job reinforcement of academic programs in industrial engineering. Work assignments and projects are developed by the co-op office in consultation with the industrial engineering program director. Work assignments are related to student’s major and are evaluated by faculty coordinators in the IE department. Course cannot be applied toward degree credit.

IE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from the industrial engineering program director and the Division of Career Development Services. Course cannot be applied toward degree credit.

IE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: graduate standing and permission from the industrial engineering program director, and the Division of Career Development Services. Course cannot be applied toward degree credit.

IE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

IE 601. Measurement Methods for Performance Analysis of Operations. 3 credits, 3 contact hours.
Prerequisite: undergraduate mathematics for management science, or EM 602. Quantitative study of various analytical methods for designing and evaluating systems employed in the management of complex enterprises such as decision-making, efficiency measurement, and methods for obtaining optimal system performance.

IE 603. Behavioral Science in Engineering Organization. 3 credits, 3 contact hours.
Prerequisite: undergraduate probability and statistics, or EM 503. A study of scientific research on human behavior in organizations. Processes and problems of communication in engineering activities; line-staff and supervisor-subordinate relationships; formal and informal organizations; organization models; and technical and social structure of organizations.

IE 604. Advanced Engineering Statistics. 3 credits, 3 contact hours.
Prerequisite: IE 331 (see undergraduate catalog for description) or equivalent. The foundations of modern quality improvement, scientific basis of quality engineering, probability, statistical inference, statistical experimental design issues such as randomized blocks, factorial design at different levels, application to factorial design, building models, and implementation and critique of Taguchi’s contributions. Statistical software is used in the data analysis.

IE 605. Engineering Reliability. 3 credits, 3 contact hours.
Prerequisite: statistics. Concepts of modern reliability applied to practical industrial problems: statistical concepts, reliability through design, reliability through testing, analysis of reliability data, and the organization and management of a reliability program. Offered alternate years.

IE 606. Maintainability Engineering. 3 credits, 3 contact hours.
Prerequisite: statistics. Factors affecting maintainability design applied to military and industrial problems: statistical concepts; maintainability prediction, allocation, and demonstration; availability, system and costeffectiveness; provisioning; optimal maintenance policies; and management of a maintainability program.

IE 608. Product Liability Control. 3 credits, 3 contact hours.
Product liability and the effect of legal doctrines on minimizing hazards of design and manufacture. Use of actuarial techniques and legal precedents applicable to design, manufacturing, advertising, and marketing problems: warranties, notices, disclaimers, definition of liability, use of expert witnesses, reliability prediction and analysis methods, safety engineering concepts, and design review. A review of government regulations for safety and protection, as well as mandatory and voluntary standards will also be included.

IE 609. Advanced Analytical Engineering Statistics. 3 credits, 3 contact hours.
Prerequisite: IE 604. An extension of the techniques of engineering statistical analysis to industrial applications. Emphasis is placed on the design of experiments and analysis of tests for multivariate level problems.

IE 610. Transportation Economics. 3 credits, 3 contact hours.
IE 614. Safety Engineering Methods. 3 credits, 3 contact hours.
Prerequisites: introductory course in statistics and industrial or construction management. Application of selected safety engineering methods to detect, correct, and prevent unsafe conditions and procedures in future practice. Methods selected are from safety management and programs; loss prevention; fire protection; systems safety; the design of buildings and other facilities; and the design of products, machinery, and equipment. Engineering problems in designing and constructing a hazard-free environment.

IE 615. Industrial Hygiene and Occupational Health. 3 credits, 3 contact hours.
Prerequisites: one year of college physics and one semester of college chemistry or biology. Introduction to industrial hygiene. Recognition, evaluation and control of human exposure to noise, heat, bio-hazards, chemicals, radiation, and improper lighting. Government standards, field measurements, work practices, engineering designs, and the effects of excessive exposure on worker health and productivity.

IE 618. Engineering Cost and Production Economics. 3 credits, 3 contact hours.
Prerequisite: IE 502 or equivalent. Cost management of operational activities. Focuses on capital investment decision making and efficient resource utilization to achieve cost-effective operations. Topics include alternative investment evaluation, budgeting activity based costing, quality costs, life cycle management and relevant behavioral science. These are considered in the context of manufacturing and service industry application.

IE 621. Systems Analysis and Simulation. 3 credits, 3 contact hours.
Prerequisites: IE 331, IE 466 (see undergraduate catalog for descriptions), or equivalent or department approval. The application of well-integrated systems approach, systems and systems engineering in the system life cycle, system design process, mathematical tools and techniques applied to systems analysis, design for operational feasibility, systems engineering management, modeling techniques including simulation, application of discrete simulation techniques to model industrial systems, design of simulation experiments using software, output data analysis.

IE 622. Simulation and Risk Analysis in Operations Management. 3 credits, 3 contact hours.
Prerequisite: IE 331 (see undergraduate catalog for description) or equivalent. Introduction to the concepts, methodologies and applications of simulation in operations management. Foundations of simulation, Monte Carlo approaches, simulation models using spreadsheets, generating probabilistic outcomes using random number generation techniques, applying risk analysis software to spreadsheets for various decisions making. Variety of applications in operations management, finance and marketing. Software to develop models of practical operations management applications, is provided.

IE 623. Linear Programming. 3 credits, 3 contact hours.
Prerequisite: EM 602 or introductory course in operations research. Principles, methodology, and practical applications of linear programming to complex problems in production and marketing, simplex techniques, duality theory, parametric analysis, Wolfe and Dantzig's decomposition methods, ellipsoid method, and Karmakar's method.

IE 624. Heuristic Methods. 3 credits, 3 contact hours.
Prerequisites: EM 503 or equivalent. Techniques and concepts used to develop intelligent decision support systems. Application of rules called heuristics and models of reasoning to solve problems in engineering design and manufacturing. Topics include set theory, fuzzy subset theory, decision theory, logic, inference expert systems and single and multi-fault diagnostics.

IE 641. Operations Analysis. 3 credits, 3 contact hours.
Prerequisites: EM 602 and computer programming experience. Management systems and business behavior using industrial models. Special attention is given to the interaction of individual elements that make up the total system.

IE 642. Network Flows and Applications. 3 credits, 3 contact hours.
Prerequisite: EM 602 or equivalent. Theories, algorithms, computation complexity, and application of networks, shortest path, network flow, and minimum cost flow problems. Models of industrial service systems as network problems.

IE 643. Transportation Finance. 3 credits, 3 contact hours.

IE 644. Application of Stochastic Modeling in Systems Control. 3 credits, 3 contact hours.
Stochastic processes applied to control of various types of systems: Markov chains, queueing theory, storage theory applications to measure performance of flexible manufacturing systems, telecommunication and distributions networks and similar service systems. Knowledge of probability theory and linear algebra is essential.

IE 650. Advanced Topics in Operations Research. 3 credits, 3 contact hours.
Prerequisite: introductory course in operations research or equivalent. Current topics in deterministic models of operations research: linear programming, large scale decomposition, integer programming, dynamic programming, and nonlinear programming. Emphasis on optimization techniques for solving mathematical programming problems.

IE 651. Industrial Simulation. 3 credits, 3 contact hours.
Prerequisite: introductory course in statistics/simulation or instructor's permission. Statistical design and analysis of Monte Carlo simulation experiments from an engineering view. Examples are provided with emphasis on industrial and manufacturing applications of simulation modeling. Markovian processes simulation, random number generation, mathematical programming, heuristics and decision theory.
IE 652. Facilities Location and Plant Layout. 3 credits, 3 contact hours.
Prerequisite: introductory course in operations research or instructor's approval. Basic concepts of facilities location and plant layout. Quantitative and qualitative tools needed in industrial engineering, including single and multiple facilities location problems, site selections and allocation models, use of Duality theory in location and plant layout problem, and computerized layout planning.

IE 653. Facility Maintenance. 3 credits, 3 contact hours.
Prerequisite: EM 501 or equivalent. Intended for those individuals who manage the functioning and maintenance of physical facilities. Emphasis on planning and control of facilities use, maintenance, utility management, managerial control, budgets and costs, personnel administration, legal and safety, flexibility measurement, and design.

IE 655. Concurrent Engineering. 3 credits, 3 contact hours.
IE 659. Supply Chain Engineering. 3 credits, 3 contact hours.
Coordination of product manufacturing and logistic activities across the global supply chain is studied. Focus is on supply chain design, implementation, and control. Topics include transportation and distribution networks, inventory control, demand planning, materials handling and warehousing, supply chain contracts, manufacturing flexibility, product design for responsiveness, and ERP systems. Supply chain analytics concepts and relevant case studies are introduced.

IE 661. Man-Machine Systems. 3 credits, 3 contact hours.
Prerequisite: human factors engineering. Analysis of integrated man-machine systems: physical and psychological effects of systems of deterministic and conditional responses of individuals and groups, and the resulting interaction between individuals, groups, and machine systems; also current research and development pertaining to man-machine systems.

IE 662. Cognitive Engineering. 3 credits, 3 contact hours.
Prerequisite: IE 355 or equivalent. The purpose of this course will be to introduce the application of human factors and cognitive psychology principles to the user interface design of information technology, including computer systems, groupware and communications, handheld devices and Internet applications, and automatic speech recognition interfaces. The course will provide grounding in the engineering design processes used to enhance the usability of products and services, and usability testing methods used by user interface designers. Secondly, major areas and design problems in human-computer interaction and Information Technology will be covered, with real world examples. The course would be appropriate for advanced undergraduates in engineering, computer science, and psychology.

IE 664. Advanced Ergonomics. 3 credits, 3 contact hours.
Prerequisite: IE 355 or equivalent. The course covers important topics for ergonomics, including functional anatomy of the human body, work physiology and body energy expenditure, and biomechanics for people at work. Commonly used analytical tools for ergonomics will be introduced in the course.

IE 665. Applied Industrial Ergonomics. 3 credits, 3 contact hours.
Prerequisites: IE 355 (see undergraduate catalog for description) or IE 699. Introduces the fundamentals and applications of industrial ergonomics for improving equipment, tool, workplace, and job design. Engineers, as well as safety and health professionals, will benefit from the course by understanding the design principles for human operators and current issues in industrial ergonomics, and a variety of evaluating methodologies for the design.

IE 669. Human Design Factors in Engineering. 3 credits, 3 contact hours.
Prerequisite: engineering statistics. Human factors research related to workplace and equipment design and development. Capabilities and limitations of the human sensory-motor system. Design of displays and resulting interaction between individuals, groups, environments and machine systems. Current research in engineering pertaining to the man-machine interface. Not for IE students who have had an undergraduate course in human factors.

IE 670. Industrial Work Physiology. 3 credits, 3 contact hours.
Prerequisite: IE 669 or equivalent. A study of human physiological responses to industrial environmental factors emphasizing knowledge of human anatomy and physiological tolerances: skeletal, muscle, and neuromuscular systems, evaluation of physical work capacity and performance, changes in circulation and respiration during work. Semester project under the instructor's supervision is also required.

IE 672. Industrial Quality Control. 3 credits, 3 contact hours.
Prerequisite: engineering statistics. The management of quality assurance: operational and statistical principles of acceptance sampling and process control; quality problems in production lines, and introduction to total quality management concepts.

IE 673. Total Quality Management. 3 credits, 3 contact hours.
Introduces the concept of total quality management as applicable to industrial systems. Presents methods for product quality improvement. Emphasis is on prevention through quality engineering and design, and goes beyond traditional statistical process quality control. Presentation of recent methods in supplier management, quality assurance, process control, and competitor analysis. Includes Taguchi methods and quality function deployment. Description of ISO 9000 and Baldrige Award.

IE 674. Quality Maintenance and Support Systems. 3 credits, 3 contact hours.
Prerequisites: probability and statistics, IE 331 (see undergraduate catalog for description) or equivalent. Consideration of factors necessary for cost effective maintenance and support of technical operating systems. Topics discussed include service organization and management, spare parts and logistics, quality assurance, ISO9003 training. Examples from automation, computer systems, clinical engineering, power, and transportation will be used to illustrate application areas.

IE 675. Safety in Facility and Product Design. 3 credits, 3 contact hours.
Prerequisite: IE 614 or equivalent. Application of safety principles to minimize the health and safety hazards in the design and manufacture of various products. Practical techniques for, and economic ramifications of, conformance with the many statutes enacted to assure safe workplaces and products.
IE 677. Applied Statistics and Epidemiology for Hazard Analysis. 3 credits, 3 contact hours.
Prerequisite: IE 604 or equivalent. Application of statistical concepts to the field of hazard analysis including: investigation of root causes of accidents, their patterns and trends; rules for systematic data analysis; determination of commonality factors; availability and use of customized computer software.

IE 681. Interdisciplinary Seminar in Occupational Safety and Health. 1 credit, 1 contact hour.
Restriction: OSHE students, or permission of instructor. This is a required course for students who receive the trainee scholarship from the Occupational Safety and Health Engineering Program sponsored by the National Institute for Occupational Safety and Health (NIOSH). Other graduate students are also welcome and encouraged to take the interdisciplinary seminar course. Students and residents in the ERC programs will be able to participate in an interdisciplinary course with students in industrial hygiene, occupational medicine and occupational safety.

IE 682. Industrial Safety and Health Evaluation. 3 credits, 3 contact hours.
Restriction: OSHE students, or permission of instructor. This is a required course for students who receive the trainee scholarship from the Occupational Safety and Health Engineering Program sponsored by the National Institute for Occupational Safety and Health (NIOSH). Other graduate students are also welcome and encouraged to take this site visit course. Upon completion of this course, students will be able to plan and conduct a walk-through evaluation of health and safety hazards in a workplace. Students will also understand the role of occupational health and safety disciplines in the recognition and prevention of occupational injury and illness.

IE 685. Systems Safety. 3 credits, 3 contact hours.
Prerequisites: applied probability/statistics and introductory safety. Safety decision making and systems engineering applications to safety, including planning, managing and conducting system safety programs.

IE 686. Intro to Healthcare Systems. 3 credits, 3 contact hours.
This course provides a systems analysis view of healthcare services, combining economic, quality, enterprise data and activity costing perspectives. Operations, processes and activities that characterize the US Healthcare system are introduced. System costs, reimbursement methods and financial aspects in the healthcare. Focus on the application of information technologies and system engineering tools to effectively create and deliver value in the care process. Analytical tools for identifying opportunities for systems efficiency and effectiveness.

IE 687. Healthcare Enterprise Systems. 3 credits, 3 contact hours.
Prerequisite: IE 686. Provide a thorough understanding of the role of Healthcare Enterprise Systems in healthcare organizations. A detailed study of electronic health records, computerized physician order entry, and meaningful use standards. Design and implementation of enterprise level healthcare information systems, advanced decision support tools, and process mapping methods for optimal delivery of cost effective care. Analytical and quantitative methods that can be used to evaluate healthcare business processes, determine data requirements, and plan operating procedures.

IE 688. Healthcare Sys Perf Modeling. 3 credits, 3 contact hours.
Prerequisite: IE 686. Presents advanced techniques and methods for modeling and evaluating the performance of healthcare systems, including operations research, and productivity analysis, and statistical analysis methods. Introduces the performance dynamics of healthcare systems, identifies key decision variables and formulates their effect on systems performance. Develop and optimize healthcare staffing models. Application of operations research methods to a wide range of healthcare scheduling, facility design and patient flow problems.

IE 699. Special Topics in Industrial Engineering. 3 credits, 3 contact hours.
Restriction: approval from the industrial engineering graduate advisor. Special course given when interest in a subject area develops. Advanced notice of topics will be given before registration.

IE 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering. A written report must be submitted to the project advisor. The student cannot register in IE 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

IE 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in IE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

IE 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (IE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

IE 704. Sequencing and Scheduling. 3 credits, 3 contact hours.
Prerequisite: IE 650 or equivalent. Advanced sequencing and scheduling for job shops, flow lines, and other general manufacturing and production systems are discussed in this course. Both deterministic and stochastic scheduling models are covered in detail. Heuristics and worst case analysis for unsolvable hard scheduling problems (NP-C problem) are introduced.
IE 705. Mathematical Programming in Management Science. 3 credits, 3 contact hours.
Prerequisites: IE 623 and IE 650. An advanced study of various mathematical programming techniques such as linear and non-linear, parametric,
integer, stochastic and dynamic programming. Readings and discussions emphasize mathematical advances and applications in operations research.

IE 706. A Queueing Approach to Performance Analysis. 3 credits, 3 contact hours.
Prerequisite: IE 644 or equivalent. Newly developed techniques in the area of queueing networks that play a critical role in studying several aspects of
discrete event stochastic systems such as FMS, computer-aided communication systems, transportation systems and service systems.

IE 725. Independent Research. 3 credits, 3 contact hours.
Prerequisite: approval from the industrial engineering program director. Program of study prescribed and approved by student's advisor. This special
course covers areas in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course.

IE 726. Independent Research II. 3 credits, 3 contact hours.

IE 753. Airport Design and Planning. 3 credits, 3 contact hours.
Prerequisite or corequisite: TRAN 610 or EM 693. Planning of individual airports and statewide airport systems. Functional decision of air and landside
facilities. Orientation, number and length of runways. Concepts of airport capacity. Passenger and freight terminal facility requirements. Airport access
systems. FAA operating requirements. Financial, safety and security issues. Same as CE 753 and TRAN 753.

IE 754. Port Design and Planning. 3 credits, 3 contact hours.
Prerequisite: TRAN 610 or EM 693. Functional design of the water and landsides for general cargo, liquid and dry bulk, and container operations. Yard
and storage systems. Port capacity in an intermodal network. Economic, regulatory, and environmental issues. Same as CE 754 and TRAN 754.

IE 760. Quantitative Methods in Human Factors. 3 credits, 3 contact hours.
Prerequisite: IE 661. More advanced human factors engineering concepts analyzed quantitatively: systems modeling, control theory, human error, and
decision making. Discussion of human factors, research design and data analysis. Operator/computer interaction is also emphasized.

IE 761. Advanced Studies in Human Factors. 3 credits, 3 contact hours.
Prerequisite: one year of graduate work in human factors or the equivalent. The course integrates various areas of graduate studies in human factors
such as: work physiology, occupational safety, environment and human-machine systems. Detailed discussion of selected current papers covering
theoretical review, experimental design, results, applications, and future research. Completion of semester project under instructor's guidance is
mandatory.

IE 762. Psychophysical Methods in Human Factors. 3 credits, 3 contact hours.
Prerequisite: one year of graduate work in human factors or instructor's approval. This course considers various classical and modern psychophysical
methods, signal detection theory, information theory, and human information processing applicable to advanced human factors/occupational safety
research measurement and normative modeling.

IE 790. Doctoral Dissertation. 0 credits, 0 contact hours.

IE 790A. Doctoral Dissertation. 1 credit, 1 contact hour.

IE 790B. Doctoral Dissertation. 3 credits, 3 contact hours.

IE 790C. Doc Dissertation & Res. 6 credits, 3 contact hours.

IE 790D. Doc Dissertation & Res. 9 credits, 3 contact hours.

IE 790E. Doc Dissertation & Res. 12 credits, 3 contact hours.

IE 790F. Doct Dissertation & Res. 15 credits, 0 contact hours.

IE 790G. Doctoral Dissertation. 18 credits, 0 contact hours.

IE 791. Graduate Seminar. 0 credits, 0 contact hours.
A seminar in which faculty or others present summaries of advanced topics suitable for research. Discussion of research procedures, thesis
organization, and content. Students engaged in research will present their own research for discussion and criticism.

IE 792B. Pre Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: IE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a
relevant topic in industrial engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal.
Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying
examination.

ME 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Cooperative education internship
providing on-the-job reinforcement of academic programs in mechanical engineering. Work assignments and projects are developed by the co-op office
in consultation with the mechanical engineering department. Work assignments are related to student's major and are evaluated by faculty coordinators
in mechanical engineering. Course cannot be used for mechanical engineering degree credit.

ME 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for
mechanical engineering degree credit.
ME 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

ME 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ME 607. Advanced Thermodynamics. 3 credits, 3 contact hours.
Prerequisite: undergraduate thermodynamics. Basic laws of thermodynamics are applied to various thermodynamic systems. Topics include: availability, stability requirements, equation of state, property relations, properties of homogeneous mixtures, optimization applied to power generation and refrigeration cycles, and thermodynamic design of system components.

ME 608. Non-Equilibrium Thermodynamics. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics and heat transfer, and ME 616. (May be taken concurrently.) Principles and mathematical techniques of non-equilibrium thermodynamics applied to mechanical engineering problems. Topics include field theory, energy and entropy balances, variational principles, and applications to fluid flow, heat exchangers and combustion.

ME 609. Dynamics of Compressible Fluids. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, fluid mechanics, and thermodynamics. One-dimensional reversible and irreversible compressible fluid flow, including effects of variable area, friction, mass addition, heat addition, and normal shock; two-dimensional reversible subsonic and supersonic flows, and an introduction to the method of characteristics and two-dimensional oblique shock.

ME 610. Applied Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: undergraduate fluid mechanics, thermodynamics, heat transfer and differential equations. Fundamentals of conduction, convection and radiation heat transfer. Practical engineering applications of heat exchangers including the design approaches by Mean Temperature Difference and Effectiveness-NTU methods, fins, convection fouling factors, and variable property analysis.

ME 611. Dynamics of Incompressible Fluids. 3 credits, 3 contact hours.
Prerequisites: undergraduate fluid mechanics and ME 616. (May be taken concurrently.) An introduction to the hydrodynamics of ideal fluids; two-dimensional potential flow and stream functions; conformal mapping; and differential equations of viscous flow. Boundary layer theory and dimensional analysis are introduced.

ME 612. Gas Dynamics. 3 credits, 3 contact hours.
Prerequisite: ME 616. (May be taken concurrently.) Physical phenomena of gas dynamics and mathematical methods and techniques needed for analysis. Dynamic and thermodynamic relations for common flow situations are described through vector calculus. The nonlinearity of resulting equations and solutions such as numerical analysis, linearization or small perturbation theory, transformation of variables, and successive approximations are discussed. The method of characteristics is reviewed in detail for shock flows.

ME 613. Radiation Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, thermodynamics, heat transfer and ME 616. (May be taken concurrently.) Heat radiation of solid bodies, gases and flames; angle factors; radiative properties of electrical conductors and non-conductors; application of radiative networks to multi-body problems; diffuse specular reflectors: artificial satellites and space vehicles; analogy between heat transfer by radiation and electrical networks; and combined conduction and radiation problems.

ME 614. Continuum Mechanics. 3 credits, 3 contact hours.
Prerequisites: Undergraduate courses in mechanics, fluid mechanics, solid mechanics, and mathematics (linear algebra, differential equations, and vector calculus) or approval of the instructor. Fundamentals of the mechanics of continuous media. Specific topics include vector and tensor analysis; kinematics associated with finite deformation; the stress tensor; and the conservation laws of mass, linear momentum, angular momentum, and energy. Constitutive equations for linear and non-linear elastic solids and for inviscid and Newtonian fluids are discussed. The role of material invariance under superimposed rigid body motion and material symmetry in the formulation of appropriate constitutive equations are emphasized.

ME 615. Advanced Mechanical Vibrations. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and system dynamics. One-, Two- and Multiple degree of freedom systems, Lagrange’s equation of motion, Runge-Kutta computation, Finite Element Method and classical methods for normal mode analysis, matrix notation and iteration procedure, and Fourier series representation for the solution of vibration problems.

ME 616. Matrix Methods in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisite: undergraduate differential equations. Applications of matrix algebra and matrix calculus to engineering analysis; matrix methods in solid and fluid mechanics; vibration, elasticity, viscous fluids, and heat transfer. Matrix theory is used to show the basic unity in engineering analysis.

ME 618. Selected Topics in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisite: departmental approval. Given when interest develops. Topics may include analysis and/or design of energy or mechanical systems of current interest to mechanical engineers.

ME 619. Nano-scale Characterization of Materials. 3 credits, 3 contact hours.
The course presents the basics of nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy, near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.
ME 620. Mechanics of Materials. 3 credits, 3 contact hours.
Prerequisites: Undergraduate differential equations and mechanics of materials or linear elasticity. Governing equations and other balance laws; stress and strain distributions in solids subjected to various loading conditions; posing and solving boundary value problems for isotropic linear elastic solids; instabilities and other failure modes of linear elastic solids; and numerical techniques to solve the governing equations.

ME 621. Advanced Mechanics of Material. 3 credits, 3 contact hours.
Prerequisites: ME 620. ME 614 is strongly recommended Governing equations and other balance laws for the mechanics of solids; large deformation kinematics and non-linear material behavior; advanced constitutive models for solids; fundamentals of fracture mechanics; numerical techniques for the solution of non-linear solid mechanics problems.

ME 622. Finite Element Methods in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and strength of materials. Using variational formulation and Ritz approximation, element equations for bar, beam, potential flow, heat transfer, torsion of a solid bar and plane elasticity problems are derived and solved with computer programs.

ME 624. Microlevel Modeling in Particle Technology. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and strength of materials. Using variational formulation and Ritz approximation, element equations for bar, beam, potential flow, heat transfer, torsion of a solid bar and plane elasticity problems are derived and solved with computer programs. This presents methodologies for analyzing the macroscopic properties of particulate systems in terms of the underlying microlevel processes. Significant components are the mathematical modeling of particulate systems at the microlevel, analytical and numerical methods for predicting macroscopic properties from microlevel models, and comparison of theoretical predictions with experimental results. Demonstrates the importance of the interaction of these three components in the scientific process. The first part concerns the flow of dry particles where any interstitial fluid can be ignored. The second part considers the flow of particles suspended in an interstitial fluid. Also includes a class project involving development of simulations. Same as CHE 625.

ME 625. Introduction to Robotics. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, kinematics and demonstrated competence in computer programming and ME 616. (May be taken concurrently.) Introduction to robotics, and computer-controlled programmable robotic manipulators; robot geometries; kinematics of manipulators; differential motion; work space planning and trajectory control; dynamics; robot sensing, and robot programming.

ME 626. Fatigue Fracture of Solids. 3 credits, 3 contact hours.
A comprehensive introduction to the linear elastic fracture mechanics covering the basics of linear elasticity, crack-tip stress, displacement, and strain fields; energetics of fracture; and fracture toughness testing. This will be followed by a brief introduction to plasticity and elastic-plastic fracture parameters such as J-integral. The state-of-the-art in fracture mechanics, such as cohesive zone models and fracture of emerging materials (e.g., battery materials), will be discussed along with the mechanisms of fracture and toughening in various materials. The course will include assignments and a group project where students undertake critical review of a peer reviewed journal paper on a fracture topic (approved by instructor).

ME 628. Machine Vision Principles and Applications. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and demonstrated competence in computer programming. Fundamentals of machine vision as applied to inspection, recognition, and guidance in mechanical and manufacturing processes. Emphasis on real-time machine vision algorithms for machine parts inspection and identification. Topics include lighting and optics, camera selection and calibration, image segmentation, edge detection, feature extraction, and pattern classification.

ME 630. Analytical Methods in Machine Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, machine design, and ME 616. (May be taken concurrently.) Theory and analytical methods used in machine design. Comparisons are made between approximate and exact engineering methods for evaluation of the range of applicability of solutions. Topics include advanced analysis of threaded members; keyed, splined, and shrink fits when subjected to torque; preloaded bearings; surging, presetting and buckling of coiled springs; and accurate analysis of impact stresses and stresses beyond the yield point.

ME 631. Bearings and Bearing Lubrication. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, machine design and ME 616. (May be taken concurrently.) The theoretical and physical aspects of lubrication: hydrostatic and hydrodynamic problems. Reynold's differential equation for pressure distribution applied to slider bearing and journal bearing problems with and without end leakage.

ME 632. Mechanical Engineering Measurements. 3 credits, 3 contact hours.
This course offers extensive mechanical engineering lab experience, including measurement fundamentals, hands-on experiments, uncertainty analysis, technique comparison, and professional engineering reports. It also focuses on the fundamental principles behind each methodology and relevant applications. The topics cover measurement in major mechanical engineering areas including thermodynamics, thermofluids, and control. Specialized experiments include fluidization, CAD/CAM, and NC machining. Comparisons of experimental results against theoretical or computational results are also required.

ME 633. Dynamics of Machinery. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and matrix analysis. Consideration of kinematics, constraints and Jacobians, linear and angular momentum and potential energy and conservative forces of mechanical systems. Application of principle of virtual work, D'Alembert's principle, method of virtual power and Lagrange's equation to systems of particles and systems of rigid bodies.

ME 635. Computer-Aided Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate linear algebra (matrices operation) and differential equations. Adaptation of computer for solving engineering design problems; design morphology; simulation and modeling; algorithms; problem-oriented languages; use of available software; computer graphics, and automated design.
ME 636. Mechanism Design: Analysis and Synthesis. 3 credits, 3 contact hours.
Prerequisites: undergraduate kinematics, dynamics and demonstrated competence in computer programming and ME 616. (May be taken concurrently.) Kinematic principles combined with computer-assisted methods for designing mechanisms; complex polar notation; and dynamic and kinetostatic analysis of mechanisms. Kinematic synthesis of planar mechanisms; graphical Burmester theory for plane linkage synthesis; and planar linkage synthesis for function and path generation.

ME 637. Kinematics of Spatial Mechanisms. 3 credits, 3 contact hours.
Prerequisites: undergraduate kinematics, dynamics, knowledge of matrices and ME 616. (May be taken concurrently.) Advanced techniques for the dual-number coordinate-transformation matrix modeling to perform the displacement, velocity, static and dynamic force analysis of spatial mechanisms. Applications considered will include shaft couplings, skew four-bars, wobble plates, generalized slider-cranes and robotic manipulators.

ME 638. Computer-Aided Machining. 3 credits, 3 contact hours.
Prerequisites: demonstrated competence in computer programming, ME 305, ME 616 and ME 635 or equivalent. Introduction of computer applications to understand integrated computer-aided machining process. Included in the course are the fundamentals of motion control and NC/CNC/DNC machining, part programming and post-processors, and advances in CAM. Student projects are carried out using appropriate manufacturing software.

ME 641. Refrigeration and Air Conditioning. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, fluid mechanics and thermodynamics. Refrigeration and air conditioning cycles; comfort analysis, psychrometric chart analysis, heat and mass transfer steady and transient processes, heating and cooling design loads, energy loads and standards requirements.

ME 643. Combustion. 3 credits, 3 contact hours.
Prerequisites: Undergraduate thermodynamics & fluid mechanics. Chemical & physical process of combustion: ideal combustion, actual combustion, mass balance, energy of reaction, maximum adiabatic combustion temperature, chemical equilibrium, heating values of fuels, combustion in furnaces, internal combustion engines & other heat engines, with emphasis on the analysis & control of the products of combustion in light of environmental considerations.

ME 644. Building Environmental Control Principles. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, fluid mechanics, heat transfer and differential equations. Control systems for buildings including control of temperature, moisture and air quality. Optimization of systems for control of building energy use. Modern microprocessor-based control systems, including direct digital control, proportional and integral controllers, predictive control, adaptive control, optimum start controllers and optimal control.

ME 653. Control of Electro-Mechanical Networks. 3 credits, 3 contact hours.
Prerequisites: undergraduate electrical circuits and mechanical vibrations or equivalent. Electro-mechanical systems; control loops; use of mechanical networks in dynamic systems; and stability and response to various inputs in electro-mechanical networks.

ME 655. Introduction to Modern Control Methods. 3 credits, 3 contact hours.
Prerequisites: undergraduate system dynamics and automatic controls. Introduction to modern control methods applied to mechanical and manufacturing systems. Topics include state variable feedback, observer theory, nonlinear control, optimal control, and adaptive control for both continuous and discrete systems.

ME 660. Noise Control. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and physics. Engineering methods for reducing noise pollution; reduction of intensity at the source; limitation of transmission paths and absorption; application to structures, machinery, ground transportation, aircraft, and noise measurement.

ME 670. Introduction to Biomechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, statics, and dynamics. Introduction to biomechanical engineering of physiological systems; fluid flow, structural, motion, transport, and material aspects; energy balance of the body, and the overall interaction of the body with the environment.

ME 671. Biomechanics of Human Structure and Motion. 3 credits, 3 contact hours.
Prerequisites: undergraduate statics, kinematics, and dynamics. Principles of engineering mechanics and materials science applied to human structural and kinematic systems and to the design of prosthetic devices. Topics include anatomy; human force systems; human motion; bioengineering materials; and design of implants, supports, braces, and replacements limbs.

ME 675. Mechanics of Fiber Composites. 3 credits, 3 contact hours.
Prerequisites: ME 315 (see undergraduate catalog for course description) and demonstrated competence in computer programming. Introduces various design problems using fiber composites. Analysis of general fiber composite laminate and short fiber composites, fracture mechanics, fatigue, creep and viscoelasticity, thermal stresses, special layups and associated optimization problems.

ME 676. Applied Plasticity. 3 credits, 3 contact hours.
Prerequisite: ME 620 or equivalent. Fundamentals of plasticity applied to mechanical and manufacturing engineering problems. Topics include elastic-plastic analysis for beams, rings and plates. Plastic instability and slip-line fields are considered.

ME 678. Engineering Design of Plastic Products. 3 credits, 3 contact hours.
Prerequisite: Knowledge of Pro/Engineer (or IDEAS). Structure and properties of plastics including stress-strain behavior and the effect of fillers and reinforcements. Designing for impact, flexure, shear, friction, puncture, creep and fatigue. Case studies of structural, electrical, and optical applications.

ME 679. Polymer Processing Techniques. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in fluid dynamics and heat transfer. Techniques for processing of plastics: extrusion, injection molding, compression molding, thermoforming, casting.
ME 680. Polymer Processing Equipment. 3 credits, 3 contact hours.
Prerequisites: CHE 645 or equivalent and undergraduate heat transfer. Application of heat transfer, fluid mechanics, and thermodynamics to the design and control of polymer processing equipment. Detailed consideration of extrusion, coiling, rotational molding, stamping, and injection molding.

ME 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. A written report must be submitted to the project advisor. The student cannot register in ME 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ME 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ME 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ME 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ME 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ME 710. Conduction Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: ME 610 and ME 616 or equivalent. Heat transfer by conduction: differential and integral forms of the energy equation for isotropic and anisotropic material. Analytical and numerical studies of transient and steady one-, two-, and three-dimensional heat transfer problems for a variety of boundary conditions including phase change. In addition, variational and boundary element methods are applied to heat conduction problems.

ME 711. Convection Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: ME 610 and ME 616 or equivalent. Development of convective heat transfer theory: currently available methods, analytical and numerical, for predicting heat rates in forced, natural, and mixed convection in laminar and turbulent flow regimes are thoroughly studied. Studied techniques are applied to the thermal design of complex systems.

ME 712. Mechanics of Viscous Fluids. 3 credits, 3 contact hours.
Prerequisites: ME 611 and ME 616. (May be taken concurrently.) Properties and behavior of real fluids in laminar and turbulent motion. Review of tensor analysis; current mathematical and empirical laws and methods; flows in ducts; exact solutions of Navier-Stokes equations; boundary layers over surfaces and flow past bodies.

ME 713. Non-Newtonian Fluid Dynamics. 3 credits, 3 contact hours.

ME 714. Principles of Particulate Multiphase Flows. 3 credits, 3 contact hours.
Prerequisite: Courses in fluid mechanics or approval of the instructor. This course provides an introduction to the fundamental principles of mass, momentum and heat transfer in particulate multiphase flows. Theories and governing equations for distinctive responses and motions of each phase and the dynamic interactions among phases are formulated. Typical industrial applications will be illustrated.

ME 717. Selected Topics in Mechanical Engineering I. 3 credits, 3 contact hours.
Prerequisite: department approval. Given when interest develops. Topics may include advanced mechanisms, aerodynamics, analysis of ME systems, design optimization, and case studies in design.

ME 718. ST: 3 credits, 3 contact hours.

ME 721. Thermal Stresses. 3 credits, 3 contact hours.
Prerequisites: vector analysis or ME 616 or equivalent and theory of elasticity or ME 785. Thermoelasticity; reduction of thermoelastic problems to constant temperature equivalents; fundamentals of heat transfer; and elastic and inelastic stress analysis.

ME 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

ME 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for ME 726 if they have taken ME 725 in a prior semester.
ME 727. Independent Study III. 3 credits, 3 contact hours.
Prerequisites: written permission from department chairperson plus prerequisite courses prescribed by a supervising faculty member. Areas of study in which one or more students may be interested but which is not of sufficiently broad interest to warrant a regular course offering. A maximum of two independent studies courses may be applied to a degree.

ME 735. Advanced Topics in Robotics. 3 credits, 3 contact hours.
Prerequisite: ME 625. Introduction to advanced topics and techniques in robotics. Subjects covered include differential kinematics, calibration and accuracy, trajectory control, and compliant motion control as well as an in-depth treatment of topics discussed in ME 625.

ME 736. Advanced Mechanism Design. 3 credits, 3 contact hours.
Prerequisites: ME 636 and ME 616. Advanced methods for the synthesis of mechanisms. Topics include synthesis of planar mechanisms for three, four and five positions, multiloop linkages, change of branch and order problems, and optimal synthesis of mechanisms. Synthesis of linkages for special types of motion including straight line motion, cusp points on coupler curves and adjustable mechanisms.

ME 738. Computer Aided Engineering. 3 credits, 3 contact hours.
Prerequisites: ME 635. This course covers advanced CAD and CAE tools for visual computing simulation and analysis. Topics include modeling, assembly, CAD data exchange by exporting and importing various CAD model formats, computer simulation and analysis of structure, thermal, fluid and animation of the results of analysis. Multi-physics analyses such as thermal-structure, electric-thermal-structure in MEMS and fluid-structure interactions are studied. The laboratory component involves use of most current commercial CAD/CAE software packages.

ME 752. Design of Plates and Shells. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. A study of plates and shells. Mechanical engineering design solutions for typical loading and boundary conditions through analytical and numerical methods. Plate and shell interfaces and vibration are also considered.

ME 754. Pressure Vessel Design. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. Theories in designing pressure vessels; analysis of circular plates; cylindrical and spherical shells; pressure vessel heads; pipe bends; and attachments. Consideration is also given to pressure vessel materials in fatigue and creep designs.

ME 755. Adaptive Control Systems. 3 credits, 3 contact hours.

ME 756. Theory of Deformable Solids in Mechanical Engineering I. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. Measure of strain; strain tensor; stress tensor; equilibrium equations; constitutive relations; compatibility conditions; conditions for and formulation of three-dimensional problems; and the relationship of engineering theories for beams, plates, and shells to the equations of elasticity.

ME 756. Theory of Deformable Solids in Mechanical Engineering II. 3 credits, 3 contact hours.
Prerequisite: ME 756. Solutions for problems formulated in ME 785 eigenfunction solutions; operational methods; complex variables theory; three-dimensional problems; contact problems; wave propagation; and non-linear problems.

ME 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Required of all students working toward the Doctor of Philosophy in Mechanical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached and for 3 credits each semester thereafter.

ME 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: ME 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in ME 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

ME 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: ME 791. Since the ME 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ME 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: ME 791. Since the ME 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).
ME 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.
ME 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.
ME 790F. Doctoral Diss & Research. 15 credits, 3 contact hours.
ME 790G. Doctoral Dissertation. 18 credits, 3 contact hours.
ME 791. Mechanical Engineering Colloquium. 0 credits, 1 contact hour.
Prerequisites: graduate standing and major in mechanical engineering. National and international experts in mechanical engineering discuss their recent research. Required of all students enrolled in mechanical engineering graduate degree programs. Students must register in this course for at least two semesters and attend at least four lectures in each semester. All doctoral students and students with assistantships must register in this course each semester and attend regularly.

ME 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: ME 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ME 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.
ME 792D. Pre Doctoral Research. 9 credits, 3 contact hours.
ME 794. Graduate Seminar and Professional Presentations. 0 credits, 0 contact hours.
Regular attendance required of all students in the Mechanical Engineering PhD program. Each PhD student is required to make a 15 minute presentation on a topic related to the student’s research with an additional 10 minutes to address audience questions. The seminar participants evaluate each speaker.

MECH 630. Theory Of Elasticity. 3 credits, 3 contact hours.
Prerequisite: differential equations. Theory of elasticity as basis for both advanced stress analysis and for a critical examination of elementary stress analysis.

MNE 601. Computerized Manufacturing Systems. 3 credits, 3 contact hours.
Development of automated manufacturing systems with applications including Industrial Robotics, Programmable Logic Controller, Lean Manufacturing and other artificial intelligence technologies. Laboratory experimentation using hardware and software necessary for various industrial robots & PLC systems in the automotive assembly; pharmaceutical and chemical industries are included.

MNE 602. Flexible and Computer Integrated Manufacturing. 3 credits, 3 contact hours.
Prerequisite: MNE 601. Flexible manufacturing systems are developed including Robotic applications, PLC & CNC programming as automated inspection and transportation systems. Laboratory experience with hardware and software needed for various industrial robots & other automated systems are included.

MNE 654. Design for Manufacturability. 3 credits, 3 contact hours.
Prerequisite: MNE 601 or instructor's approval. Methodologies used in the synthesis and analysis of product design to optimize manufacturability. The relationship of design to production processes, product material, material handling, quality costs, and CAD/CAM are presented. Emphasis is on both formed products and assembled products. Simulation and other design analysis tools are employed.

MNE 655. Concurrent Engineering. 3 credits, 3 contact hours.
Concurrent/simultaneous engineering methods and tools such as system analysis, system modelling and system integration, market oriented, integrated design for manufacturing, assembly, quality and maintenance, product design analysis, integrated product design and manufacturing innovation methods, QFD (Quality Function Deployment) ? applied to concurrent engineering, FMEA (Failure Mode and Effect Analysis), POKA-YOKE, KANZEI, waste reduction, quality circles, rapid prototyping of designed objects and various other advanced processing methods.

MNE 725. Independent Study. 3 credits, 3 contact hours.
Prerequisites: written permission from the director of manufacturing systems engineering programs, and courses prescribed by the supervising faculty member. Areas of study in manufacturing computer systems analysis and design in which one or more students may be interested, but that are not of sufficiently broad interest to warrant a regular course offering.

MNE 791. Seminar In Manufact Engr. 1 credit, 1 contact hour.
A series of invited speakers, primarily from industry, will discuss current manufacturing problems and methods. Attendance at these seminars is required for all students enrolled in the manufacturing systems engineering program.

MTEN 610. Found of Materials Sci & Engr. 3 credits, 3 contact hours.
Prerequisite: Graduate standing. Core course for students in Material Science and Engineering. The effect of structure on the properties and behavior of engineering materials. Topics include atomic structure, bonding, crystallography, and defects in solids; properties of metals, semiconductors, ceramics, and polymers and their behavioral response to mechanical, chemical, optical, electrical, and magnetic stimuli.

MTEN 611. Diffusion & Solid State Kineti. 3 credits, 3 contact hours.
Prerequisite: MTSE 602. The atomic theory of diffusion and mathematical derivation of the diffusion equations. Diffusion phenomena in dilute alloys as well as in ionic and covalent solids are considered. High atom mobility effects at defect sites and surfaces are examined. Chemical kinetics and kinetics of phase transformations including nucleation, growth, and spinodal decomposition are discussed.
MTEN 612. Thermodynamics of Materials. 3 credits, 3 contact hours.
Prerequisite: Undergraduate thermodynamics. Core course for students in Material Science and Engineering. Review of first, second, and third laws of thermodynamics and their applications to materials. Stability criteria, simultaneous chemical reactions, binary and multicomponent solutions, phase diagrams, surfaces, adsorption phenomena, thermochemistry of homogeneous and heterogeneous reactions are covered.

MTEN 613. Characterization of Materials. 3 credits, 3 contact hours.
Prerequisites: Undergraduate classes covering physics, chemistry, thermodynamics, and heat and mass transfer, or permission of the instructor. The course is designed to introduce graduate students in chemical and materials engineering, and other engineering and science disciplines, to fundamentals and theory of different types of materials characterization tools. Methods and techniques necessary to understand and quantify diverse materials properties will be discussed. As important for many methods, basic principles of interaction of radiation and particle beams with matter will be studied. Topics include, but are not limited to: Diffraction methods; imaging via optical, scanning, transmission electron, scanning tunneling, and field ion microscopy; microanalysis and spectroscopy, including energy dispersive, wavelength dispersive, Auger methods; secondary ion mass spectroscopy, X-ray photoelectron spectroscopy; materials preparation for analysis, including electron, ion growth, sputtering; thermal analysis: DTA, DSC; and depending on the availability and functionality of equipment, lab visits and demonstrations will be scheduled to the class to discuss some case studies.

MTEN 631. Data Science for Chemical and Materials Engineers. 3 credits, 3 contact hours.
Prerequisites: BS degree in Chemical, Mechanical, Electrical or Biomedical Engineering, or in Physics or Chemistry. This is a course for graduate level students in chemical engineering, materials engineering, pharmaceutical engineering, or a related discipline. The focus is on the use of data science techniques to solve problems in chemical engineering. We will first discuss the Python programming language and how it can be used to manipulate, clean, explore, and visualize scientific datasets using the pandas package. We will also cover statistics and probability as it applies to engineering problems; this includes conditional probability, probability distributions, hypothesis testing, and Bayesian inference. Basic supervised machine learning models will be introduced, including linear and logistic regression, decision trees and random forest, and support vector machines. Students will then learn different analytical techniques and how to combine all of these skills to solve engineering problems involving large amounts of data and make predictions. Finally, we will cover how to access data and create your own datasets; topics include databases (including relational databases such as SQL) and basic data mining and web scraping. Applications of these methods will be demonstrated in chemical engineering (e.g., optimization and controls, sensor analysis), materials engineering (e.g., structural databases and property selection), and pharmaceutical engineering (e.g., drug selection). Students will gain hands-on experience in implementing and utilizing these various methods through computational laboratory assignments and reports and a semester-long engineering design project.

MTEN 633. Machine Learning for Chemical and Materials Engineers. 3 credits, 3 contact hours.
Prerequisites: Undergraduate degree in either Chemical, Mechanical, Electrical or Biomedical Engineering, or in Physics or Chemistry. This course builds upon foundational knowledge in mathematical and statistical tools or data science and data visualization to learn and apply machine learning approaches for solving problems in Engineering with emphasis on applications in Chemical and Materials. As an engineering course, the emphasis is on case studies involving problem solving to augment mechanistic methods. It will include artificial intelligence (AI) topics such as machine learning and deep learning via methods such as classification, clustering, and neural networks (NNs), along with robust estimation including validation and error quantification. Class projects will concern case studies from a broad range of disciplines and applications to chemical and materials engineering problems.

MTEN 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials engineering. A written report must be submitted to the project advisor. The student cannot register in MTEN 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTEN 701B. Masters Thesis. 3 credits, 3 contact hours.
Corequisite for full-time students: MTEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in MTEN 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTEN 701C. Master’s Thesis. 6 credits, 6 contact hours.
Co-requisite for full-time students: MTEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (MTEN 701B course) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

MTEN 711. Nanocomposite Materials. 3 credits, 3 contact hours.
Prerequisites: Core courses in MTSE, MTEN 611 and MTEN 613 or equivalent courses, or permission of the instructor. This course covers advanced aspects of nanocomposite materials formation, properties, characterization, and applications. Emerging materials and their synthesis techniques are discussed along with key issues in processing, as well as identification and characterization of properties as relevant to application areas. Examples include, Polymer-based and Polymer-filled Nanocomposites, Bio-Nanocomposites, Metal and Ceramic Nanocomposites, Nanocomposites for Energy and Electronics materials, etc.
MTEN 712. Nanomaterials. 3 credits, 3 contact hours.
New feature of the 700 level course will be hands-on small projects carried out by groups of two students in Professor Iqbal's laboratories during the second half of the semester. The projects will be selected from the topics covered in the course. A second feature will involve a lecture on a specialized nanomaterial topic given by an invited outside lecturer. This 3 credit interdisciplinary course is designed to teach and provide hands-on project experience to M.S. and Ph.D. graduate students in chemistry, physics/materials science, and chemical/biomedical/electrical engineering on the fundamentals, synthesis, characterization and applications of nanomaterials. 75% of the course will comprise of lectures-one or two of which will be given by invited outside lecturers. 25% of the course will involve small projects based on the syllabus and conducted in the research laboratories of the instructor.

MTEN 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

MTEN 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for MTEN 726 if they have taken MTEN 725 in a prior semester. Students cannot register for this course with the same advisor as they had in MTEN 725.

MTEN 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite for full-time students: MTEN 791. Approval of the dissertation advisor is required for registration. Experimental and theoretical investigation of a relevant topic in materials engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in MTEN 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

MTEN 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite for full-time students: MTEN 791. Since the MTEN 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and theoretical investigation of a relevant topic in materials engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

MTEN 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite for full-time students: MTEN 791. Since the MTEN 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and theoretical investigation of a relevant topic in materials engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

MTEN 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: CHE 791. For students admitted to the Doctor of Philosophy Program in Materials Science and Engineering with option in Engineering who have not yet passed Qualifying Examination and Research Proposal. Experimental or theoretical investigation of a topic in chemical engineering. Research is carried out under the supervision of designated chemical engineering faculty.

MTEN 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite for full-time students: MTEN 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in materials engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well, for students who have completed the required coursework but have not passed the qualifying examination.

PHB 505. Principles of Pharm. Microbiology and Biochemistry. 3 credits, 3 contact hours.
Prerequisite: Graduate standing. This course covers major concepts of cell biology including cell physiology and structure, molecular biology, and genetics. Cellular chemistry, life cycles, and regulation are discussed as well as the fundamentals of biochemistry related to physical organic chemistry, including buffers, blood proteins, enzymes, carbohydrates, fats, and nucleic acids. This is a required course for PHB students with no or limited knowledge of biology.

PHB 590. Graduate Co-op Work Experience I. 3 credits, 3 contact hours.
Prerequisites: Permissions from Pharmaceutical Bioprocessing Graduate Advisor and Career Development Services. Cooperative education internship provides on-the-job reinforcement of the academic program by placement in major-related work situations at pharmaceutical companies or companies serving the pharmaceutical industry. Work assignment developed or approved by the co-op office and evaluated by the department. Cannot be used for degree credit.
PHB 591. Graduate Co-op Work Experience II. 3 credits, 0 contact hours.
Prerequisites: Permissions from Pharmaceutical Bioprocessing Graduate Advisor and Career Development Services. Same range of activities as in PHB 590. Cannot be used for degree credit.

PHB 592. Graduate Co-op Work Experience III. 3 credits, 3 contact hours.
Prerequisites: Permissions from Pharmaceutical Bioprocessing Graduate Advisor and Career Development Services. Same range of activities as in PHB 590 and PHB 591. Cannot be used for degree credit.

PHB 593. Graduate Co-op Work Experience IV. 0 credits, 3 contact hours.
Prerequisites: Permissions from Pharmaceutical Bioprocessing Graduate Advisor and Career Development Services. Same range of activities as in PHB 590, PHB 591 and PHB 592. Cannot be used for degree credit.

PHB 610. Biotechnology-Biopharmaceutical, Processes and Products. 3 credits, 3 contact hours.
Prerequisites: PHB 505, if required and PHEN 601. This course covers biological processes used in the pharmaceutical and biotechnology industry to obtain pharmaceutical products, including biochemical processes for antibiotic production and peptide extraction, and biopharmaceutical process to obtain recombinant proteins, monoclonal antibodies, cytokines, hormone and blood products, therapeutic enzymes, antibodies, vaccines, and nucleic acid therapeutics.

PHB 615. Bioseparation Processes. 3 credits, 3 contact hours.
Prerequisites: If required, PHEN 500, PHEN 501, PHEN 502 and PHB 505 and PHEN 601. This course covers the principles, methods and unit operations for the separation and recovery of biologically obtained molecules and especially proteins. Also studied here is the relationship between the chemistry of biological molecules and efficient separation and preservation of biological activity, with special emphasis on separation of biomolecules.

PHB 630. Pharmaceutical Bioprocess Engineering. 3 credits, 3 contact hours.
Prerequisites: If required, PHEN 500, PHEN 501, PHEN 502 and PHB 505; PHEN 601. This course covers the principles and methods to develop and operate bioprocess engineering systems, with emphasis on pharmaceutical bioprocessing and the use of chemical engineering principles to obtain products of therapeutic values. Topics include cell line selection, cell growth kinetics, substrate utilization, product formation, transport phenomena in biosystems, and bioreactors.

PHB 698. Special Topics in Pharmaceutical Bioprocessing I. 3 credits, 3 contact hours.
Prerequisites: Graduate standing and permission of the instructor. Topics of current interest in Pharmaceutical Bioprocessing.

PHB 699. Special Topics in Pharmaceutical Bioprocessing II. 3 credits, 3 contact hours.
Prerequisites: Graduate standing and permission of the instructor. Topics of current interest in Pharmaceutical Bioprocessing.

PHB 701B. Master's Thesis. 3 credits, 3 contact hours.
Prerequisites: Matriculation in the MS program in PHB and approval of PHB Program Advisor. Original research under the guidance of a Thesis Advisor. A written thesis must be approved by a three-member Thesis Committee including the primary advisor and at least one member of the CBPE faculty. A student must continue to register for at least 3 credits per semester until at least 6 credits have been completed and a written thesis is approved. Only a total of 6 credits will count toward the degree.

PHB 701C. Master's Thesis. 6 credits, 0 contact hours.
Prerequisites: Matriculation in the MS program in PHB and approval of PHB Program Advisor. Original research under the guidance of a Thesis Advisor. A written thesis must be approved by a three-member Thesis Committee including the primary advisor and at least one member of the CBPE faculty. A student must continue to register for at least 3 credits per semester until at least 6 credits have been completed and a written thesis is approved. Only a total of 6 credits will count toward the degree.

PHB 725. Independent Study I. 3 credits, 3 contact hours.
Prerequisites: Permission from the Program Advisor in PhB (not the Thesis Advisor), as well as completion of courses prescribed by a supervising faculty member (who cannot be the student's Thesis Advisor). This special course covers areas of study in which one or more students may be interested, but which is not of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

PHB 726. Independent Study II. 3 credits, 3 contact hours.
Prerequisites: Permission from the Program Advisor in PhB (not the Thesis Advisor), as well as completion of courses prescribed by a supervising faculty member (who cannot be the student's Thesis Advisor). This special course covers areas of study in which one or more students may be interested, but which is not of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

PHB 791. Graduate Seminar. 0 credits, 0 contact hours.
Prerequisite: Graduate standing. Required, when offered, of all PHB graduate students receiving departmental or research-based awards. The student must register each semester until completion of the degree, if the Graduate Seminar is offered. Outside speakers and department members present their research for general discussion.

PHEN 500. Pharmaceutical Engineering Fundamentals I. 3 credits, 3 contact hours.
Prerequisite: undergraduate calculus. This is a required bridge course for those students who are admitted to the Pharmaceutical Engineering MS program without an undergraduate engineering degree. This course is not counted toward degree credit related to the Pharmaceutical Engineering MS program. The course covers the fundamentals of calculus, differential equations, probability and statistics, and finance business mathematics applied to pharmaceutical engineering problems and illustrated through pharmaceutical engineering examples.
PHEN 501. Pharmaceutical Engineering Fundamentals II. 3 credits, 3 contact hours.
Prerequisite: If needed, PHEN 500 (which can also be taken concurrently with this course), as well as an undergraduate course in physical chemistry. This course is a required bridge course for those students who are admitted to the Pharmaceutical Engineering MS program without an undergraduate engineering degree or with an engineering background that did not include the topics covered in this course. The course is not counted toward degree credit related to the Pharmaceutical Engineering MS program. The course covers the fundamentals of pharmaceutical engineering calculations related to material and energy balances applied to pharmaceutical facilities and systems; estimation of thermophysical properties, phase and reaction equilibrium; and chemical kinetics and basic reactor design.

PHEN 502. Pharmaceutical Engineering Fundamentals III. 3 credits, 3 contact hours.
Prerequisite: If needed, PHEN 500 and PHEN 501, as well as undergraduate course in physical chemistry. This is a required bridge course for those students who are admitted to the Pharmaceutical Engineering MS program without an undergraduate engineering degree or with an engineering background that did not include the topics covered in this course. The course is not counted toward degree credit related to the Pharmaceutical Engineering MS program. The course covers the fundamentals of fluid mechanics, heat transfer, mass transfer and the design of unit operations involving these principles.

PHEN 503. Pharmaceutical Engineering Fundamentals IV. 3 credits, 3 contact hours.
Prerequisite: PHEN 500 and PHEN 501. This course provides an overview of the pharmaceutical industry, including basic information about drug discovery and development, FDA requirements and approval processes, drug dosage forms, and the role of key operational units in drug manufacturing processes. This course enables the students to: understand the role of the pharmaceutical industry in the global market and its implications; learn the fundamentals of the drug development cycle and the investment required to bring a drug to market; learn the most important drug manufacturing processes and the key elements of dosage formulation.

PHEN 504. Validation and Regulatory Issues in the Pharmaceutical Industry. 3 credits, 3 contact hours.
This course is focused on the development of a working knowledge of the Federal Code of Regulations and its impact on the pharmaceutical and allied industries. The history of the Federal Government's regulation of the pharmaceutical industry is studied. Also covered is the industry's response and the methodologies it uses to comply with these regulations.

PHEN 505. Pharmaceutical Packaging Technology. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603, and completion of the bridge program for students who are required to take it. This course focuses on developing a working knowledge of the machinery and unit operations used in transferring a drug substance in the bulk final form to a finished product ready for sale to the consuming public. Packaging of both liquid and solid forms in various types of delivery containers such as vials/ampoules, blister packs, individual packets, bottles, pouches and syringes is examined. The cleaning, sterilization and scaling/capping required for each dosage form is discussed, as well as freeze-drying, tableting capsule filling, and form/fill/seal, and proper labeling of final drug forms.

PHEN 506. Pharmaceutical Unit Operations: Solids Processing. 3 credits, 3 contact hours.
This course examines methodologies, both applied and fundamental, to analyze and scale up manufacturing pharmaceutical processes involving solids processing, such as solids characterization, blending, milling, granulation, tableting, coating, and others. The emphasis is primarily on the engineering aspects of the pharmaceutical processes examined in the course.

PHEN 507. Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems. 3 credits, 3 contact hours.
This course provides an overview of the pharmaceutical industry, including basic information about drug discovery and development, FDA requirements and approval processes, drug dosage forms, and the role of key operational units in drug manufacturing processes. This course enables the students to: understand the role of the pharmaceutical industry in the global market and its implications; learn the fundamentals of the drug development cycle and the investment required to bring a drug to market; learn the most important drug manufacturing processes and the key elements of dosage formulation.

PHEN 508. Pharmaceutical Facility Design. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603; undergraduate courses in differential equations and fluid flow or completion of bridge program for students who are required to take it. This course provides instruction in design of state-of-the art pharmaceutical facilities for both manufacturing and R&D, by identifying key functional requirements and design concepts necessary to pharmaceutical processes. Interdisciplinary training will be provided in appropriate areas of facility design.

PHEN 509. Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems. 3 credits, 3 contact hours.
This course examines methodologies, both applied and fundamental, to analyze and scale up manufacturing pharmaceutical processes involving liquid and dispersed-phase systems, such as liquid and multiphase mixing, sterilization and sanitation, lyophilization, filtration, centrifugation and others. The emphasis is primarily on the engineering aspects of the pharmaceutical processes examined in the course.

PHEN 510. Validation and Regulatory Issues in the Pharmaceutical Industry. 3 credits, 3 contact hours.
This course is focused on the development of a working knowledge of the Federal Code of Regulations and its impact on the pharmaceutical and allied industries. The history of the Federal Government's regulation of the pharmaceutical industry is studied. Also covered is the industry's response and the methodologies it uses to comply with these regulations.

PHEN 511. Pharmaceutical Packaging Technology. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603, and completion of the bridge program for students who are required to take it. This course focuses on developing a working knowledge of the machinery and unit operations used in transferring a drug substance in the bulk final form to a finished product ready for sale to the consuming public. Packaging of both liquid and solid forms in various types of delivery containers such as vials/ampoules, blister packs, individual packets, bottles, pouches and syringes is examined. The cleaning, sterilization and scaling/capping required for each dosage form is discussed, as well as freeze-drying, tableting capsule filling, and form/fill/seal, and proper labeling of final drug forms.

PHEN 512. Pharmaceutical Unit Operations: Solids Processing. 3 credits, 3 contact hours.
This course examines methodologies, both applied and fundamental, to analyze and scale up manufacturing pharmaceutical processes involving solids processing, such as solids characterization, blending, milling, granulation, tableting, coating, and others. The emphasis is primarily on the engineering aspects of the pharmaceutical processes examined in the course.
PHEN 612. Pharmaceutical Reaction Engineering. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603; undergraduate courses in differential equations and chemical engineering kinetics, or completion of bridge program for students who are required to take it. This course examines a variety of reactions and reactors typically encountered in the pharmaceutical industry, including single/multiphase systems (e.g., crystallization), chemical synthesis, enzymatic, bio-reactions (fermentation), and others. The course then focuses on quantitative pharmaceutical reactor design and scale-up issues.

PHEN 614. Pharmaceutical Separation Processes. 3 credits, 3 contact hours.
This course covers separation processes in general and pharmaceutical separations in particular. Specific processes to be studied include distillation, extraction, crystallization, adsorption, ion exchange, chromatography, moving bed processes, electrophoresis, freeze drying, microfiltration/ultrafiltration, reverse osmosis, and pervaporation.

PHEN 618. Principles of Pharmacokinetics and Drug Delivery. 3 credits, 3 contact hours.
The course covers the basic principles of pharmacokinetics, including drug transport, parenteral and enteral routes of drug administration, and factors affecting drug absorption, distribution, metabolism, and excretion. Mathematical pharmacokinetic models and drug delivery processes are also presented and quantitatively studied.

PHEN 698. Special Topics in Pharmaceutical Engineering I. 3 credits, 3 contact hours.
Prerequisite: graduate standing and permission of the instructor. Topics of current interest in pharmaceutical engineering.

PHEN 699. Special Topics in Pharmaceutical Engineering II. 3 credits, 3 contact hours.
Prerequisite: graduate standing and permission of the instructor. Topics of current interest in pharmaceutical engineering.

PHEN 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in the student's academic program. A written report must be submitted to the project advisor. The student cannot register in 700B more than once and the incomplete (I) grade is not allowed.

PHEN 701B. Master's Thesis. 3 credits, 3 contact hours.
Corequisite for full-time students: PHEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in pharmaceutical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in PHEN 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PHEN 701C. Master'S Thesis. 6 credits, 3 contact hours.
Corequisite for full-time students: PHEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in pharmaceutical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (PHEN 701B course) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

PHEN 702. Selected Topics in Pharmaceutical Engineering. 3 credits, 3 contact hours.
Prerequisite: graduate standing and permission of the instructor. Topics of current interest in pharmaceutical engineering.

PHEN 725. Independent Study. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

PHEN 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for PHEN 726 if they have taken PHEN 725 in a prior semester. Students cannot register for this course with the same advisor as they had in PHEN 725.

PHEN 791. Graduate Seminar. 0 credits, 0 contact hours.
Required, when offered, of all pharmaceutical engineering graduate students receiving departmental or research-based awards. The student must register each semester until completion of the degree, if the Graduate Seminar is offered. Outside speakers and department members present their research for general discussion.

TRAN 552. Geometric Design of Transportation Facilities. 3 credits, 3 contact hours.
Prerequisite: CE 350 or equivalent. Design principles and criteria related to highways and railroads resulting from requirements of safety, vehicle performance, driver behavior, topography, traffic, design, speed, and levels of service. Elements of the horizontal and vertical alignments and facility cross-section, and their coordination in the design. Computer-aided design procedures including COGO, CADAM, Digital Terrain Modeling. Same as CE 552.
TRAN 553. Design and Construction of Asphalt Pavements. 3 credits, 3 contact hours.
Importance of designing asphalt pavements. Topics include the origin of crude, refining crude, types of asphalts, desired properties of asphalt cement, specification and tests for asphalt cement, aggregates for asphalt mixtures, aggregate analysis, gradation and blending, hot-mix asphalt (HMA) mix design, manufacture of HMA and HMA-paving, hot and cold recycling. Same as CE 553.

TRAN 592. Graduate Co-op Work Experience. 1 credit, 1 contact hour.
Prerequisites: permission from Transportation Program and Division of Career Development Services. Work assignments and projects are developed by the co-op office in consultation with the transportation program. Work assignments are related to student's major and are evaluated by Transportation Program faculty coordinators. Credits for this course may not be used to fulfill any transportation degree requirements.

TRAN 602. Geographic Information Systems. 3 credits, 3 contact hours.
Prerequisite: course or working knowledge of CADD or permission of instructor. Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control, etc. Introduces emerging technology and its applications. Same as CE 602.

TRAN 603. Introduction to Urban Transportation Planning. 3 credits, 3 contact hours.
Urban travel patterns and trends; community and land activity related to transportation study techniques including survey methods, network analysis, assignment and distribution techniques. Case studies of statewide and urban areas are examined. Same as CE 603.

TRAN 608. Behavioral Issues in Transportation Studies. 3 credits, 3 contact hours.
Behavioral science concepts and principles such as perception, learning, motivation, and information processing as they relate to: transportation, consumer use of mass transit, automobiles, ridesharing and intelligent transportation systems. Same as HRM 608.

TRAN 610. Transportation Economics. 3 credits, 3 contact hours.

TRAN 615. Traffic Studies and Capacity. 3 credits, 3 contact hours.
Prerequisite: elementary probability and statistics. Presentation of the characteristics of the traffic stream, road users, and of vehicles, and a review of traffic flow relationships. Students are exposed to the principal methodologies followed by transportation practices to perform volume, speed, travel time, delay, accident, parking, pedestrian, transit and goods movement studies. Presentation of the principal methodologies used to perform transportation capacity analyses for: basic freeway sections, weaving areas, ramps and ramp junctions, multi-lane and two lane roadways, signalized and unsignalized intersections. Students get hands on experience using highway capacity software (HCS) and SIDRA. Same as CE 660.

TRAN 625. Public Transportation Operations and Technology. 3 credits, 3 contact hours.
Prerequisite: graduate standing in civil or industrial engineering or instructor approval. Presentation of the technological and engineering aspects of public transportation systems. Historical development of public transportation technologies. Vehicle and right-of-way characteristics, capacity and operating strategies. Public transportation system performance. Advanced public transportation systems. Same as CE 625.

TRAN 640. Distribution Logistics. 3 credits, 3 contact hours.
Prerequisite: EM 602 or TRAN 650 or equivalent. Distribution logistics emphasizing systems engineering techniques used to optimize corporate profit and customer service: transportation modes; inventory policies; warehousing and order processing; and the best logistics gross margin. Same as EM 640.

TRAN 643. Transportation Finance. 3 credits, 3 contact hours.

TRAN 650. Urban Systems Engineering. 3 credits, 3 contact hours.
Prerequisite: computer programming background. Identifies the various urban problems subject to engineering analysis, and modern techniques for their solution, including inductive and deductive mathematical methods, mathematical modeling and simulation, and decision making under uncertainty. Same as CE 650.

TRAN 653. Traffic Safety. 3 credits, 3 contact hours.
Prerequisite: TRAN 615 or equivalent. System behavioral principles are applied to safety aspects of highway operation and design, and improvements of existing facilities. Solutions are evaluated on the basis of cost effectiveness. Same as CE 653.

TRAN 655. Land Use Planning. 3 credits, 3 contact hours.
Spatial relations of human behavior patterns to land use; methods of employment and population studies are evaluated; location and spatial requirements as related to land use plans; and concepts of urban renewal and recreational planning are investigated by case studies. Same as CE 655 and MIP 655.

TRAN 659. Flexible and Rigid Pavements. 3 credits, 3 contact hours.
Prerequisite: CE 341 or equivalent. Types of rigid (Portland cement) and flexible (bituminous pavements). Properties of materials, including mineral aggregates. Design methods as functions of traffic load and expected life. Importance and consequences of construction methods. Maintenance and rehabilitation of deteriorated pavements. Same as CE 659.
TRAN 700B. Master’s Project. 3 credits, 3 contact hours.
Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

TRAN 701B. Master’s Thesis. 3 credits, 3 contact hours.
Prerequisite: written approval of thesis advisor. A comprehensive project, usually in the form of substantial study and analysis, a functional design project or control-operations systems study. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

TRAN 701C. Master’s Thesis. 6 credits, 3 contact hours.
Prerequisite: written approval of thesis advisor. A comprehensive project, usually in the form of substantial study and analysis, a functional design project or control-operations systems study.

TRAN 702. Topics In Transportation. 3 credits, 3 contact hours.
Prerequisite: advisor’s approval. Topics of special or current interest.

TRAN 705. Mass Transportation Systems. 3 credits, 3 contact hours.
Prerequisite: TRAN 610 or IE 610. Investigation of bus, rapid transit, commuter railroad, and airplane transportation systems. Existing equipment, economics, capacity, and terminal characteristics are discussed, as well as new systems and concepts. Long- and short-range transportation systems are compared. Same as CE 705.

TRAN 720. Discrete Choice Modeling for Travel Demand Forecasting. 3 credits, 3 contact hours.
Prerequisite: TRAN 610 or equivalent. Discrete choice modeling describes a class of theoretical and analytical models essential for most advanced planning and forecasting efforts in transportation analysis. Includes logit, multi-nominal, and probit models. Develops theoretical and analytical skills needed to design, estimate and apply both revealed and stated preference models to appropriate travel demand forecasting problems.

TRAN 725. Independent Study. 3 credits, 3 contact hours.

TRAN 726. Independent Study II. 3 credits, 3 contact hours.

TRAN 752. Traffic Control. 3 credits, 3 contact hours.
Traffic laws and ordinances; regulatory measures; traffic control devices; markings, signs and signals; timing of isolated signals; timing and coordination of arterial signal systems; operational controls; flow, speed, parking; principles of transportation system management/administration: highway lighting; and state-of-the-art surveillance and detection devices and techniques. Hands-on experience with TRAF/NETSIM and FREESIM. Same as CE 752.

TRAN 753. Airport Design and Planning. 3 credits, 3 contact hours.
Prerequisites or corequisites: TRAN 610 or EM 693 and TRAN 615. Planning of individual airports and statewide airport systems. Functional design of air and landside facilities. Orientation, number and length of runways. Concepts of airport capacity. Passenger and freight terminal facility requirements. Airport access systems. FAA operating requirements. Financial, safety and security issues. Same as CE 753 and IE 753.

TRAN 754. Port Design and Planning. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or EM 693 and TRAN 615. Functional design of the water and landsides for general cargo, liquid and dry bulk, and container operations. Yard and storage systems. Port capacity in an intermodal network. Economic, regulatory, and environmental issues. Same as CE 754 and IE 754.

TRAN 755. Intelligent Transportation Systems. 3 credits, 3 contact hours.
Prerequisite: TRAN 752. Techniques used to improve the safety, efficiency and control of surface transportation systems. Emphasis on technological and operational issues of these systems and using them for incident detection and for traffic management through route and mode diversion.

TRAN 760. Urban Trans Networks. 3 credits, 3 contact hours.
Prerequisites: elementary probability and statistics and TRAN 650 or equivalent. Provides analytical techniques for the analysis of transportation problems in an urban environment. Principal components include applications of models for the analysis of transportation problems, advanced static, dynamic, and stochastic traffic assignment procedures and transportation network design exact and heuristic solution algorithms. Offers hands-on experience with existing software in traffic assignment and transportation network design.

TRAN 765. Multi-modal Freight Transportation Systems Analysis. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or equivalent and TRAN 650 or EM 602 or equivalent. Quantitative methods for the analysis and planning of freight transportation services. The supply-performance-demand paradigm for freight transportation systems. Cost and performance as determined by system design and operations. Relationship of traffic and revenue to service levels and pricing. Optimal service design and redesign for transportation enterprises and operations planning. Fleet and facility investment planning. Applications to various modes. Same as EM 765 and CE 765.

TRAN 790. Doctoral Dissertation. 0 credits, 0 contact hours.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester thereafter.

TRAN 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester.
TRAN 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester.

TRAN 790C. Doctoral Dissertation. 6 credits, 3 contact hours.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester.

TRAN 790D. Doctoral Dissertation. 9 credits, 3 contact hours.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester.

TRAN 790E. Doctoral Dissertation. 12 credits, 3 contact hours.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester.

TRAN 790F. Doctoral Dissertation. 15 credits, 3 contact hours.
Corequisite: TRAN 791. Required of all candidates for the Doctor of Philosophy in Transportation. A minimum of 36 credits is required. Students may register for 6 to 15 credits of dissertation per semester. If 36 credits are achieved prior to completion of the doctoral dissertation and research, students must register for 3 credits per semester.

TRAN 791. Doctoral Seminar. 0 credits, 1 contact hour.
Corequisite: TRAN 790. A seminar in which faculty, students, and invited speakers will present summaries of advanced topics in transportation. Students and faculty will discuss research procedures, dissertation organization, and content. Students engaged in research will present their own problems and research progress for discussion and criticism.

TRAN 792. Pre-Doctoral Research. 0 credits, 0 contact hours.
Prerequisite: Permission of program director. For students admitted to the Doctor of Philosophy Program in Transportation who have not yet passed the qualifying examination. Research is carried out under the supervision of a faculty member in the program. Up to 6 credits may be applied toward the required dissertation credits for the program.

TRAN 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
TRAN 792C. Pre-Doctoral Research. 6 credits, 3 contact hours.

Biomedical Engineering

Biomedical engineering is currently the fastest growing field of engineering in the U.S. and requires an education that draws from advanced engineering and computing as well as the biological and medical sciences. NJIT offers an extremely flexible Masters program that encourages students to contribute to an individualized plan of study that builds upon the strengths of their B.S. and develop expertise in an area of concentration leading to careers in research and/or product development, or to prepare for further study in medicine, dentistry, law, and management, or for a Ph.D. in biomedical engineering. Major areas in which NJIT offers courses and conducts research are bioinstrumentation, biomaterials and tissue engineering, biomechanics, neural engineering and rehabilitation engineering.

Over the past several years, the M.S. in Biomedical Engineering program at NJIT currently has graduated the largest number of M.S. degrees in BME in the nation. The department offers a comprehensive set of courses specifically in biomedical engineering (usually 14-16 per semester), which are augmented by related engineering and life science courses taught in other departments. NJIT’s location, in the middle of the nation’s largest concentration of biomedical industries, provides access to expert instructors who offer specialized courses, which add to the richness of the academic environment. These industries also support graduate internships and thesis work, and often provide employment after graduation. The NJIT campus is within walking distance of both the University of Medicine and Dentistry of New Jersey flagship campus and Rutgers University-Newark. Graduate education at the three institutions is enhanced by collaboration agreements that allow cross-registration for courses, use of libraries, and opportunities for independent research. This benefits biomedical engineering by opening the possibilities for M.S. students to take advanced biological and medical science courses in addition to engineering courses.

The NJIT Department of Biomedical Engineering has a very active research program that is accessible to Masters students and provides opportunities for thesis or other independent study, which integrates engineering and the medical sciences. Research is conducted cooperatively between NJIT and the medical and dental schools of RBHS, the Kessler Institute for Rehabilitation, St. Barnabas Medical Center, Veteran’s Administration Medical Center in East Orange, the Children’s Specialized Hospital, the Public Health Research Institute, the Rutgers Center for Biological and Molecular Neuroscience and other institutions in the New Jersey-New York metropolitan area. In addition, cooperative research opportunities exist with a number of biomedical device and pharmaceutical companies within a short commuting distance from NJIT.

The Doctor of Philosophy in Biomedical Engineering is jointly offered by NJIT and Rutgers Biomedical and Health Sciences (RBHS). It offers advanced graduate education providing students with the skills necessary for careers in basic and applied research, as well as the intellectual foundation
Aim of the M.S. Program

This program provides the opportunity for individuals with degrees in biomedical engineering to focus on a specialized area to a much greater degree than could be done in their undergraduate studies. Similarly, it also allows those with engineering and science backgrounds in other fields to acquire knowledge and skill that will allow them to join this growing field. Unlike many other graduate programs, the NJIT BME M.S has no core requirements. Each student develops an individualized plan of study with his or her advisor that is based on prior study, past work experience and career goals. The intentional flexibility in the selection of courses reflects the expected maturity of the graduate students as they assume significant responsibility for planning their concentrations. This flexibility also encourages students to exhibit some curiosity about unfamiliar areas of biomedical engineering and allows them to take two courses that may be peripheral to their academic focus.

The opportunity to pursue a thesis has the benefit of allowing students to choose a topic in which they will demonstrate the ability to integrate what they have learned, execute a 2-semester technical project, and communicate their results. Students not electing to pursue a thesis may choose three additional courses (replacing the 6-credit thesis) that increase their depth in engineering and breadth in the life sciences.

Eligibility for the Program

Students who have a B. S. degree in science or engineering are eligible. In general, those with a B.S. in biomedical, mechanical, electrical, computer or chemical engineering will be well prepared to enter the program. Exceptional students with undergraduate degree in the life sciences with sufficient background in mathematics will also be considered for admission.

All applicants must have had courses in scientific computer programming, differential equations, statistics, and physiology. Students who are missing one or more of these can be conditionally admitted with a requirement to take undergraduate bridge courses, which are in addition to the 30-credit graduation requirement. Certain graduate courses or concentrations may require additional background, such as, statics and/or dynamics, thermodynamics, and electronics. Students who do not have these prerequisites may be asked to take additional courses or acquire the necessary material through tutoring and independent study. Prospective students may contact the M.S. Program Director for advice regarding their specific needs.

Students selected for admission should have earned a minimum undergraduate G.P.A. of 3.0, and have GRE Math and Verbal scores higher than 670 and 400, respectively. GRE scores are required for all international applicants, and are optional for graduates of U.S. universities and colleges.

Course Offerings

The courses offered through this program allow students to choose concentrations that genuinely reflect their needs and interests. The sample course concentrations listed below reflect a curriculum that is rich in cutting edge engineering and science, and deep in its content. This critical mass of courses at NJIT, RBHS and Rutgers allows students to acquire a level of expertise that is uncommon among most biomedical engineering programs. The students in this program are nearly evenly split between those continuing their education immediately following their B.S. and those who are returning to study after a number of years of employment. The same is true for the educational backgrounds of the students, with approximately half having studied biomedical engineering and the other half coming from different fields. Most candidates for the Masters degree enroll as full-time students. However, the degree can be completed on a part-time basis for those who wish to study while continuing to work. Most courses are offered in the late afternoon and in the evening.

The BME graduate courses listed in this catalog are each offered at least once per academic year. This listing is frequently updated to avoid the potential of including courses that are no longer offered. Potential applicants are encouraged to view the current academic year's course schedule and course enrollments at http://www.njit.edu/registrar/schedules/.

Course are taught by faculty who have considerable expertise. BME faculty and lecturers from nearby medical institutions offer graduate courses that are related to their ongoing research areas, while lecturers from industry bring experience from a corporate sector.

Approximately 30% of BME M.S. students complete a thesis, which is a mentored two-semester research/development experience. Many students (particularly those with experience in industry) may already have experienced the equivalent of an in-depth, year-long project, and can be better served by taking additional courses. Students considering a thesis are directed to the NJIT Library's website where most recent theses are available online. Those who have questions about the scope and content of biomedical engineering theses should review several that fall within their areas of interest. These can be found at http://archives.njit.edu/vhlbr/etd/list-programs.php#Biomedical-Engineering.

The department's Graduate Seminar is a weekly opportunity for students to be exposed to current topics in biomedical engineering and develop an appreciation for the breadth of this exciting field. These lectures are given by visiting scholars and industry experts. The department website offers a current listing of seminar speakers and topics. Please visit http://biomedical.njit.edu/.
In addition to the department seminar, the Graduate Biomedical Engineering Society (GBMES) operates its own lecture series that focuses on BME in industry. Monthly speakers discuss product development and applied research. Many speakers are NJIT BME alumni with whom current students can network.

Co-op Opportunities and Internships
Students have the opportunity to participate in the co-op and internship programs at neighboring medical institutions or at biomedical engineering firms to gain practical experience. NJIT is situated in an area that contains many major biomedical engineering and pharmaceutical companies. The biomedical engineering department has a part-time advisor for co-op and internship experiences.

Prospects for Employment
Considerable opportunity exists in the field of biomedical engineering. This takes the form of basic and applied research and product development. Employment may be found in medical institutes, government agencies, corporations and hospitals, all of which are involved in the design, manufacture and utilization of equipment and procedures intimately involved in health care improvement. Many students go on to obtain professional degrees in medicine, dentistry, law or administration for which an engineering background is becoming ever more important.

Admission Requirements
Prospective students seeking admission to the Program must have an undergraduate degree in engineering, science or mathematics and satisfy the admission and academic requirements of the Graduate School.

1. General Guidelines. Each program of study must satisfy the Graduate School academic requirements (see the latest graduate catalog at www.njit.edu (http://www.njit.edu)).

2. Prerequisite Courses. Minimum Undergraduate Requirements for the Program:
 • B.S. in Biomedical, Chemical, Electrical, Computer, or Mechanical Engineering.
 • Applicants with a B.S. in Computer Science are expected to have had Calculus through differential equations, one full year of Physics, one full year of Chemistry, and a course in Physiology.
 • Applicants with strong life science or medical education, including the equivalent of one full year of Physics as well as Calculus through differential equations, will be considered on a case-by-case basis.
 • Conditional admission may be granted to applicants lacking full preparation with a requirement to take undergraduate bridge courses that will not carry graduate credit.

Admitted students who have not previously taken an upper level physiology course will be required to take BME 669 Engineering Physiology or an equivalent course as one of their graduate courses.

Applicants with a background in life science or other related degrees, such as biology, biochemistry, physical therapists, etc. may be conditionally admitted to the program. Admitted students will be required to register for bridge courses in their first semester prior to taking graduate level BME courses as a condition of admission. In general, the following courses will be required, pending review of transcripts by the graduate advisor:

- Calculus 1, 2, and 3
- Differential Equations
- Introduction to Computer Programming
- BME 301 Electrical Fundamentals of Biomedical Engineering or equivalent
- BME 302 Mechanical Fundamentals of Biomedical Engineering or equivalent

Students must complete BME 301 and BME 302 with a minimum grade of B. Failure to receive a B grade in bridge courses may preclude students from enrolling in regular graduate BME courses. Equivalent courses may be accepted with prior approval from graduate advisor.

Aims of the Ph.D. Program
This joint program builds upon the synergistic relationship between NJIT and RBHS. The physical proximity of the two institutions facilities access to courses, laboratories, libraries, and seminars, as well as blending scientific and clinical opportunities in education and research. In addition, the location of NJIT and RBHS in Newark promotes interaction with New Jersey's pharmaceutical and medical device industries and medical facilities. As the preparation for the Ph.D. involves an extensive research apprenticeship in the form of dissertation, the program is closely linked to the areas of biomedical engineering research at NJIT and RBHS. This research is clustered in the following areas.

- Biomaterials and Biocompatibility
- Tissue Engineering and Regenerative Medicine
- Cellular and Orthopedic Biomechanics
- Biomedical Signal Processing, Imaging and Instrumentation
- Neural and Neuromuscular Engineering
The program requires a minimum of 78 credits beyond the B.S. or 60 credits beyond an M.S. degree in biomedical engineering or closely related field. For the post M.S. student, 24 credits must be in advanced graduate level courses with 12 credits in biomedical engineering and 12 credits in life sciences. The post B.S. student must take an additional 18 credits in approved courses.

The remaining 36 credits are comprised of mentored dissertation research, in which the student demonstrate aptitude for independent research of publishable nature. Individuals completing this degree are well-prepared for employment in academia, industry and government laboratories, or for post-doctoral study.

Eligibility for the Program

Prospective students seeking admission to the joint Ph.D. Program should have an undergraduate degree in engineering, basic science or mathematics, and satisfy the admission and academic requirements of the NJIT Graduate School and the RBHS Graduate School of Biomedical Sciences. In general, applicants are expected to have had Calculus through differential equations, one full year of physics, one full year of chemistry, and a course in physiology as part of their prior engineering studies. Non-engineering applicants with strong life science or medical education, with the same physics, chemistry, math and physiology background, but who do not have experience in essential engineering sciences, will be considered on a case-by-case basis. These applicants may be asked to pursue and M.S. in BME prior to admission to the Ph.D. program. Alternatively, conditional admission may be granted to applicants lacking full preparation, the a requirement to take undergraduate bridge courses that will not carry graduate credit. Admitted students who have not previously taken an upper level physiology course will be required to take BME 669 Engineering Physiology or an equivalent course as one of their graduate courses.

Applicants are expect to have a minimum G.P.A of 3.5 in their most recent degree (B.S. or M.S.) and minimum GRE Math and Verbal scores of 750 and 500. The GRE is required for all applicants, and TOEFL is required for all international students.

The program has a joint admission committee, which reviews all application, thus allowing students to apply to either institution. The host institution for a student may be changed depending upon the eventual research advisor and/or the institutional source of the research funding. The only significant institutional difference in the application process is that RBHS only admits students in the spring for the upcoming fall semester. NJIT can admit students who are beginning in either the fall or spring semesters. In general, however, spring admissions are rare.

As the Ph.D. program is significantly based on faculty research, admission depends upon available opportunities and funding in individual laboratories, in addition to prior academic performance. A very limited number of teaching assistantships and university fellowships are available for begging students, with subsequent years of research supported by faculty grants.

Laboratory and funding opportunities vary considerably from year to year. Serious potential applicants are encouraged to contact the Ph.D. program director at either NJIT or RBHS to discuss the current factors influencing admission.

NJIT Faculty

A

Adamovich, Sergei, Associate Professor

Alvarez, Tara L., Professor

Arinzeh, Treena L., Professor

B

Biswal, Bharat, Professor

C

Chandra, Namas, Professor

Chaudhry, Hans, Research Professor

Cho, Cheul, Assistant Research Professor

D

Di, Xin, Assistant Research Professor

F

Foulds, Richard A., Associate Professor

G

Georges Deveau, Penelope, University Lecturer
Haorah, James, Associate Professor
Hunter, William C., Professor
Ihiefeld, Antje, Assistant Professor
Jaffe, Michael, Research Professor
Lee, Eun Jung, Assistant Professor
Li, Xiaobo, Associate Professor
Mantilla, Bruno Antonio, University Lecturer
Ophir, Zohar, Research Professor
Perez-Castillejos, Raquel, Assistant Professor
Peringady, M. A. Muneer, Assistant Research Professor
Pfister, Bryan J., Chair
Reisman, Stanley, Professor Emeritus
Sahin, Mesut, Professor
Schesser, Joel, Senior University Lecturer
Skotak, Maciej, Assistant Research Professor
Van Buskirk, William C., Distinguished Professor Emeritus

- Biomedical Engineering - M.S. (p. 450)
- Biomedical Engineering - Ph.D. (p. 452)

Programs
- Biomedical Device Development (p. 449)

Biomedical Engineering Courses

BME 590. Graduate Co-Op Work Exper I. 1 credit, 1 contact hour.
BME 591. Graduate Co-Op Work Exper II. 1 credit, 1 contact hour.
BME 592. Graduate Co-Op Work Exper III. 1 credit, 1 contact hour.
BME 593. Graduate Co-Op Work Experience IV. 0 credits, 0 contact hours.

Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.
BME 601. Seminar. 1 credit, 1 contact hour.
Required every semester of all master’s students in biomedical engineering who receive departmental or research-based support and all doctoral students. To receive a satisfactory grade, students must attend at least five seminars per semester, as approved by the seminar supervisor.

BME 611. Engineering Aspect of Molecular and Cellular Bio I. 1 credit, 1 contact hour.
Molecular and cellular biology is a foundation of the understanding of the biological sciences and is vital to the study of advanced biomedical engineering. This course is to be taken simultaneously with UMDNJ NS51 to enrich the crossover between engineering and life sciences. Course topics parallel those covered in NS51 and both add engineering relevance, and provide engineering students with a stronger understanding of molecular and cellular biology. For students in joint BME PhD program.

BME 612. Engineering Aspects of Molecular and Cellular Bio II. 1 credit, 1 contact hour.
Molecular and cellular biology is a foundation of the understanding of the biological sciences and is vital to the study of advanced biomedical engineering. This course is to be taken simultaneously with UMDNJ NS52 to enrich the crossover between engineering and life sciences. Course topics parallel those covered in NS52 and both add engineering relevance, and provide engineering students with a stronger understanding of molecular and cellular biology. For students in joint BME PhD program.

BME 650. Clinical Physiology & Neurophy. 3 credits, 3 contact hours.
Prerequisites: BME 111, BME 303, BME 382 or permission of the instructor. Topics to be covered include gastrointestinal tract, pulmonary respiratory system, renal and liver functions, blood and hemodynamic, cardiovascular and cerebrovascular function, and understanding of neurophysiology in human neurological diseases.

BME 651. Principles of Tissue Engineering. 3 credits, 3 contact hours.
Tissue Engineering is a therapeutic approach to treating damaged or diseased tissues in the biotechnology industry. In essence, new and functional living tissue can be fabricated using living cells combined with a scaffolding material to guide tissue development. Such scaffolds can be synthetic, natural, or a combination of both. This course will cover the advances in the fields of cell biology, molecular biology, and materials science towards developing novel “tissue engineered” materials.

BME 652. Cellular and Molecular Tissue Engineering. 3 credits, 3 contact hours.
This course explores molecular, cellular and tissue level interactions that are an important component of all tissue engineering strategies. Topics include how a cell moves, reacts and maintains viability and function based on its surroundings. We will discuss how to engineer our materials, tissue grafts and implants to integrate with the body. We will also learn about bodily reactions and the biocompatibility of tissue engineered devices such as immunoreactivity and blood coagulation.

BME 653. Micro/Nanotechnologies for Interfacing Live Cells. 3 credits, 3 contact hours.
In this course, we will study technologies and tools available for interfacing live cells from a sub-cellular, single-cell, and multi-cellular (tissue models) approach. We will introduce key concepts of the biology of cells and tissues and will explore the technologies (micro-/nanotechnologies) and tools (sensors and actuators) available for the investigation of cell and tissue biology. Same as ECE 653.

BME 654. Cardiovascular Mechanic. 3 credits, 3 contact hours.
Fundamental biomechanical mechanisms at work in the cardiovascular system. Topics include the fundamental molecular structure of heart muscle, the biomechanical principles that transform the contraction of heart muscle into stress-strain functions of muscle fibers, pressure-volume flow relations in the vasculature when it is considered as a hemodynamic (blood hydraulic) system, growth and disease of the cardiovascular system, resistance, compliance, inerterance, and catheter-tip transducers.

BME 655. Advanced Characterization of Biomaterials. 3 credits, 3 contact hours.
Prerequisites: MTSE 301 or undergraduate equivalent, BIOL 201 or undergraduate equivalent, one semester of undergraduate organic chemistry. With a focus on contemporary biomaterials in the published literature and clinical practice, biomaterial chemical and mechanical testing will complement synthesis theory. Communication and articulation of ideas will be honed in the form of literature debates, write-ups, demonstration/performance of analytical techniques, and concluding with translation of biomaterials that will include entrepreneurship and regulatory aspects.

BME 656. Research Skills in Stem Cell. 3 credits, 3 contact hours.
Stem cells have emerged as new therapeutic potential and offer great opportunities for regenerative medicine, biotechnology and the pharmaceutical industry. This course is intended for graduate students interested in stem cell bioengineering and tissue engineering. The course will cover stem cell biology and biomedical engineering applications for cell-based regeneration therapies. It will discuss techniques for engineering of stem cells and the current literature in this rapidly evolving field.

BME 661. Neural Engineering. 3 credits, 3 contact hours.
Neural Engineering focuses on understanding how the brain functions using engineering principles. The course discusses different instrumentation and signal processing algorithms to study how the brain functions, how to detect different pathologies and new applications for research. Topics include; basic overview of neurology, vector populations, neural networks, vision research, functional MRI, functional electrical stimulation, neural prosthetics, and other advanced research topics studying neurology.

BME 667. Bio-Control Systems. 3 credits, 3 contact hours.
The course provides an introduction to dynamic and control in biological systems, with particular emphasis on engineering aspects of biological oscillators/waves which govern the basic operations of all living organisms and especially higher order life forms. A combination of theoretical and simulation tools will be applied to analyze the qualitative and quantitative properties of selected biological systems. Feedback and control mechanisms in selected biological systems will be introduced. Same as ECE 667.
BME 668. Medical Imaging Systems. 3 credits, 3 contact hours.
This course provides a detailed introduction to medical imaging physics, instrumentation, data acquisition and image processing systems for reconstruction of multi-dimensional anatomical and functional medical images. Three-Dimensional medical imaging modalities including X-ray, Computer Tomography, Magnetic Resonance Imaging, Single Photon Emission Computer Tomography, Positron Emission Tomography, Ultrasound and optical imaging modalities are included. Same as ECE 668.

BME 669. Engineering Physiology. 3 credits, 3 contact hours.
To enable students to apply basic tools in engineering analysis, mathematics, computer science, general physics and chemistry courses so that they can develop models that quantitatively predict the functioning of physiological systems in the human body. To enable students to apply engineering systems analysis to systematic physiology and employ the ideas of feedback control, signal procession, mathematical modeling and numerical simulation. Same as ECE 669.

BME 670. Introduction to Biomechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, statics, and dynamics. Introduction to biomechanical engineering of physiological systems; fluid flow, structural, motion, transport, and material aspects; energy balance of the body, and the overall interaction of the body with the environment. Same as ME 670.

BME 671. Biomechanics of Human Structure and Motion. 3 credits, 0 contact hours.
Prerequisites: undergraduate statics, kinematics, and dynamics. Principles of engineering mechanics and materials science applied to human structural and kinematic systems and to the design of prosthetic devices. Topics include anatomy; human force systems; human motion; bioengineering materials; and design of implants, supports, braces, and replacements limbs.

BME 672. Biomaterials. 3 credits, 3 contact hours.
Prerequisite: MECH 320 (see undergraduate catalog for description) or the equivalent. Materials and processes used to develop devices that are implanted in the human body; clinical aspects of biomechanical engineering; federal government requirements for design and testing of human implant devices; biocompatibility, metal implant devices, material design parameters, plastic and ceramic devices, sterilization techniques, and their effect on biocompatibility.

BME 673. Biorobotics. 3 credits, 3 contact hours.
Basics of control of a robot and telemanipulation are studied. Computer simulations, MATLAB are used to explore biomimetic autonomous robots. This is a studio-based course with hands-on exercises with small robots and actuators. Topics include understanding how biological robots (humans and animals) differ from designed robots, as well as sensors (touch, stereo and position), actuators (muscles, smart materials), and intelligent (neural and computer controlled systems.

BME 674. Principles of Neuromuscular Engineering. 3 credits, 3 contact hours.
Neurophysiology, motor control and robotics are used to study the human motor system. Sensorimotor learning and acquisition of new motor skills are emphasized. Topics include the central nervous system, muscle properties, spinal motor circuitry and dynamics of limb motion. The relation of motor control problems to neurophysiology of the motor system and how motor disorders affect movement control are studied. MATLAB and Simulink are used in simulations and movement data analysis.

BME 675. Computer Methods in Biomedical Engineering. 3 credits, 3 contact hours.
This course uses MATLAB to concentrate on methods that allow students to produce original software that can be used to acquire, process, analyze and present data. Topics include advanced graphics and animation, graphical user interfaces, interfacing to and data acquisition from laboratory instrumentation, filtering and processing of acquired data, and interfacing to user interfaces (e.g. joysticks). Applications in speech, bioelectrical signals, images and virtual reality will be included.

BME 676. Computational Biomechanics. 3 credits, 3 contact hours.
Prerequisites: BME 670 or equivalent. The use of commercially available software to solve complex engineering problems has become standard practice to reduce time and cost and results in a better product. This is an intro course on computational methods and the use of commercial software such as ANSYS, Fluent, and MATLAB to solve problems related to the BME device industry. Suitable for students interested in Computer Aided Design and Engineering (CAD/CAE).

BME 677. CAD for Biomechanics and Biomaterials. 3 credits, 3 contact hours.
Introduction to Computer Aided Design theory and application using software. Topics include datum planes, extrude, cut, sweep, swept cuts, and parallel, rotational, and general blends. Assemblies and generating, dimensioning, editing, and modifying drawing views and creation of balloons, imaging and scanning techniques of anatomical structures such as bone and arteries and 3D printing are also covered.

BME 678. Design of Orthopedic Implants. 3 credits, 3 contact hours.
Prerequisite: BME 677. First of a two part course on design of orthopedic implants using ProEngineer. Additional topics include mechanical properties of implant materials, material selection and introduction to FEA. Methods for prototype development with the use of 3D printing will also be discussed. A critical objective of this course is the preparation of design reports and project presentations.

BME 679. Advanced Design of Orthopedic Implants. 3 credits, 3 contact hours.
Prerequisites: BME 677, BME 678 or equivalent. Advanced modeling techniques for the design of hip, knee, and spine implants. Mechanical properties of materials, including wear and failure modes associated with typical implants. Kinematics and surgical protocols of implants will be discussed. Course will cover assemblies and FEA analysis of implants. Additional topics include large deformations, fatigue, optimization, review and analysis of results.
BME 680. BioMEMS Design and Applications. 3 credits, 3 contact hours.
The advance of bioMEMS (Micro Electrical Mechanical Systems) technology is a key component in making the next generation medical diagnostic tools possible. We will learn how bioMEMS devices are fabricated and combine engineering analysis with knowledge of known biological responses and biomolecule interactions to understand how bioMEMS are designed and function. Topics will include biological, mechanical, electrical, and chemical biosensors, and microfluidics as applied to biotechnology.

BME 682. System Mgmt for Medical Device. 3 credits, 3 contact hours.
This course will provide a detailed overview of Project Management techniques and methods applied to medical devices and show the integration of medical device Design Controls from 21 CFR820.30. General knowledge from the field of Project Management will be conveyed from the perspective of engineering or science personnel in the industrial medical field, particularly with regard to FDA Quality System Regulations (QSR), ISO 13485 guidelines, and Good Clinical Practices (GCP’s) for running clinical trials. Students will also take part in practical problem solving simulations based on real-world examples of medical device project anomalies. The combination of specialized project management knowledge for a heavily regulated area and realistic classroom simulation will provide a basis for those interested in commercial medical device development.

BME 684. Medical Device Development. 3 credits, 3 contact hours.
This course will provide a detailed overview of medical device development from a realistic industrial and academic perspective. The processes used in corporations and academic laboratories to conceive and develop devices will be explored from a research, regulatory, clinical, QA/QC, marketing, engineering, and legal perspective under the umbrella of project management techniques. Material will be presented as an aide to students who wish to decide on careers in either industry or academia.

BME 686. Intro. to Instrumentation for Physiomeasurements. 3 credits, 3 contact hours.
Introduction to instrumentation for students without instrumentation background only. This course teaches the hardware and instrumentation needed to measure variables from different physiological systems. Electrodes, sensors and transducers, bioelectric amplifiers safety and digital acquisition will be discussed. Hardware for measurement of the ECG, EEG, EMG, respiratory system, nervous system, clinical laboratory instruments, electrical safety and computers in biomedical instrumentation.

BME 687. Design of Medical Instrumentation. 3 credits, 3 contact hours.

BME 688. Virtual Biomedical Instrument. 3 credits, 3 contact hours.
Introductory course to the programming language, LabVIEWTM. Topics include loops, arrays, clusters, data acquisition, and file input/output. Students will learn how to apply these basic concepts into the development of algorithms. Examples relevant to the biomedical industry will be given how to debug and solve complex programming problems. By the completion of the course, students will be able to develop programs to automate processes and experimental designs.

BME 697. Master's Thesis. 6 credits, 3 contact hours.
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty. Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BME 701B. Master's Thesis. 3 credits, 3 contact hours.
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course, if they have not already taken it.

BME 725. Independent Study I. 3 credits, 3 contact hours.
Restriction: departmental approval. Program of study prescribed and approved by student's faculty coordinator. This special course covers areas of study in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course offering. Master's degree students cannot count BME 725 as degree credit but can count these credits to qualify for full-time status.

BME 726. Independent Study II. 3 credits, 3 contact hours.
Restriction: departmental approval. Program of study prescribed and approved by student's faculty coordinator. This special course covers areas of study in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course offering. Master's degree students cannot count BME 725 as degree credit but can count these credits to qualify for full-time status. This course is not available to master's students.
BME 741. Basic Plasma Physics with Spac. 3 credits, 3 contact hours.
Prerequisites: PHYS 611, PHYS 621 or other equivalent, or approval of the instructor. The course will introduce students to basic concepts of plasma physics and its applications to laboratory experiments and space research. The course will cover the following topics: particle motions in magnetic field, adiabatic invariants, magnetic traps, radiation belts, electromagnetic waves in plasma, electrostatic oscillations, waves in magnetized plasma, collisional processes in plasma, kinetic effects on plasma waves, Landau damping, wave instabilities, plasma as fluid, magnetohydrodynamics, magnetic configurations of laboratory and space plasma, MHD instabilities, reconnection, helicity, dynamo theories, the origin of cosmic magnetic fields, stochastic processes, Fermi process, particle acceleration, and cosmic rays.

BME 760. Modeling in Func Brain Imaging. 3 credits, 3 contact hours.
Prerequisites: Although no prerequisites are required, BME 310, ECE 640 or other undergraduate and graduate courses covering knowledge on signals and systems in discrete time domain are suggested to prepare for this course. This course will focus on introducing biomedical computing techniques needed for functional MRI data pre-processing, and individual-level and group-level analyses. Several projects will be assigned for hands-on training in implementing the introduced knowledge.

BME 772. Adv Biomats for Lab and Clinic. 3 credits, 3 contact hours.
Prerequisite: BME 672 or equivalent. Background in Materials Science is encouraged. Advanced course on the design, characterization and clinical research performance of biomaterials that have or may receive acceptance in medicine or as a biomedical research tool. The course requires the student to integrate background in chemistry, physics, cell and molecular biology, tissue engineering and materials science to review and summarize the scientific rationale for materials that have gained acceptance as medical devices, cell culture or diagnostic tools.

BME 774. Principles of Neurorehabilitation. 3 credits, 3 contact hours.
This is a research-focused course providing in-depth review of current studies in the following fields: Pathophysiology of disability; Advanced therapeutic interventions; Emerging neurorehabilitation technologies that are intended to encourage neural reorganization and relearning; Novel interfaces through chronic implementation in the brain, spinal cord and muscles used in deep brain stimulation, brain-machine interfaces, and functional electrical stimulation and Methods of assessing outcomes.

BME 788. Selected Topics. 3 credits, 3 contact hours.
Selected topics for Biomedical Engineering.

BME 790. Doctoral Dissertation. 0 credits, 0 contact hours.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

BME 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

BME 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

BME 790C. Doctoral Dissertation. 6 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

BME 790D. Doctoral Dissertation. 9 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

BME 790E. Doctoral Dissertation. 12 credits, 12 contact hours.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.
BME 790F. Doct Dissertation & Research. 15 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

BME 791. Graduate Seminar. 0 credits, 0 contact hours.

BME 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Restriction: Permission of the department. For students admitted to the program leading to the Ph.D. in Computer Engineering or Electrical Engineering. Research carried on under the supervision of a designated member of the department faculty. If the student's research activity culminates in doctoral research in the same area, up to a maximum of 6 credits may be applied toward the 36 credits required under BME 790 after the student fulfills requirements of doctoral candidacy.

Biomedical Device Development

The objective of the graduate certificate in Biomedical Device Development is to address the clinical evaluation, regulatory, and commercial aspects of medical device development. It has been widely recognized by our industrial advisors, recent graduates, and industry adjuncts that having knowledge in this area is paramount to building a successful career as a biomedical engineer. The department of biomedical engineering currently offers several online-hybrid courses that address this need as part of our MS program in Biomedical Engineering. Enrollment in these courses and feedback by students has been overwhelmingly positive.

Who would be suited to take this program?
Working professionals in the biomedical engineering and related industries in the New Jersey area. Areas include manufacturing, universities, hospitals, research facilities of companies and educational and medical institutions, and government regulatory agencies.

What will I learn?

- **Systems Management for Medical Devices** - A detailed overview of Project Management techniques and methods applied to medical devices and the integration of medical device Design Controls from 21 CFR820.30. General knowledge from the field of Project Management will be conveyed from the perspective of engineering or science personnel in the industrial medical field, particularly with regard to FDA Quality System Regulations (QSR), ISO 13485 guidelines, and Good Clinical Practices (GCP's) for running clinical trials. Students will also take part in practical problem solving simulations based on real-world examples of medical device project anomalies. The combination of specialized project management knowledge for a heavily regulated area and realistic classroom simulation will provide a basis for those interested in commercial medical device development.

- **Medical Device Development** - A detailed overview of medical device development from a realistic industrial and academic perspective. The processes used in corporations and academic laboratories to conceive and develop devices will be explored from a research, regulatory, clinical, QA/QC, marketing, engineering, and legal perspective under the umbrella of project management techniques. Material will be presented as an aide to students who wish to decide on careers in either industry or academia.

- **Advanced Medical Device Development** - Exploring the primary events that occur from just before “design freeze” of a medical device up through clinical evaluation and commercial launch. Significant emphasis is placed on Quality Systems and Manufacturing, with attention to regulatory and legal compliance as well as design concepts.

- **Orthopedic Medical Devices** - A detailed discussion of biomaterials, biomechanics and medical devices in the Orthopedic therapeutic area. Medical devices discussed include soft and hard tissue fixation and repair devices, tissue engineered constructs and orthobiologics. Current industry and market trends in these areas will be explored and discussed. The regulatory landscape of medical device design and approval will be covered.

Why study Biomedical Device Development at NJIT?
The biomedical device industry is currently on the precipice of becoming more independently operated and developed by smaller entities going forward. There are expectations of industry mergers and acquisitions (http://www.meddeviceonline.com/doc/healthcare-trends-that-will-transform-medtech-in-0001/) headed into the near future as the industry fully develops. The current job titles most interested in this field would be:

- Quality Process Engineer
- Systems Engineer
- Production Engineer
- Staff engineer, Manufacturing
- Product Manager
- Project Engineer
- R&D Project Engineer
- Verification Engineer
• Medical Device Engineer
• Medical Device Reporting Supervisor
• Medical Device Sales
• Medical Device Validation Engineer
• Compliance Engineer
• Hardware-Electronics Engineer, Medical Devices

In addition, holders of this graduate certificate may find employment in the following industries: Health Care, Health Sciences, Bio-Medical Engineering, medical device industry, pharmaceutical industry, and other life science related industries.

Prerequisites

An undergraduate degree in engineering, with an undergraduate cumulative grade point average (GPA) of at least 3.0 on a 4.0 scale is required. Applicants with a science degree and relevant industrial experience may be considered for conditional admission. Applicants with a GPA below 3.0 but at least 2.8, may also be conditionally admitted to the program. Conditions may involve completion of a bridge program designed on a case-by-case basis.

Related Degree Programs

The certificate program in Biomedical Device Development can convert to an MS in Biomedical Engineering (http://catalog.njit.edu/graduate/newark-college-engineering/biomedical/ms/). Students who have completed an undergraduate degree in biomedical engineering may apply all certificate courses with a minimum final grade of B to the MS in BME. All other students may apply up to 2 certificate courses to the MS in BME.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 682</td>
<td>System Mgmt for Medical Device</td>
<td>3</td>
</tr>
<tr>
<td>BME 684</td>
<td>Medical Device Development</td>
<td>3</td>
</tr>
<tr>
<td>BME 698</td>
<td>Selected Topics</td>
<td>3</td>
</tr>
<tr>
<td>BME 698</td>
<td>Selected Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

M.S. in Biomedical Engineering

Program Requirements

Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four courses selected from list of BME mandatory courses (see below for complete list)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>One graduate course in physiology or equivalent</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One graduate course in experimental design, statistics, or clinical studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 701 Master's Thesis</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Any approved elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 791 Graduate Seminar (required for two semesters)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Non-Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four courses selected from list of BME mandatory courses (see below for complete list)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>One graduate course in physiology or equivalent</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One graduate course in experimental design, statistics, or clinical studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Three approved electives</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BME 791 Graduate Seminar (required for two semesters)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
MS Curriculum Mandatory Courses

1. Admitted students who have not previously taken an upper level physiology course will be required to take BME 669 Engineering Physiology or an equivalent course as one of their required graduate courses.

2. In addition, students must meet a statistics requirement. They may choose one course from the following preapproved statistics courses: MATH 660 Introduction to statistical Computing with SAS and R, MATH 661 Applied Statistics, MATH 663 Introduction to Biostatistics, IE 604 Advanced Engineering Statistics.

All graduate students must additionally select five courses from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 651</td>
<td>Principles of Tissue Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 652</td>
<td>Cellular and Molecular Tissue Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 653</td>
<td>Micro/Nanotechnologies for Interfacing Live Cells</td>
<td>3</td>
</tr>
<tr>
<td>BME 654</td>
<td>Cardiovascular Mechanic</td>
<td>3</td>
</tr>
<tr>
<td>BME 661</td>
<td>Neural Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 668</td>
<td>Medical Imaging Systems</td>
<td>3</td>
</tr>
<tr>
<td>BME 670</td>
<td>Introduction to Biomechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 671</td>
<td>Biomechanics of Human Structure and Motion</td>
<td>3</td>
</tr>
<tr>
<td>BME 672</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 673</td>
<td>Biorobotics</td>
<td>3</td>
</tr>
<tr>
<td>BME 674</td>
<td>Principles of Neuromuscular Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 675</td>
<td>Computer Methods in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 676</td>
<td>Computational Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 678</td>
<td>Design of Orthopedic Implants</td>
<td>3</td>
</tr>
<tr>
<td>BME 679</td>
<td>Advanced Design of Orthopedic Implants</td>
<td>3</td>
</tr>
<tr>
<td>BME 680</td>
<td>BioMEMS Design and Applications</td>
<td>3</td>
</tr>
<tr>
<td>BME 687</td>
<td>Design of Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 688</td>
<td>Virtual Biomedical Instrument</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

The remaining three courses can be selected from any of the BME courses offered. For students taking the MS Thesis Option, two semesters of thesis count as two elective courses.

Other Notes

Students may take up to two courses outside the department, including the statistics course.

Seminars

M.S. students are required to register for the 0 credit graduate seminar in each of a minimum of two semesters. This is a non-additive credit (i.e., it does not count toward the 30 required credits), however participation in the seminar is required for graduation. Graduate seminars are offered weekly during the semesters and include guest speakers as well as NJIT graduate students. The Department also maintains lists of seminars in other departments and in neighboring institutions that are of interest to biomedical engineering. Part-time graduate students may request a waiver of this requirement.

Thesis Requirement

The Thesis Option requires a six (6) credit thesis. Because biomedical engineering exists at the intersection of several traditional engineering and computing fields, and the biological and medical sciences, the thesis demonstrates the student’s ability to define a problem, plan two semesters of independent work in an interdisciplinary environment, and execute a research and/or design that meets NJIT’s standards for a Masters Thesis. The thesis document conforms to the format of the Office of Graduate Studies and is evaluated by a committee of three members, two of whom must be from the NJIT biomedical faculty. External members from industry, medicine or other universities are encouraged. An oral defense before the committee and the departmental community is also required. All NJIT theses are archived in the University Library and are available via the Library’s web site.

Thesis topics are selected by the student in consultation with faculty and other potential advisors. Thesis content can include a research study, the development/design of new technology including software, or the design, execution and evaluation of an experiment. A thesis may be conducted in an NJIT laboratory or in another institutional or industrial facility. The individual nature of the work must be clearly identifiable, as should its novelty and importance to biomedical engineering.
In cases where the intellectual property of an industrial sponsor may be in conflict with the public presentation of the thesis or its availability through the NJIT Library, special arrangements can be made by the M.S. Program Director to protect the firm's property.

Ph.D. in Biomedical Engineering

Students may enter this joint Ph.D. degree program ("Joint Degree Program") from varied backgrounds. The Joint Degree Program acknowledges this characteristic of the target student audience, and adopts the following requirements in course credits depending on each student's background at entry:

1. Students entering the Joint Degree Program after they have earned an M.S. degree in Biomedical Engineering are required to complete at least 24 semester credits in graduate-level courses.
2. Students who have earned an M.D., D.M.D., D.V.M., or other medical/clinical doctorate, and students entering with an M.S. degree not in Biomedical Engineering may be required to complete up to an additional 12 graduate level course credits (for a total of up to 36 course credits), based on individual considerations as determined by the Steering Committee Co-Directors and in consultation with the student's thesis advisor.
3. Students may also be admitted directly to the Joint Degree Program after earning a B.S. degree. In this case, they will be required to complete additional 12 graduate-level course credits compared to students entering the program with an M.S. degree (for a total of up to 36 course-credits).
4. In all cases, the total of all graduate-level coursework must be completed with a cumulative GPA of 3.0 or higher.
5. There is no stipulated minimum requirement for dissertation research credits. The student, however, will follow the requirements for registration for dissertation research credits as it pertains to his/her primary institution.

Every student must attempt and pass a qualifying examination. The format and requirements for this exam will be updated from time to time by the Joint Degree Program’s Steering Committee subject to approvals by the partnering institutions through their normal processes. Currently, the qualifying exam consists of 2 parts: (1) a written research proposal in the NIH proposal format, and (2) an oral defense of the written proposal and accessory topics.

1. Students who have earned a M.S. degree can take the qualifying examination at the end of their first year in the Joint Degree Program. They must take the exam by the end of their second year in the Joint Degree Program. There is no minimum for the number of credits that a student must complete prior to taking the exam.
2. Students who have earned a baccalaureate degree (but not a graduate degree) will take the qualifying examination at the end of their second year in the Joint Degree Program.
3. Students may take the qualifying examination prior to taking IBMS (if deferred) with permission from the Joint Degree Program’s Steering Committee Co-Directors.

Directed research. The research will be supervised jointly by Rutgers SGS-BHS and NJIT graduate faculty, in accordance with the requirements established for the joint Ph.D. degree. The research must culminate in the successful preparation of a written dissertation of publishable quality, which must be defended orally at a public meeting. The Dissertation Examination Committee will be formed according to the policies of the student's primary institution, but must include at least one faculty member from Rutgers SGS-BHS, one faculty member from NJIT, and one of whom is external to the Ph.D. program. The requirements for presentations and forums (e.g., presentation of dissertation proposal, dissertation defense) will be administered according to the regulations of the student's primary institution. The protection of the dissertation content and the publication, utilization and protection of the involved research activities will be subject to the regulations of the primary institution. If required, specific agreements will be arranged for the allocation and protection of intellectual property.

A student's program of graduate coursework must fulfill published requirements that will be updated from time to time by the Joint Degree Program's Steering Committee, subject to approvals by the partnering institutions through their normal processes. According to the current agreement:

1. Students entering the program with an M.S. degree in Biomedical Engineering are required to take a minimum of 24 semester credits of graduate level courses.
 - At least 9 credits of biomedical engineering coursework shall be selected in the field of specialization chosen by the student.
 - At least 9 credits of biomedical sciences to include:
 - Foundation coursework appropriate to the field of specialization
 a) Introduction to Biomedical Science (IBMS, GSND5200Q) for 5 credits. This is the default required course.
 b) If appropriate, the student’s advisor may petition the steering committee to replace this course with one of the following:
 i) Fundamentals of Neuroscience (NEUR5200Q) and Foundations of Integrative Human Physiology (CBNP 5165Q) for 5 credits
 ii) Fundamentals of Neuroscience (NEUR5200Q) and Fundamentals of Human Physiology (PHYP5005Q) for 6 credits
 - Professional Skills II, Grantsmanship Skills (GSND5006Q) for 2 credits
 - Research Design and Statistics (GSND5135Q) for 2 credits
 - The remaining 6 credits can be any relevant science or engineering course depending on area of research focus.
2. All students must have had one (1) course on responsible conduct of research. The course can be GSND5001Q or an equivalent. This course can count towards the “remaining 6 credits” in section 1.
3. Each student must undergo at least 2 laboratory rotation experiences, at least one at each one of the partnering institutions.
4. Registration and satisfactory attendance at seminars as required by the primary institution.
5. In specific cases, students with an engineering background may need preliminary study prior to taking the IBMS course. The IBMS course may be deferred to the second year of the program with approval of the Steering Committee Co-Directors.
6. Among the graduate courses, at least 12 semester credits must be at the advanced graduate level (as determined by the Steering Committee Co-Directors, after consultation with the graduate faculty at both partnering institutions).
The program is designed to provide opportunities for specialization in such areas as pharmaceutical processing and manufacturing, validation and regulatory affairs, biopharmaceutical technology, and the management of pharmaceutical operations.

Pharmaceutical Engineering Program Objective

The Master of Science Program in Pharmaceutical Engineering is a program developed and administered by the Otto H. York Department of Chemical and Materials Engineering at NJIT. The primary objective of the program is to educate professionals and provide them with the skills required to work in the pharmaceutical field, with particular emphasis on the engineering aspects of drug manufacturing, pharmaceutical production, pharmaceutical development, and pharmaceutical operations.

The pharmaceutical/medical technology industry is the largest manufacturing industry in New Jersey. New Jersey is home to the headquarters of more global pharmaceutical and medical technology companies than any other state in the country, or any single country throughout the world. NJIT’s M.S. program in Pharmaceutical Engineering provides the necessary skills and the necessary tools needed to prepare students for positions and career advancement within the industry, based on the rigorous technological requirements of this highly regulated work environment.

The program is designed to provide opportunities for specialization in such areas as pharmaceutical processing and manufacturing, validation and regulatory issues in the pharmaceutical industry, pharmaceutical facility design, pharmaceutical packaging technology, reaction engineering for pharmaceutical production, pharmaceutical separation processes, pharmacokinetics and drug delivery, molecular modeling for drug discovery, pharmaceutical synthesis, fluid mixing in the pharmaceutical industry, instrumental analysis, and industrial quality control.
Master of Science in Pharmaceutical Engineering

Admission Requirements

An undergraduate degree in chemical engineering or, in most cases, mechanical engineering, with a cumulative grade point average (GPA) of at least 3.0 on a 4.0 scale is required. Applicants with:

1. a science degree,
2. an engineering degree in a discipline other than chemical or mechanical engineering, or
3. a GPA below 3.0 but at least 2.8, may be conditionally admitted to the program.

Conditions may involve completion of a bridge program designed on a case-by-case basis, and typically requiring taking extra bridge courses, as further explained below. Depending on the background of the student, admission conditions may additionally require taking undergraduate courses (e.g., chemistry) or graduate courses. Bridge and undergraduate courses do not count toward degree credit; graduate-level courses do.

Submission of Graduate Record Examination (GRE) scores is encouraged in all cases, and required of those seeking financial support and those whose last prior degree is from an institution outside the United States. International students must also submit scores from the Test of English as a Foreign Language (TOEFL). According to university policy, international students must achieve a minimum TOEFL score of 550 (pencil and paper); 213 (computer-based); 79 (internet-based).

The admission requirements described above can be partially relaxed for applicants with significant industrial experience in the pharmaceutical industry (5+ years). The admission requirements for such candidates will be established on a case-by-case basis, and will be determined through an interview with the prospective student and the submission of letters of support attesting the level of experience attained.

Master of Science in Materials Science and Engineering

This program is offered by the Department of Chemical and Materials Engineering (Materials Engineering Option), and is intended for those interested in advancing their understanding of Materials Science and Engineering. It may be taken on a part-time or full-time basis. There are two options: one without and one with a master's thesis.

Admission Requirements:

An undergraduate degree in engineering (e.g. biomedical, chemical, civil, mechanical), or in physics or chemistry is usually required. Students who do not have one of these degrees may be considered for admission by taking a number of bridge courses that are not counted toward degree credit.

A minimum undergraduate GPA of 3.0 on a 4.0 scale, or equivalent, is typically required for admission. All full-time applicants pursuing a degree in the Otto H. York Department of Chemical and Materials Engineering also require a GRE. International students must achieve a minimum TOEFL score of 550 (pencil and paper) and 213 (computer-based).

NJIT Faculty

A

Armenante, Piero M., Distinguished Professor
Axe, Lisa, Professor

B

Baltzis, Basil C., Professor
Barat, Robert B., Professor Emeritus
Basuray, Sagnik, Associate Professor
Bilgili, Ecevit A., Professor

C

Cimino, Richard, Senior University Lecturer
Chintersingh, Kerri-lee, Assistant Professor

D

Dave, Rajesh N., Distinguished Professor
Dreyzin, Edward L., Distinguished Professor
G
Gor, Gennady, Assistant Professor
Gogos, Costas G., Distinguished Research Professor
Guvendiren, Murat, Assistant Professor
K
Khusid, Boris, Professor
L
Loney, Norman, Professor Emeritus
M
McEnnis, Kathleen, Assistant Professor
Molodetsky, Irina, Senior University Lecturer
P
Pfeffer, Robert, Distinguished Professor Emeritus
R
Reid, Nellone, Senior University Lecturer
S
Schoenitz, Mirko, Associate Research Professor
Sebastian, Donald H., Professor
Simon, Laurent, Professor
Sirkar, Kamalesh K., Distinguished Professor
T
Tomkins, Reginald P.T., Professor Emeritus
V
Venerus, David, Professor
Voronov, Roman S., Associate Professor
W
Wang, Xianqin, Professor
X
Xu, Xiaoyang, Associate Professor
Y
Young, Joshua, Assistant Professor
Z
Zhao, Mark, Assistant Professor

Programs

- Chemical Engineering - M.S. (p. 464)
- Materials Science and Engineering - M.S. (p. 465)
- Pharmaceutical Engineering - M.S. (p. 467)
Programs

- Chemical Engineering - Ph.D. (p. 467)
- Materials Science & Engineering - Ph.D. (p. 470)

Programs

- Data Science for Chemical and Materials Engineers (p. 464)
- Pharmaceutical Management (p. 471)
- Pharmaceutical Manufacturing (p. 472)
- Pharmaceutical Technology (p. 473)
- Polymers and Plastics (p. 474)

Chemical and Materials Engineering Courses

CHE 501. Fundamentals of Chemical Engineering I. 6 credits, 6 contact hours.
Prerequisites: MATH 222 or equivalent, CHEM 231 or equivalent (see undergraduate catalog descriptions). An intensive course in basic chemical engineering science intended for students in the bridge program. Topics include material and energy balances, thermodynamics, kinetics and reactor design, and staged separation processes. May not be taken for degree credit in any chemical engineering program.

CHE 502. Fundamentals of Chemical Engineering II. 4 credits, 4 contact hours.
Prerequisites: MATH 222 or equivalent (see undergraduate catalog for description), CHE 501 or equivalent. A continuation of CHE 501. An intensive course in basic chemical engineering science intended for students in the bridge program. Topics include fluid mechanics, heat transfer and diffusion-controlled processes. May not be taken for degree credit in any chemical engineering program.

CHE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from department and Division of Career Development Services. Cooperative education internship provides on-the-job reinforcement of the academic program by placement in major-related work situations. Work assignment developed or approved by the co-op office and evaluated by the department. Cannot be used for degree credit.

CHE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from department and Division of Career Development Services.

CHE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: permission from department and Division of Career Development Services.

CHE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

CHE 599. Methods for Teaching Assistants and Graduate Assistants. 3 credits, 3 contact hours.
Restriction: graduate standing. Required for all chemical engineering teaching assistants and graduate assistants. Covers techniques of teaching, interaction with students, and safety. Does not count as degree credit.

CHE 602. Selected Topics in Chemical Engineering I. 3 credits, 3 contact hours.
Restriction: graduate standing. Topics of current interest in chemical engineering.

CHE 603. Separation Process Principles. 3 credits, 3 contact hours.
Prerequisites: CHE 342, CHE 349, CHE 363, CHE 364, CHE 367, CHE 471. The course covers the basic principles of separation with or without chemical reaction in phase equilibrium-based, external field-driven and membrane-based separation processes.

CHE 604. Membrane Separation Processes. 3 credits, 3 contact hours.
Prerequisites: CHE 342, CHE 349, CHE 363, CHE 364, CHE 367, CHE 471. This course covers the science, technology, engineering analysis and design of membrane separation processes, membrane reactors, membrane-based equilibrium separation processes and hybrid membrane processes.

CHE 611. Thermodynamics. 3 credits, 3 contact hours.
Prerequisite: undergraduate courses in physical chemistry and thermodynamics, or equivalent. Principles of thermodynamics developed quantitatively to include thermodynamic functions and their application to chemical engineering processes.

CHE 612. Kinetics of Reactions and Reactor Design. 3 credits, 3 contact hours.
Prerequisites: Undergraduate course in chemical engineering kinetics or equivalent. Elements of optimum design for various reactor types, multiple reactions, and temperature effects. Yield and selectivity optimization with emphasis on small-scale pharmaceutical production. Introduction to non-ideal reactor design. Study of various models for catalytic and non-catalytic solid-fluid reactions.

CHE 619. Nano-scale Characterization of Materials. 3 credits, 3 contact hours.
The course presents the basics of nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy; near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.
CHE 623. Heat Transfer. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in heat transfer. Heat transmission applied to practical problems in design. An introduction will include review of conduction, convection and radiation heat transfer modes. Related topics covered will be heat exchangers, types and design principles (including Kern & Bell's methods), effectiveness, (NTU Design and Rating methods), Fired Heaters, Design & Rating and Cooling Towers, Design & Rating.

CHE 624. Transport Phenomena I. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in fluid mechanics, heat transfer, and mass transfer. A unified treatment of molecular and turbulent momentum, energy, and mass transport. Emphasis is on the mathematical description of physical mechanisms in momentum and energy transport.

CHE 626. Mathematical Methods in Chemical Engineering. 3 credits, 3 contact hours.
Prerequisites: MATH 222 or equivalent undergraduate degree in Chemical Engineering. This course aims to provide students with advanced knowledge–skills to formulate mathematical models, derive analytical solutions, and find numerical solutions of steady- and unsteady-state problems encountered in chemical engineering systems. First and higher order ordinary differential equations as well as their systems are presented along with applications to dynamic systems. Sturm-Liouville eigenvalue problems, eigenfunction expansion, orthogonality of functions, and Fourier and generalized Fourier series are presented with the dual purpose of solving boundary-value problems and building the foundation needed for solving partial differential equations. Separation of variables is used to solve partial differential equations in 2D-3D steady-state and 1D-3D transient problems that arise in Cartesian, cylindrical, and spherical coordinates. Laplace transform and similarity transformation are used to solve semi-infinite domain problems. Numerical methods based on finite differences, full or semi-discretization of partial differential equations, accuracy, and error estimates are covered.

CHE 627. Introduction to Biomedical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in thermodynamics and differential equations. Introduction to the structure and composition of the body followed by an exploration of the properties of blood and its flow in the cardiovascular system; the body as a heat source and as a series of compartments involved in mass transfer of materials (such as those in the kidneys and lungs). Design of artificial kidneys and heart-lung machines is also explored. Same as BME 627.

CHE 628. Biochemical Engineering. 3 credits, 3 contact hours.
Prerequisite: undergraduate degree in chemical engineering. The application of chemical engineering to biological processes, biochemical reaction systems, and their technological use. Special attention given to problems in momentum, energy, and mass transport, as well as chemical reaction kinetics in biological systems.

CHE 632. Visual Communication with Chemical & Materials Engineering Data. 3 credits, 3 contact hours.
Prerequisites: BS degree in Chemical, Mechanical, Electrical or Biomedical Engineering, or in Physics or Chemistry. This course will focus on teaching students to communicate data relevant to chemical and materials engineering and related professions. Students will learn both the theoretical and practical aspects of data communication, including visualization aesthetics and design principles, as well as how to critically analyze and interpret engineering data. Throughout the course, students will also gain a broader understanding of data visualization best practices and how data can be used to enhance engineering analysis, using digital tools. A special emphasis will be placed on making engineering data accessible to all individuals, using the principles of Universal Design. Students will incorporate each of these design principles into a capstone multimedia course project.

CHE 654. Corrosion. 3 credits, 3 contact hours.
Prerequisite: undergraduate courses in Chemistry. Fundamental principles including thermodynamics and kinetics of corrosion; forms of corrosion (e.g., galvanic, crevice and stress); methods of corrosion measurement; high temperature corrosion; and special case histories.

CHE 675. Statistical Thermodynamics. 3 credits, 3 contact hours.
Prerequisites: CHE 611 or permission of instructor. Application of equilibrium statistical mechanics to chemical engineering problems. Basic postulates and relationships of statistical thermodynamics, including the ideal gas, ideal crystal, and virial equation; statistical theories of fluid mixtures and other advanced topics.

CHE 683. Polymer Processing. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in transport phenomena, fluid flow, or heat transfer or approval of graduate advisor. The course provides a systematic approach to the physical phenomena occurring in polymer processing machinery. The synthesis of the elementary steps of polymer processing are shown in relation to the development of extrusion die flow and extrusion products and injection mold flows and molded products. Structural and residual stresses are examined.

CHE 684. Materials and Process Selection for Polymer Product Design. 3 credits, 3 contact hours.
Prerequisites or corequisites: CHE 681, CHE 682, CHE 683 or approval of graduate advisor. The course provides methodologies for designing polymer-based products by considering materials and processing methods. Methods for selecting homopolymers, polymer blends and composites for specific applications will be presented in terms of properties, processability, manufacturing methods and economics. Process/structure/property correlations are presented as well as approaches to product design including CAD, prototyping, and strength and failure criteria. Case studies from biomedical, packaging and other applications are discussed.

CHE 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemical engineering. A written report must be submitted to the project advisor. The student cannot register in CHE 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.
CHE 701B. Masters Thesis. 3 credits, 3 contact hours.
Corequisite for full-time students: CHE 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CHE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CHE 701C. Masters Thesis. 6 credits, 6 contact hours.
Co-requisite for full-time students: CHE 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in chemical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CHE 701B course) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CHE 702. Selected Topics in Chemical Engineering II. 3 credits, 3 contact hours.
Restriction: graduate standing. Topics of current interest in chemical engineering.

CHE 705. Independent Study. 3 credits, 3 contact hours.
Restriction: permission from the graduate advisor (not dissertation advisor) in chemical engineering. Students working on their PhD or MS theses cannot register for this course with their respective thesis advisors. This special course covers areas of study in which one or more students may be interested, but which isn’t of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

CHE 706. Independent Study II. 3 credits, 3 contact hours.
Pre-requisite: CHE 705. Restriction: permission from the graduate advisor (not dissertation advisor) in chemical engineering. Students working on their PhD or MS theses cannot register for this course with their respective thesis advisors. This special course covers areas of study in which one or more students may be interested, but which isn’t of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once with the same supervising faculty member.

CHE 709. Adv Separation Processes. 3 credits, 3 contact hours.
Prerequisites: CHE 360, CHE 460, CHE 612, CHE 624 and CHE 626 or permission of instructor. Students having a background in undergraduate separations courses will be introduced to advanced concepts in separations. These include: descriptions of separation; forces causing separation in equilibrium, field and membrane separation processes; flux-force relations; chemical potential profiles; role of chemical reactions in separations; four different combinations of directions of force and bulk motions in separators; time-dependent processes. Advanced analysis of important individual separation processes of three types, namely, equilibrium-based, membrane-based and external field-based processes will be carried out.

CHE 710. Adv Membrane Separation Proc. 3 credits, 3 contact hours.
Prerequisites: CHE 460, CHE 603, CHE 624, CHE 626 or permission of instructor. This course will provide advanced treatments of science, technology, engineering analysis and design of the following membrane separation processes: reverse osmosis, nanofiltration, ultrafiltration, dialysis, electrodialysis, Donnan dialysis, liquid membrane permeation, microfiltration, gas permeation through polymeric membranes, pervaporation, membrane-based equilibrium separation processes, membrane reactors and hybrid membrane processes. Membrane structure/function and device design for each technology are of interest.

CHE 714. Micromechanics of Part Tech Pr. 3 credits, 3 contact hours.
Prerequisite: CHE 624 or equivalent. Corequisite: PHEN 601 or equivalent (not required but suggested). Presents methodologies for analyzing the macroscopic properties of particulate systems. Includes characterization and processing of particulate systems at the microlevel, predicting macroscopic properties from microlevel models, and analysis of particulate manufacturing processes involving solids processing, such as solids characterization, blending, milling, granulation, tabletting, etc. Course includes laboratory demonstrations and a class project involving use of surface modification.

CHE 721. Combustion Reaction Engineering. 3 credits, 3 contact hours.
Restriction: undergraduate degree in Chemical or Mechanical Engineering. Topics related to the engineering of combustion systems will be discussed. These include laminar flames, turbulent combustion, ideal reactor modeling of complex combustion systems, combustion chemistry, heterogeneous combustion and incineration.

CHE 722. Additive Manufacturing & Appl. 3 credits, 3 contact hours.
Prerequisites: CHE 624 and CHE 626 are both prerequisites or can be taken concurrently. Other equivalent courses can be acceptable for non-chemical engineering students with permission of the instructor. This course describes additive manufacturing technologies and current (and emerging) applications of 3D printing. The course will be composed of a lecture and a hands-on laboratory session, during which students will create 3D designs and print functional prototypes.

CHE 724. Sustainable Energy. 3 credits, 3 contact hours.
The course is a project-based advanced graduate course which requires strong background in engineering thermodynamics and transport phenomena. The main goals of this course are to gain an understanding of the cost-benefit ratio of various alternative energy sources and to understand some of the various obstacles associated with current and conventional technologies and industrial applications. Different renewable and conventional energy technologies will be discussed in class. Course materials include biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, hydropower, and fuel cells. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology systems in the context of engineering, political, social, economic, and environmental goals.
CHE 725. Transport Phenomena II. 3 credits, 3 contact hours.
Prerequisite: CHE 624 or equivalent. Transport in laminar and turbulent flow: in solids, between phases, and macroscopic transport in flow systems.

CHE 734. Chem Process Dynamic & Control. 3 credits, 3 contact hours.
Prerequisite: CHE 626 or equivalent. Co-requirements: CHE 611, CHE 612 or equivalent. Mathematical principles of process dynamics and control; derivation and solution of differential equations describing the behavior of typical chemical engineering processing units; and mathematical analysis and design of control systems. Digital and sampled data control systems also discussed.

CHE 750. Environmental Catalysis. 3 credits, 3 contact hours.
Prerequisites: CHE 612 or equivalent. An introduction to catalytic processes used for environmental abatement. The course provides background information necessary to understand environmental catalytic processes. Mobile and stationary pollution abatement technologies are reviewed.

CHE 756. Industrial Catalysis. 3 credits, 3 contact hours.
Prerequisites: CHE 612 or equivalent. The class provides an introduction to catalytic phenomena as well as catalysts with the background information necessary to understand industrial catalytic processes. Examples discussed are hydrogen, ammonia and methanol synthesis, inorganic and organic oxidation reactions, petrochemical processes, pollution abatement and other important processes. The course provides insight into the theory of catalytic phenomena and information about related technologies from an industrial perspective.

CHE 775. Molecular Simulations in CHE. 3 credits, 3 contact hours.
Prerequisites: CHE 611 and CHE 626. Minimal programming experience in any programming language (e.g. Matlab, Python or Fortran). The course is aimed to introduce graduate students to the basics of molecular simulation. Two simulation techniques will be discussed in detail: Monte Carlo and molecular dynamics methods. The students will study the algorithms, and the statistical mechanics basis of these algorithms. Then they will use popular open source codes to simulate systems relevant for chemical engineers.

CHE 781. Polymerization-Principles and Practice. 3 credits, 3 contact hours.
Pre or Corequisite: CHE 611. The course focuses on the structural and synthetic aspects of polymers and examines in detail a number of bench and industrial scale polymerization methods. In addition to kinetics and mechanisms of commercially important polymerization systems, the course examines reactive modification of synthetic and natural polymers and provides an introduction to applicable characterization methods.

CHE 782. Polymer Structures and Properties. 3 credits, 3 contact hours.
Pre or Corequisite: CHE 611. The course provides an overview of polymer structures and properties and their relationships from the molecular viewpoint to phenomenological descriptions. Topics include thermodynamics of a single molecule, dynamic theory and viscoelasticity of polymers, polymer solids and mechanical properties, rubbers, polymer blends and composites, biological polymers, and special applications. New areas and innovative applications of polymers will be introduced.

CHE 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Co-Requisite: CHE 791. For students admitted before Fall 2015. Required of all students for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Approval of dissertation advisor is necessary for registration. Students must register for at least 6 credits of dissertation per semester until 36 credits are reached and then for 3 credits each semester thereafter until a written dissertation is approved.

CHE 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: CHE 791. For students admitted to the Doctor of Philosophy Program in Chemical Engineering who have passed the Qualifying Examination and Research Proposal. Required of all students for the degree of Doctor of Philosophy. Approval of dissertation advisor is necessary for registration. Experimental or theoretical investigation of a topic in chemical engineering. Students must register for 1 credit of dissertation per semester until a written dissertation is approved.

CHE 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: CHE 791. For students admitted to the Doctor of Philosophy Program in Chemical Engineering who have passed the Qualifying Examination but have not defended Research Proposal. Required of all students for the degree of Doctor of Philosophy. Approval of dissertation advisor is necessary for registration. Experimental or theoretical investigation of a topic in chemical engineering. Students must register for 3 credits of dissertation per semester after passing Qualifying Examination until they successfully defend their Research Proposal.

CHE 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.

CHE 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

CHE 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

CHE 790F. Dissertation & Res. 15 credits, 3 contact hours.

CHE 790G. Doct Dissertatpm & Resrch. 18 credits, 0 contact hours.

CHE 791. Graduate Seminar. 0 credits, 1 contact hour.
Required of all chemical engineering students receiving departmental or research-based awards and all doctoral students. The student must register each semester until completion of the degree. Outside speakers and department members present their research for general discussion.

CHE 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite for full time students: CHE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in chemical engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well, for students who have completed the required coursework but have not passed the qualifying examination.
CHE 792C. Pre-Doctoral Research. 6 credits, 0 contact hours.

CHE 794. Professional Presentations for Ph.D. Students. 0 credits, 0 contact hours.
Intended to help students make better technical presentations. Each student is required to make a presentation on a research topic; guest lectures will occur during the semester.

CHE 795. Research Methods for Doctoral. 3 credits, 3 contact hours.
Prerequisites: Doctoral standing in CBPE or permission of the instructor. This course is designed to enhance professional development of our doctoral students in order to significantly increase their research productivity, communications, and leadership skills while preparing them for a successful career. Concepts include setting priorities, time management, and learning best practices in research planning, execution, communication, writing and presentation. Advanced topics include understanding innovation, intellectual property and writing better proposals.

MTEN 610. Found of Materials Sci & Engr. 3 credits, 3 contact hours.
Prerequisite: Graduate standing. Core course for students in Material Science and Engineering. The effect of structure on the properties and behavior of engineering materials. Topics include atomic structure, bonding, crystallography, and defects in solids; properties of metals, semiconductors, ceramics, and polymers and their behavioral response to mechanical, chemical, optical, electrical, and magnetic stimuli.

MTEN 611. Diffusn & Solid State Kineti. 3 credits, 3 contact hours.
Prerequisite: MTSE 602. The atomic theory of diffusion and mathematical derivation of the diffusion equations. Diffusion phenomena in dilute alloys as well as in ionic and covalent solids are considered. High atom mobility effects at defect sites and surfaces are examined. Chemical kinetics and kinetics of phase transformations including nucleation, growth, and spinodal decomposition are discussed.

MTEN 612. Thermodynamics of Materials. 3 credits, 3 contact hours.
Prerequisite: Undergraduate thermodynamics. Core course for students in Material Science and Engineering. Review of first, second, and third laws of thermodynamics and their applications to materials. Stability criteria, simultaneous chemical reactions, binary and multicomponent solutions, phase diagrams, surfaces, adsorption phenomena, thermochemistry of homogeneous and heterogeneous reactions are covered.

MTEN 613. Characterization of Materials. 3 credits, 3 contact hours.
Prerequisites: Undergraduate classes covering physics, chemistry, thermodynamics, and heat and mass transfer, or permission of the instructor. The course is designed to introduce graduate students in chemical and materials engineering, and other engineering and science disciplines, to fundamentals and theory of different types of materials characterization tools. Methods and techniques necessary to understand and quantify diverse materials properties will be discussed. As important for many methods, basic principles of interaction of radiation and particle beams with matter will be studied. Topics include, but are not limited to: Diffraction methods; imaging via optical, scanning, transmission electron, scanning tunneling, and field ion microscopy; microanalysis and spectroscopy, including energy dispersive, wavelength dispersive, Auger methods; secondary ion mass spectroscopy, X-ray photoelectron spectroscopy; materials preparation for analysis, including electron, ion growth, sputtering; thermal analysis: DTA, DSC; and depending on the availability and functionality of equipment, lab visits and demonstrations will be scheduled to the class to discuss some case studies.

MTEN 631. Data Science for Chemical and Materials Engineers. 3 credits, 3 contact hours.
Prerequisites: BS degree in Chemical, Mechanical, Electrical or Biomedical Engineering, or in Physics or Chemistry. This is a course for graduate level students in chemical engineering, materials engineering, pharmaceutical engineering, or a related discipline. The focus is on the use of data science techniques to solve problems in chemical engineering. We will first discuss the Python programming language and how it can be used to manipulate, clean, explore, and visualize scientific datasets using the pandas package. We will cover statistics and probability as it applies to engineering problems; this includes conditional probability, probability distributions, hypothesis testing, and Bayesian inference. Basic supervised machine learning models will be introduced, including linear and logistic regression, decision trees and random forest, and support vector machines. Students will then learn different analytical techniques and how to combine all of these skills to solve engineering problems involving large amounts of data and make predictions. Finally, we will cover how to access data and create your own datasets; topics include databases (including relational databases such as SQL) and big data mining and web scraping. Applications of these methods will be demonstrated in chemical engineering (e.g., optimization and controls, sensor analysis), materials engineering (e.g., structural databases and property selection), and pharmaceutical engineering (e.g., drug selection). Students will gain hands-on experience in implementing and utilizing these various methods through computational laboratory assignments and reports and a semester-long engineering design project.

MTEN 633. Machine Learning for Chemical and Materials Engineers. 3 credits, 3 contact hours.
Prerequisites: Undergraduate degree in either Chemical, Mechanical, Electrical or Biomedical Engineering, or in Physics or Chemistry. This course builds upon foundational knowledge in mathematical and statistical tools or data science and data visualization to learn and apply machine learning approaches for solving problems in Engineering with emphasis on applications in Chemical and Materials. As an engineering course, the emphasis is on case studies involving problem solving to augment mechanistic methods. It will include artificial intelligence (AI) topics such as machine learning and deep learning via methods such as classification, clustering, and neural networks (NNs), along with robust estimation including validation and error quantification. Class projects will concern case studies from a broad range of disciplines and applications to chemical and materials engineering problems.

MTEN 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials engineering. A written report must be submitted to the project advisor. The student cannot register in MTEN 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.
MTEN 701B. Masters Thesis. 3 credits, 3 contact hours.
Corequisite for full-time students: MTEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in MTEN 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

MTEN 701C. Master’s Thesis. 6 credits, 6 contact hours.
Co-requisite for full-time students: MTEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in materials engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (MTEN 701B course) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

MTEN 711. Nanocomposite Materials. 3 credits, 3 contact hours.
Prerequisites: Core courses in MTSE, MTEN 611 and MTEN 613 or equivalent courses, or permission of the instructor. This course covers advanced aspects of nanocomposite materials formation, properties, characterization, and applications. Emerging materials and their synthesis techniques are discussed along with key issues in processing, as well as identification and characterization of properties as relevant to application areas. Examples include, Polymer-based and Polymer-filled Nanocomposites, Bio-Nanocomposites, Metal and Ceramic Nanocomposites, Nanocomposites for Energy and Electronics materials, etc.

MTEN 712. Nanomaterials. 3 credits, 3 contact hours.
New feature of the 700 level course will be hands-on small projects carried out by groups of two students in Professor Iqbal’s laboratories during the second half of the semester. The projects will be selected from the topics covered in the course. A second feature will involve a lecture on a specialized nanomaterial topic given by an invited outside lecturer. This 3 credit interdisciplinary course is designed to teach and provide hands-on project experience to M.S. and Ph.D. graduate students in chemistry, physics/materials science, and chemical/biomedical/electrical engineering on the fundamentals, synthesis, characterization and applications of nanomaterials. 75% of the course will comprise of lectures-one or two of which will be given by invited outside lecturers. 25% of the course will involve small projects based on the syllabus and conducted in the research laboratories of the instructor.

MTEN 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

MTEN 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for MTEN 726 if they have taken MTEN 725 in a prior semester. Students cannot register for this course with the same advisor as they had in MTEN 725.

MTEN 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite for full-time students: MTEN 791. Approval of the dissertation advisor is required for registration. Experimental and theoretical investigation of a relevant topic in materials engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in MTEN 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

MTEN 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite for full-time students: MTEN 791. Since the MTEN 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and theoretical investigation of a relevant topic in materials engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

MTEN 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite for full-time students: MTEN 791. Since the MTEN 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and theoretical investigation of a relevant topic in materials engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).
MTEN 792. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: CHE 791. For students admitted to the Doctor of Philosophy Program in Materials Science and Engineering with option in Engineering who have not yet passed Qualifying Examination and Research Proposal. Experimental or theoretical investigation of a topic in chemical engineering. Research is carried out under the supervision of designated chemical engineering faculty.

MTEN 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite for full time students: MTEN 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in materials engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well, for students who have completed the required coursework but have not passed the qualifying examination.

PHEN 500. Pharmaceutical Engineering Fundamentals I. 3 credits, 3 contact hours.
Prerequisite: undergraduate calculus. This is a required bridge course for those students who are admitted to the Pharmaceutical Engineering MS program without an undergraduate engineering degree. This course is not counted toward degree credit related to the Pharmaceutical Engineering MS program. The course covers the fundamentals of calculus, differential equations, probability and statistics, and finance business mathematics applied to pharmaceutical engineering problems and illustrated through pharmaceutical engineering examples.

PHEN 501. Pharmaceutical Engineering Fundamentals II. 3 credits, 3 contact hours.
Prerequisite: If needed, PHEN 500 (which can also be taken concurrently with this course), as well as an undergraduate course in physical chemistry. This course is a required bridge course for those students who are admitted to the Pharmaceutical Engineering MS program without an undergraduate engineering degree or with an engineering background that did not include the topics covered in this course. The course is not counted toward degree credit related to the Pharmaceutical Engineering MS program. The course covers the fundamentals of pharmaceutical engineering calculations related to material and energy balances applied to pharmaceutical facilities and systems; estimation of thermophysical properties, phase and reaction equilibrium; and chemical kinetics and basic reactor design.

PHEN 502. Pharmaceutical Engineering Fundamentals III. 3 credits, 3 contact hours.
Prerequisite: If needed, PHEN 500 and PHEN 501, as well as undergraduate course in physical chemistry. This is a required bridge course for those students who are admitted to the Pharmaceutical Engineering MS program without an undergraduate engineering degree or with an engineering background that did not include the topics covered in this course. The course is not counted toward degree credit related to the Pharmaceutical Engineering MS program. The course covers the fundamentals of fluid mechanics, heat transfer, mass transfer and the design of unit operations involving these principles.

PHEN 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisite: permission from Pharmaceutical Engineering Program Advisor and Division of Career Development Services. Cooperative education internship provides on-the-job reinforcement of the academic program by placement in major-related work situations at pharmaceutical companies or companies serving the pharmaceutical industry. Work assignment developed or approved by the co-op office and evaluated by the department. Cannot be used for degree credit.

PHEN 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisite: permission from Pharmaceutical Engineering Program Advisor and Division of Career Development Services. Same range of activities as in PHEN 590.

PHEN 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisite: permission from Pharmaceutical Engineering Program Advisor and Division of Career Development Services. Same range of activities as in PHEN 590 and PHEN 591.

PHEN 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisites: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

PHEN 601. Principles of Pharmaceutical Engineering. 3 credits, 3 contact hours.
This course provides an overview of the pharmaceutical industry, including basic information about drug discovery and development, FDA requirements and approval processes, drug dosage forms, and the role of key operational units in drug manufacturing processes. This course enables the students to: understand the role of the pharmaceutical industry in the global market and its implications; learn the fundamentals of the drug development cycle and the investment required to bring a drug to market; learn the most important drug manufacturing processes and the key elements of dosage formulation.

PHEN 602. Pharmaceutical Facility Design. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603; undergraduate courses in differential equations and fluid flow or completion of bridge program for students who are required to take it. This course provides instruction in design of state-of-the art pharmaceutical facilities for both manufacturing and R&D, by identifying key functional requirements and design concepts necessary to pharmaceutical processes. Interdisciplinary training will be provided in appropriate areas of facility design.

PHEN 603. Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems. 3 credits, 3 contact hours.
This course examines methodologies, both applied and fundamental, to analyze and scale up manufacturing pharmaceutical processes involving liquid and dispersed-phase systems, such as liquid and multiphase mixing, sterilization and sanitation, lyophilization, filtration, centrifugation and others. The emphasis is primarily on the engineering aspects of the pharmaceutical processes examined in the course.
PHEN 604. Validation and Regulatory Issues in the Pharmaceutical Industry. 3 credits, 3 contact hours.
This course is focused on the development of a working knowledge of the Federal Code of Regulations and its impact on the pharmaceutical and allied industries. The history of the Federal Government's regulation of the pharmaceutical industry is studied. Also covered is the industry's response and the methodologies it uses to comply with these regulations.

PHEN 605. Pharmaceutical Packaging Technology. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603, and completion of the bridge program for students who are required to take it. This course focuses on developing a working knowledge of the machinery and unit operations used in transferring a drug substance in the bulk final form to a finished product ready for sale to the consuming public. Packaging of both liquid and solid forms in various types of delivery containers such as vials/ampoules, blister packs, individual packets, bottles, pouches and syringes is examined. The cleaning, sterilization and scaling/capping required for each dosage form is discussed, as well as freeze-drying, tableting capsule filling, and form/fill/seal, and proper labeling of final drug forms.

PHEN 606. Pharmaceutical Unit Operations: Solids Processing. 3 credits, 3 contact hours.
This course examines methodologies, both applied and fundamental, to analyze and scale up manufacturing pharmaceutical processes involving solids processing, such as solids characterization, blending, milling, granulation, tableting, coating, and others. The emphasis is primarily on the engineering aspects of the pharmaceutical processes examined in the course.

PHEN 612. Pharmaceutical Reaction Engineering. 3 credits, 3 contact hours.
Prerequisite: PHEN 601, PHEN 603; undergraduate courses in differential equations and chemical engineering kinetics, or completion of bridge program for students who are required to take it. This course examines a variety of reactions and reactors typically encountered in the pharmaceutical industry, including single/multiphase systems (e.g., crystallization), chemical synthesis, enzymatic, bio-reactions (fermentation), and others. The course then focuses on quantitative pharmaceutical reactor design and scale-up issues.

PHEN 614. Pharmaceutical Separation Processes. 3 credits, 3 contact hours.
This course covers separation processes in general and pharmaceutical separations in particular. Specific processes to be studied include distillation, extraction, crystallization, adsorption, ion exchange, chromatography, moving bed processes, electrophoresis, freeze drying, microfiltration/ultrafiltration, reverse osmosis, and pervaporation.

PHEN 618. Principles of Pharmacokinetics and Drug Delivery. 3 credits, 3 contact hours.
The course covers the basic principles of pharmacokinetics, including drug transport, parenteral and enteral routes of drug administration, and factors affecting drug absorption, distribution, metabolism, and excretion. Mathematical pharmacokinetic models and drug delivery processes are also presented and quantitatively studied.

PHEN 698. Special Topics in Pharmaceutical Engineering I. 3 credits, 3 contact hours.
Prerequisite: graduate standing and permission of the instructor. Topics of current interest in pharmaceutical engineering.

PHEN 699. Special Topics in Pharmaceutical Engineering II. 3 credits, 3 contact hours.
Prerequisite: graduate standing and permission of the instructor. Topics of current interest in pharmaceutical engineering.

PHEN 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in the student’s academic program. A written report must be submitted to the project advisor. The student cannot register in 700B more than once and the incomplete (I) grade is not allowed.

PHEN 701B. Master's Thesis. 3 credits, 3 contact hours.
Corequisite for full-time students: PHEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in pharmaceutical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in PHEN 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

PHEN 701C. Master's Thesis. 6 credits, 3 contact hours.
Corequisite for full-time students: PHEN 791. Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in pharmaceutical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (PHEN 701B course) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

PHEN 702. Selected Topics in Pharmaceutical Engineering. 3 credits, 3 contact hours.
Prerequisite: graduate standing and permission of the instructor. Topics of current interest in pharmaceutical engineering.

PHEN 725. Independent Study. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.
PHEN 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for PHEN 726 if they have taken PHEN 725 in a prior semester. Students cannot register for this course with the same advisor as they had in PHEN 725.

PHEN 791. Graduate Seminar. 0 credits, 0 contact hours.
Required, when offered, of all pharmaceutical engineering graduate students receiving departmental or research-based awards. The student must register each semester until completion of the degree, if the Graduate Seminar is offered. Outside speakers and department members present their research for general discussion.

Data Science for Chemical and Materials Engineers

The certificate in Data Science for Chemical and Materials Engineering Applications will prepare students on using data science tools for numerous applications including predicting material properties, conducting high-throughput searches for materials, optimizing experimental design, and developing machine learning models that lead to virtual screening. Students will take core courses in data science and data visualization. They will be offered a foundation in machine learning, statistical methods used in analyses, and data mining. This certificate can additionally serve as a path to the MS degrees in chemical engineering and materials engineering.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTEN 631</td>
<td>Data Science for Chemical and Materials Engineering Applications</td>
<td>3</td>
</tr>
<tr>
<td>CHE 632</td>
<td>Visual Communication with Chemical & Materials Engineering Data</td>
<td>3</td>
</tr>
<tr>
<td>Select Two of the Following Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTEN 633</td>
<td>Machine Learning in Chemical and Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
</tbody>
</table>

M.S. in Chemical Engineering

Degree Requirements
A minimum of 30 credits is required. Students must attain a minimum GPA of 3.0 in the core courses listed below, and a minimum overall GPA of 3.0.

Degree Options
M.S. in Chemical Engineering (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 611</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 612</td>
<td>Kinetics of Reactions and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 624</td>
<td>Transport Phenomena I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 626</td>
<td>Mathematical Methods in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two electives in chemical engineering</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Two electives in any engineering, science, or mathematics area including but not limited to chemical engineering</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Two Elective courses (any subject area)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

1 500-level courses offered in the department do not count toward degree requirements.
1 Before deciding on a thesis topic and advisor, students must discuss thesis topics with at least three faculty members and get their signature on a form provided by the department. The signed form with the name of advisor selected and tentative title of thesis topic must be returned to the department for approval. Change of advisor requires consent of the previous advisor and departmental approval. The completed thesis must be examined and signed by three faculty members at least two of which must be on the department faculty. An oral presentation is also required. The MS thesis committee must be formed and submitted to the department for approval at least one semester before the expected graduation date. The department provides a form for the formation of the MS thesis committee.

2 All students who receive departmental or research-based support must enroll each semester in CHE 791 Graduate Seminar.

3 500-level courses offered in the department do not count toward degree requirements.

M.S. in Chemical Engineering (Master's thesis and/or students receiving department or research-based support)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 611</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 612</td>
<td>Kinetics of Reactions and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 624</td>
<td>Transport Phenomena I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 626</td>
<td>Mathematical Methods in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 700B</td>
<td>Masters Project</td>
<td>3</td>
</tr>
<tr>
<td>CHE 701B</td>
<td>Masters Thesis</td>
<td>6</td>
</tr>
<tr>
<td>or CHE 701C</td>
<td>and Masters Thesis</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 791</td>
<td>Graduate Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One elective in Chemical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One elective in any Engineering, Science, or Mathematics area including but not limited to Chemical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Two elective courses (any subject area)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

M.S. in Materials Science and Engineering

The program is offered in two options, the Materials Engineering Option and the Materials Science Option. These programs are administered by NCE (Newark College of Engineering) and CSLA (College of Science and Liberal Arts) colleges, respectively. A joint committee comprised of NCE and CSLA faculty oversee the program.

Materials Engineering Option

Administered by the Chemical and Materials Engineering Department, NCE

The master's degree is a valued professional credential, offered on a full-time or part-time basis. Applicants are expected to have a baccalaureate degree in engineering (chemical, mechanical, electrical, civil, or biomedical) or in physics or chemistry or equivalent with a minimum GPA of 3.0. Students with undergraduate degrees in biology or other STEM disciplines may also be admitted on condition that additional bridge courses may be required. International students must achieve a TOEFL score of at least 550 (paper-based); 213 (computer-based); 79 (internet-based). A quantitative section of GRE must be at the level approved by NCE.

Thirty credit hours are required for the degree. A thesis is optional.

Core courses (12 credit hours)
Any cross-listed courses will not be offered simultaneously.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTEN 610</td>
<td>Found of Materials Sci & Engr</td>
<td>3</td>
</tr>
<tr>
<td>or MTSE 601</td>
<td>Fundamentals of Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>MTEN 611</td>
<td>Diffusion & Solid State Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>or MTSE 655</td>
<td>Diffusion and Solid State Kinetics</td>
<td></td>
</tr>
<tr>
<td>MTEN 612</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MTSE 602</td>
<td>Thermodynamics of Materials</td>
<td></td>
</tr>
<tr>
<td>MTEN 613</td>
<td>Characterization of Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses and MS Thesis (18 credit hours: six courses, or four courses and thesis)

Substitutions must be approved by advisor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 651</td>
<td>Principles of Tissue Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 672</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 680</td>
<td>BioMEMS Design and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CE 632</td>
<td>Prestressed Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>CE 636</td>
<td>Mechanics and Stability of Structures</td>
<td>3</td>
</tr>
<tr>
<td>CE 641</td>
<td>Engineering Properties of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CHE 619</td>
<td>Nano-scale Characterization of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHE 632</td>
<td>Visual Communication with Chemical & Materials Engineering Data</td>
<td>3</td>
</tr>
<tr>
<td>CHE 654</td>
<td>Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>CHE 683</td>
<td>Polymer Processing</td>
<td>3</td>
</tr>
<tr>
<td>or ME 679</td>
<td>Polymer Processing Techniques</td>
<td></td>
</tr>
<tr>
<td>CHE 684</td>
<td>Materials and Process Selection for Polymer Product Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 702</td>
<td>Selected Topics in Chemical Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 709</td>
<td>Adv Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHE 710</td>
<td>Adv Membrane Separation Proc</td>
<td>3</td>
</tr>
<tr>
<td>CHE 714</td>
<td>Micromechanics of Part Tech Pr</td>
<td>3</td>
</tr>
<tr>
<td>CHE 722</td>
<td>Additive Manufacturing & Appl</td>
<td>3</td>
</tr>
<tr>
<td>CHE 750</td>
<td>Environmental Catalysis</td>
<td>3</td>
</tr>
<tr>
<td>CHE 756</td>
<td>Industrial Catalysis</td>
<td>3</td>
</tr>
<tr>
<td>CHE 775</td>
<td>Molecular Simulations in CHE</td>
<td>3</td>
</tr>
<tr>
<td>CHE 781</td>
<td>Polymerization-Principles and Practice</td>
<td>3</td>
</tr>
<tr>
<td>CHE 782</td>
<td>Polymer Structures and Properties</td>
<td>3</td>
</tr>
<tr>
<td>ECE 626</td>
<td>Optoelectronics - Nonlinear Modulators for Optical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ECE 657</td>
<td>Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECE 659</td>
<td>Fabrication Principles of Electronic and Optoelectronic Devices</td>
<td>3</td>
</tr>
<tr>
<td>ME 620</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 621</td>
<td>Advanced Mechanics of Material</td>
<td>3</td>
</tr>
<tr>
<td>ME 626</td>
<td>Fatigue Fracture of Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 675</td>
<td>Mechanics of Fiber Composites</td>
<td>3</td>
</tr>
<tr>
<td>ME 678</td>
<td>Engineering Design of Plastic Products</td>
<td></td>
</tr>
<tr>
<td>ME 714</td>
<td>Principles of Particulate Multiphase Flows</td>
<td>3</td>
</tr>
<tr>
<td>MTEN 631</td>
<td>Data Science for Chemical and Materials Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MTEN 633</td>
<td>Machine Learning for Chemical and Materials Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MTEN 711</td>
<td>Nanocomposite Materials</td>
<td>3</td>
</tr>
<tr>
<td>MTEN 712</td>
<td>Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 748</td>
<td>Nanomaterials</td>
<td></td>
</tr>
<tr>
<td>MTEN 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>
MTEN 701B Masters Thesis 3
MTSE 610 Mechanical Properties of Materials 3
MTSE 681 Composite Materials 3
MTSE 722 Science and Technology of Thin Films 3

M.S. in Pharmaceutical Engineering

The master's degree is a valued professional credential, offered on a full-time or part-time basis. Applicants are expected to have a baccalaureate degree in chemical engineering or equivalent with a minimum GPA of 3.0. Students with undergraduate degrees in biology, chemistry, physics, and equivalent may also be admitted on condition that additional undergraduate courses, specified at the time of admission, be taken and successfully completed. International students must achieve a TOEFL score of at least 550 (paper-based); 213 (computer-based); 79 (internet-based). A quantitative section of GRE must be at the level approved by NCE, presently at 155.

Thirty credit hours are required for the degree. A thesis is optional.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 612</td>
<td>Kinetics of Reactions and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 611</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 603</td>
<td>Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 618</td>
<td>Principles of Pharmacokinetics and Drug Delivery</td>
<td>3</td>
</tr>
</tbody>
</table>

Select at least two from these courses (2 course=6 credits):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEN 602</td>
<td>Pharmaceutical Facility Design</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 605</td>
<td>Pharmaceutical Packaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 714</td>
<td>Micromechanics of Part Tech Pr</td>
<td>3</td>
</tr>
<tr>
<td>CHE 624</td>
<td>Transport Phenomena I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 603</td>
<td>Separation Process Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Select any combination of three elective courses/thesis courses/project course from the following list (3 courses=9 credits):

Any of the courses already listed above but not yet taken 3
Any courses from the programs specified below:
- Pharmaceutical Engineering (PhEn) (such as courses not taken already)
- Chemical Engineering (ChE)
- Biomedical Engineering (BME)
- Biology (BIOL)
- Chemistry (CHEM)
- Biopharmaceutical Engineering (PhB)
- Pharmaceutical Materials Processing (PhMP)
- Pharmaceutical Systems Management
- Industrial Engineering (IE)
- Engineering Management (EM)
- Mathematics (MATH)
- Project/Independent Study 3
- Thesis 6

Ph.D. in Chemical Engineering

Degree Requirements

To graduate, students must have an approved dissertation and attain an overall GPA of at least 3.0. Students need always to get departmental approval for the courses they take for their degree requirements.
Ph.D. in Chemical Engineering (students with master’s in chemical engineering)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700-level courses</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td></td>
</tr>
<tr>
<td>CHE 790</td>
<td>Doct Dissertation & Res</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>CHE 791</td>
<td>Graduate Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>12</td>
</tr>
</tbody>
</table>

1. No more than 6 credits may be CHE 705 Independent Study. No more than 3 credits in CHE 705 Independent Study may be taken with the same supervising faculty member. The supervising faculty member may never be the student's dissertation advisor. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval.

2. Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (CHE 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (CHE 790 Doct Dissertation & Res) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

3. Students must register every semester for this seminar. Part-time students may request that this requirement be waived for some semesters.

Ph.D. in Chemical Engineering (students without master’s in chemical engineering)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses 1</td>
<td></td>
</tr>
<tr>
<td>CHE 611</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 612</td>
<td>Kinetics of Reactions and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 624</td>
<td>Transport Phenomena I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 626</td>
<td>Mathematical Methods in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700-level chemical engineering or chemistry courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>700-level courses 2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td></td>
</tr>
<tr>
<td>CHE 790</td>
<td>Doct Dissertation & Res</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>CHE 791</td>
<td>Graduate Seminar</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>36</td>
</tr>
</tbody>
</table>

1. Must attain a minimum GPA of 3.0 in the required courses.

2. No more than 6 credits may be CHE 705 Independent Study. No more than 3 credits in CHE 705 Independent Study may be taken with the same supervising faculty member. The supervising faculty member may never be the student's dissertation advisor. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval.

3. Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (CHE 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (CHE 790 Doct Dissertation & Res) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

4. Students must register every semester for this seminar. Part-time students may request that this requirement be waived for some semesters.

Selection of Dissertation Advisor

Students must select a dissertation topic and advisor within 6 months of joining the program. Before making a decision, students should discuss research topics with at least five faculty members of the department and get their signature on a form provided by the department. The signed form with the names of advisors selected must be returned to the department for further processing. Advisors are assigned based on student preferences and
availability of funding. Change of advisor requires consent of the previous advisor and departmental approval. In cases where more than one advisor is directing the dissertation, the primary advisor must be on the departmental faculty.

Qualifying Examination
All PhD candidates must pass a qualifying examination. Students must take the examination by the end of the second semester after enrolling in the PhD program. If repeated examination is necessary, the examination must be passed by the end of the third semester after enrolling in the PhD program.

Pre-requisites for the qualifying examination:
- Average grade of 3.5 for all four core courses and a minimum grade B in each of the core courses taken at NJIT
 - Equivalent grade for the same subject course based on the MS transcript from an institution other than NJIT may be acceptable, as decided by the Graduate Studies Committee
 - Students whose subject courses differ from those offered at NJIT, so that their MS transcript grades are not deemed acceptable as equivalent to the NJIT core courses by the Graduate Studies Committee are required to take final examinations for each of the core courses during their first two semesters after enrolling into PhD program to satisfy the present requirement.

- A student can take the final examination in each core course up to two times to satisfy the present requirement.
- Failing the present requirement is equivalent to the failing the qualifying examination.

Qualifying examination format
The examination is administered by an Examination Committee including at least three members of the CBPE graduate faculty. The Examination Committee is appointed by the Graduate Studies Committee each semester. The Examination Committee does not include the student's current or potential PhD thesis adviser.

Three months before the examination date, an assignment is given to a student to prepare for the qualifying examination. The assignment is given by the student’s current or potential PhD thesis adviser in coordination with Examination Committee. The assignment identifies a research topic to be addressed in two parts of the examination:
- A written paper, comprising a literature review (no longer than 20 pages excluding references; 12 pts font, double spaced) on the identified research topic. The review needs to
 - Identify an open research problem,
 - Outline state of the art, and
 - Propose an approach for future research in this area.
 - If pertinent, results of preliminary work may be included.
- An oral presentation no longer than 20 min, followed by questions. The presentation will be open to the public; committee deliberations following the presentations will be restricted to the committee members only.

The result of the examination is determined by the Examination Committee based on the review of the written paper, oral examination, and feedback from the current or potential PhD thesis adviser.

A student is allowed to repeat the qualifying examination only once.

Formation of Dissertation Committee
Within three months of passing the qualifying examination, doctoral students must form a dissertation committee. The department provides a special form. The signed form must be submitted for the approval of the Associate Chair for Graduate Studies in Chemical Engineering. The committee must consist of the doctoral student's dissertation advisor, three additional faculty members from the department, and one member from outside the department (preferably outside the university). The committee may consist of more than five persons, subject to the approval of the Associate Chair. Once formed, the committee cannot change unless there is a written explanation and request from the doctoral student and/or his/her advisor. The Associate Chair for Graduate Studies handles such requests.

Research Proposal
Within six months of forming the dissertation committee (i.e., no more than nine months after passing the qualifying examination), doctoral students must make an oral presentation to their dissertation committee and other interested persons on the scope of their proposed research. The committee must formally approve the proposal within a maximum of three additional months. This ensures meeting the requirements that doctoral students must have an
Dissertation Defense
An oral defense of the dissertation is required after submission of the final document to the dissertation committee for approval. Signatures of all members of the dissertation committee must be received for final approval to be granted. The oral defense is open to the university community and general public and must be announced early.

Ph.D. in Materials Science and Engineering

The program is offered in two options, the Materials Science option (p. 391) and the Materials Engineering option (p. 470). These options are administered by the CSLA (College of Science and Liberal Arts) and NCE (Newark College of Engineering) colleges, respectively. A joint committee involving CSLA and NCE faculty will be in charge of overseeing this program.

Materials Engineering Option

Degree Requirements

Ph.D. coursework requirements

Ph.D. students with a recognized Master's degree or equivalent in materials engineering or a related field are required to take four 700-level 3-credit courses (12 credits).

Ph.D. students with a recognized Baccalaureate degree in materials engineering or a related field are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits).

Master’s project (course 700), Master's thesis (course 701), or more than two independent study courses (courses 725 and 726) cannot be used to satisfy these coursework requirements.

A Ph.D. student may substitute a 600-level course for a 700-level course only after the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student's dissertation committee may request the student to take additional courses.

In addition to the minimum degree credits specified above, students must register every semester for ChE791, Graduate Seminar. Part-time students may request that this requirement be waived.

Dissertation advisor and committee

Students must select a dissertation topic and advisor within 6 months of joining the program. Before making a decision, students are encouraged to discuss research topics with several active research faculty members of the department.

The doctoral dissertation committee is led by the Dissertation Advisor. It must include at least five members, including at least four members of the department faculty and at least one external member.

Qualifying examination

All PhD candidates must pass a qualifying examination. Students must take the examination by the end of the second semester after enrolling in the PhD program. If repeated examination is necessary, the examination must be passed by the end of the third semester after enrolling in the PhD program.

Pre-requisites for the qualifying examination:

- Average grade of 3.5 for all four core courses and a minimum grade B in each of the core courses taken at NJIT

- Equivalent grade for the same subject course based on the MS transcript from an institution other than NJIT may be acceptable, as decided by the Graduate Studies Committee

- Students whose subject courses differ from those offered at NJIT, so that their MS transcript grades are not deemed acceptable as equivalent to the NJIT core courses by the Graduate Studies Committee are required to take final examinations for each of the core courses during their first two semesters after enrolling into PhD program to satisfy the present requirement.

- A student can take the final examination in each core course up to two times to satisfy the present requirement.

- Failing the present requirement is equivalent to the failing the qualifying examination.

Qualifying examination format
The examination is administered by an Examination Committee including at least three members of the CME graduate faculty. The Examination Committee is appointed by the Graduate Studies Committee each semester. The Examination Committee does not include the student's current or potential PhD thesis adviser.

Three months before the examination date, an assignment is given to a student to prepare for the qualifying examination. The assignment is given by the student's current or potential PhD thesis adviser in coordination with Examination Committee. The assignment identifies a research topic to be addressed in two parts of the examination:

- A written paper, comprising a literature review (no longer than 20 pages excluding references; 12 pts font, double spaced) on the identified research topic. The review needs to
 - Identify an open research problem,
 - Outline state of the art, and
 - Propose an approach for future research in this area.
 - If pertinent, results of preliminary work may be included.

- An oral presentation no longer than 20 min, followed by questions. The presentation will be open to the public; committee deliberations following the presentations will be restricted to the committee members only.

The result of the examination is determined by the Examination Committee based on the review of the written paper, oral examination, and feedback from the current or potential PhD thesis adviser.

A student is allowed to repeat the qualifying examination only once.

Ph.D. dissertation registration requirements

- Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of doctoral research (790B) per semester until they defend successfully the dissertation proposal.

- Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (790A) each semester until they complete all degree requirements.

- Students may take courses simultaneously with the 790 or 792 courses as per Ph.D. program guidelines or dissertation committee recommendation.

- With the exceptions approved by the Graduate Studies Committee, full-time students who do not meet the following deadlines will be dismissed from the Ph.D. program.
 - The required coursework for the Ph.D. program and the (major part of the) QE must be completed successfully by the end of the second year in the program.
 - The dissertation proposal must be defended successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier.

The dissertation must be defended successfully no later than by the end of the sixth year in the Ph.D. program.

Pharmaceutical Management

Students will understand the role of the pharmaceutical industry in the global market and its implications; learn the fundamentals of the drug development cycle and the investment required to bring a drug to market, and learn the most important drug manufacturing processes and the key elements of dosage formulation. Special emphasis is placed on the project, quality, and financial management aspects of the pharmaceutical business.

Who is suited for this program?

The interdisciplinary Certificate in Pharmaceutical Management is designed to provide the students with an overview of the pharmaceutical industry, including information about drug discovery and development, FDA requirements, approval processes and the methodologies used by industry to comply with these regulations, drug dosage forms, and the role of key operational units in drug manufacturing processes.

What will I learn?

- Principles of Pharmaceutical Engineering: Overview of the pharmaceutical industry
- Validation and Regulatory Issues in the Pharmaceutical Industry with Information about drug discovery and development, FDA regulations, approval process and methodologies used by industry to comply with these regulations, drug dose forms, and the role of key operational units in drug manufacturing processes

A broad range of electives covering
Pharmaceutical Management

- Packaging and other specific issues that could be bottlenecks for contemporary pharmaceutical management
- Competing in Global Markets: The role of the pharmaceutical industry in the global market and its implications
- Financial Management, Project Management, Project Control, Total Quality Management: These elective overview project, quality, and financial management aspects of the pharmaceutical business

Why study Pharmaceutical Management at NJIT?

NJIT recognizes pharmaceutical leaders’ need for strong management to sustain the creation, storage and maintenance of databases of biological information in order to support drug discovery development.

Prerequisites

An undergraduate degree in a science or engineering field, with an undergraduate cumulative grade point average (GPA) of at least 2.8 on a 4.0 scale is usually required. Applicants with: (1) a science degree, (2) an engineering degree in a discipline other than chemical or mechanical engineering, or (3) a GPA below 3.0 but at least 2.8, may be conditionally admitted to the program. Conditions may involve completion of a bridge program designed on a case-by-case basis.

Related Degree Programs

All credits for the Pharmaceutical Management graduate certificate can be applied in its entirety to the NJIT MS in Pharmaceutical Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/chemical-materials-engineering/pharmaceutical-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select two of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 618</td>
<td>Principles of Pharmacokinetics and Drug Delivery</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 605</td>
<td>Pharmaceutical Packaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 725</td>
<td>Independent Study</td>
<td>3</td>
</tr>
</tbody>
</table>

Pharmaceutical Manufacturing

NJIT recognizes the need of pharmaceutical leaders for the latest information on state-of-the-art technologies to support pharmaceutical process development and the operation of manufacturing processes at pharmaceutical companies. The Certificate in Pharmaceutical Manufacturing is designed to educate professionals with backgrounds in engineering or science and provide them with the critical skills required to work in pharmaceutical production and pharmaceutical manufacturing areas.

Who is suited for this program?

This Certificate is intended for students/professionals with a science (e.g., chemistry, pharmacy) or engineering background who intend to learn/expand their technical pharmaceutical manufacturing skills, and apply them to advance in their profession and within their companies.

What will I learn?

- Pharmaceutical Facility Design: instruction in design of state-of-the-art pharmaceutical facilities for both manufacturing and R&D, by identifying key functional requirements and design concepts necessary to pharmaceutical processes. Interdisciplinary training will be provided in appropriate areas of facility design.
- Pharmaceutical Packaging Technology: developing a working knowledge of the machinery and unit operations used in transferring a drug substance in the bulk final form to a finished product ready for sale to the consuming public.

Electives covering the following areas:

- Principles of Pharmaceutical Engineering: basic information about drug discovery and development, FDA requirements and approval processes, drug dosage forms, and the role of key operational units in drug manufacturing processes.
• Validation and Regulatory Issues in the Pharmaceutical Industry: development of a working knowledge of the Federal Code of Regulations and its impact on the pharmaceutical and allied industries.

• Micromechanics of particle technology processing directly connecting with pharmaceutical unit operations processing solids

• Specific issues that could be bottlenecks for contemporary pharmaceutical manufacturing

Why Study Pharmaceutical Manufacturing at NJIT?

The Graduate Certificate in Pharmaceutical Manufacturing has been designed so that students are first provided with an overview of the pharmaceutical industry, including the fundamentals of the drug development cycle, FDA requirements, drug dosage forms, approval processes, and the methodologies used by industry to comply with these regulations. Additional courses then focus on the specifics of validation and regulations affecting the pharmaceutical and allied industries, as well as the more technical aspects of facility design. Examples of these are building and zoning codes; sterile/aseptic processing; clean rooms and controlled environments; HVAC systems; and pharmaceutical water and clean steam systems. This unique combination of detail and overview is very hard to come by across the United States.

Prerequisites

An undergraduate degree with a science or engineering background, with an undergraduate cumulative grade point average (GPA) of at least 2.8 on a 4.0 scale is usually required. Applicants with: (1) a science degree, (2) an engineering degree in a discipline other than chemical or mechanical engineering, or (3) a GPA below 3.0 but at least 2.8, may be conditionally admitted to the program. Conditions may involve completion of a bridge program designed on a case-by-case basis.

Related Degree Programs

All credits for the Pharmaceutical Manufacturing Graduate Certificate can be applied in its entirety to the NJIT MS in Pharmaceutical Engineering (p. 467).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEN 602</td>
<td>Pharmaceutical Facility Design</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 605</td>
<td>Pharmaceutical Packaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>Electives; select two of the following</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CHE 714</td>
<td>Micromechanics of Part Tech Pr</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 725</td>
<td>Independent Study</td>
<td>3</td>
</tr>
</tbody>
</table>

Pharmaceutical Technology

Who is suited for this program?

The Certificate in Pharmaceutical Technology is designed to educate professionals and provide them with the skills required to work in the pharmaceutical field, with particular emphasis on the engineering aspects of drug manufacturing, pharmaceutical production, pharmaceutical development, and pharmaceutical operations. The students will not only be provided with an overview of the pharmaceutical industry, including information about drug discovery and development, FDA requirements, approval processes and the methodologies used by industry to comply with these regulations, drug dosage forms, and the role of key operational units in drug manufacturing processes, but they will also be presented with the fundamentals of the drug development cycle and the unit operations typically associated with drug manufacturing, including their quantitative and design aspects.

What will I learn?

• Principles of Pharmaceutical Engineering: Overview of the pharmaceutical industry.
• Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems which primarily examines engineering aspects of the pharmaceutical processes.

Elective courses include

• Pharmaceutical Facility Design: instruction in design of state-of-the art pharmaceutical facilities for both manufacturing and R&D, by identifying key functional requirements and design concepts necessary to pharmaceutical processes. Interdisciplinary training will be provided in appropriate areas of facility design.
• Principles of Pharmacokinetics and Drug Delivery, covering foundations of the related topic including drug transport and factors affecting its adsorption, distribution, metabolism, and excretion.

• Validation and Regulatory Issues in the Pharmaceutical Industry with Information about drug discovery and development, FDA regulations, approval process and methodologies used by industry to comply with these regulations, drug dose forms, and the role of key operational units in drug manufacturing processes.

• Micromechanics of particle technology processing directly connecting with pharmaceutical unit operations processing solids

Why Study Pharmaceutical Technology at NJIT?

The graduate certificate’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. You’ll learn from NJIT’s distinguished professors and instructors. The Certificate in Pharmaceutical Technology yields a stand-alone credential, which is a milestone in its own right, and it is also a springboard to the PhEn Master’s degree.

Prerequisites

An undergraduate degree in chemical engineering or mechanical engineering, with an undergraduate cumulative grade point average (GPA) of at least 3.0 on a 4.0 scale is usually required. Applicants with: (1) a science degree, (2) an engineering degree in a discipline other than chemical or mechanical engineering, or (3) a GPA below 3.0 but at least 2.8, may be conditionally admitted to the program. Conditions may involve completion of a bridge program designed on a case-by-case basis.

Both the Pharmaceutical Technology Graduate Certificate and the Pharmaceutical Engineering MS program have been designed so that people with different backgrounds can be admitted to the program. The programs are oriented toward the ENGINEERING component of “Pharmaceutical Engineering”. In addition, since the pharmaceutical industry is a chemistry-based industry a chemical engineering background is the most appropriate to enter the program.

Related Degree Programs

All credits for the Pharmaceutical Technology Certificate can be applied in its entirety to the NJIT MS in Pharmaceutical Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/chemical-materials-engineering/pharmaceutical-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 603</td>
<td>Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems</td>
<td>3</td>
</tr>
<tr>
<td>Electives: select two of the following</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHEN 602</td>
<td>Pharmaceutical Facility Design</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 618</td>
<td>Principles of Pharmacokinetics and Drug Delivery</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 714</td>
<td>Micromechanics of Part Tech Pr</td>
<td>3</td>
</tr>
</tbody>
</table>

POLYMERS AND PLASTICS

From the NJIT Department of Chemicals and Materials Engineering, the Graduate Certificate in Polymers and Plastics prepares students to apply mathematical and scientific principles to the design, development and operational evaluation of synthesized macromolecular compounds and their application to specific engineering uses. This includes the development of industrial materials with tailored properties, the design of lightweight structural components, the use of liquid or solid polymers, and the analysis and control of polymerization processes.

Who would be suited to take this program?

This program is designed with Chemical Engineers in mind. Example industries where occupations may exist in this area may include: agriculture, automotive, fast-moving consumer goods (FMCG), consumer packaged goods (CMG), or chemical production management.

What will I learn?

• **Polymerization-Principles and Practice** - The structural and synthetic aspects of polymers and examines in detail a number of bench and industrial scale polymerization methods. In addition to kinetics and mechanisms of commercially important polymerization systems, students will examine reactive modification of synthetic and natural polymers and provides an introduction to applicable characterization methods.

• **Engineering Design of Plastic Products** - Structure and properties of plastics including stress-strain behavior and the effect of fillers and reinforcements. Designing for impact, flexure, shear, friction, puncture, creep and fatigue. Case studies of structural, electrical, and optical applications.
• **Mechanical Properties of Materials** - Elements of elasticity and plasticity theory, deformation and fracture behavior of materials, the concept of dislocations and their interaction with other lattice defects, strengthening mechanisms in solids, and principles of failure analysis. Materials to be studied include metals, polymers, ceramics, glasses, and composites.

• **Polymer Structures and Properties** - Polymer structures and properties and their relationships from the molecular viewpoint to phenomenological descriptions. Topics include thermodynamics of a single molecule, dynamic theory and viscoelasticity of polymers, polymer solids and mechanical properties, rubbers, polymer blends and composites, biological polymers, and special applications.

• **Design for Manufacturability** - Methodologies used in the synthesis and analysis of product design to optimize manufacturability. The relationship of design to production processes, product material, material handling, quality costs, and CAD/CAM are presented. Emphasis is on both formed products and assembled products. Simulation and other design analysis tools are employed.

• **Characterization of Materials** - Introduction in chemical and materials engineering, and other engineering and science disciplines, to fundamentals and theory of different types of materials characterization tools. Methods and techniques necessary to understand and quantify diverse materials properties will be discussed. As important for many methods, basic principles of interaction of radiation and particle beams with matter will be studied. Topics include, but are not limited to: Diffraction methods; imaging via optical, scanning, transmission electron, scanning tunnelling, and field ion microscopy; microanalysis and spectroscopy, including energy dispersive, wavelength dispersive, Auger methods; secondary ion mass spectroscopy, X-ray photoelectron spectroscopy; materials preparation for analysis, including electron, ion growth, sputtering; thermal analysis: DTA, DSC; and depending on the availability and functionality of equipment, lab visits and demonstrations will be scheduled to the class to discuss some case studies.

Why study Polymers and Plastics at NJIT?

One of the oldest departments of Newark College of Engineering, the Otto H. York Department of Chemical and Materials Engineering awarded its first three baccalaureate degrees in 1923. This program is interdisciplinary by nature, with learning outcomes crossing both the science and the engineering materials and chemicals realms, yet more lean toward the engineering side. Chemical engineers use chemistry, biology, physics and math in an integrated engineering mode in order to manufacture materials and products to modern society. They are involved with the full scale of processes, from the laboratory bench to the pilot plant and eventually to the manufacturing facility.

Into what industries might holders of this program find employment?

- Agriculture
- Automotive
- Fast-Moving Consumer Goods (FCMG)
- Consumer Packaged Goods (CMG)
- Chemical Production Management

Prerequisites

Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in a related field (chemical engineering, manufacturing engineering, materials science, materials engineering, etc.).

Related Degree Programs

This graduate certificate may transition into a NJIT MS in Materials Science and Engineering: Materials Engineering option (https://catalog.njit.edu/graduate/newark-college-engineering/chemical-materials-engineering/materials-science-engineering-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td>12</td>
</tr>
<tr>
<td>Select four (4) of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 681 (http://catalog.njit.edu/search/?P=CHE%20681)</td>
<td>Polymerization-Principles and Practice</td>
<td></td>
</tr>
<tr>
<td>ME 678 (http://catalog.njit.edu/search/?P=ME%20678)</td>
<td>Engineering Design of Plastic Products</td>
<td></td>
</tr>
<tr>
<td>MTSE 610 (http://catalog.njit.edu/search/?P=MTSE%20610)</td>
<td>Mechanical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>CHE 682 (http://catalog.njit.edu/search/?P=CHE%20682)</td>
<td>Polymer Structures and Properties</td>
<td></td>
</tr>
<tr>
<td>MNE 654 (http://catalog.njit.edu/search/?P=MNE%20654)</td>
<td>Design for Manufacturability</td>
<td></td>
</tr>
</tbody>
</table>
Civil and Environmental Engineering

Civil Engineering

In the information technology age, more resources are available for building new cities, repairing the infrastructure, cleaning up the environment; these are all tasks for the civil engineer. Major corporations, government agencies, private consulting and construction firms, and universities are just some of the organizations that employ civil engineers.

In-depth knowledge in one of the areas of civil engineering is essential for professional practice as well as for research. Courses are taught by full-time faculty members with a range of academic and professional experience as well as by adjunct instructors who are experts in their fields. Those students interested in research at the master's level or continuing their education at the doctoral level should consider working with faculty involved in one of the university's related research centers.

Master of Science in Civil Engineering

The M.S. in Civil Engineering is designed for those who want both specialized course work and the flexibility to tailor their program to their needs.

Admission Requirements

Applicants are expected to have an undergraduate degree in civil engineering or its equivalent, and must have proficiency in basic sciences and mathematics. Students who lack an appropriate undergraduate background may be granted conditional admission in order to complete a bridge program or its equivalent. These courses are taken in addition to regular degree requirements; descriptions may be found in the undergraduate catalog. A minimum bachelor's GPA of 2.8 on a 4.0 scale, or equivalent, is normally required for admission. The Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) is required for all international applicants. The Graduate Record Examination (GRE) is required for international applicants and full-time domestic applicants.

Graduate Certificate Program

A 12-credit graduate certificate in Construction Management is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.

Master of Architecture (M.Arch.) and M.S. in Civil Engineering Dual Degree Program

This program permits students to obtain a Master of Architecture with a Master of Science in Civil Engineering. There is no reduction in the degree requirements for the Master of Architecture program. This dual degree program permits students to obtain the M.S. in Civil Engineering in substantially less time; in some cases, in only one more semester of full-time study. This dual degree program is described in the Architecture degree program section (p. 166) in this catalog.

Civil Engineering - Online Master of Science in Civil Engineering

Online learning allows students the chance to earn a master's degree without coming to campus. Online courses are virtual learning communities with instructor-led online classrooms that use rich platforms to present course material. There are three specialty areas to choose from: Construction Management, Structural Design and Construction and Transportation.

Admission Requirements

Students are expected to have an undergraduate degree in engineering or its equivalent.

PhD in Civil Engineering

This is a program for superior students with master's degrees in civil engineering or allied fields who wish to do advanced research in an area of civil engineering. In exceptional circumstances, highly qualified students with bachelor's degrees in civil engineering may be accepted directly into the doctoral program.

Admission Requirements

A minimum master's GPA of 3.5 on a 4.0 scale, or equivalent, is normally required for admission. The GRE (general section) is required of all applicants. The Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) is required for international applicants.
M.S. in Critical Infrastructure Systems Admission Requirements

Students are expected to have an undergraduate degree in engineering or its equivalent.

Bridge program-Students who lack an appropriate background are asked to make up deficiencies by taking a program of courses that is designed in consultation with the graduate advisor. These courses are taken in addition to the degree requirements, and typically center around upgrading their background in statistics and mathematics. If this background is not sufficient, the minimal bridge course consists of EM 503 Methods and Applications of Industrial Statistics and Probability.

Environmental Engineering

Environmental engineers are essential participants in the planning, design and construction of waste water and potable water treatment plants, solid waste disposal systems, site remediation and emission control measures, and other similar projects. Major corporations, government agencies, private consulting and construction firms, and universities are just some of the organizations that employ environmental engineers.

In-depth knowledge in environmental engineering is essential for professional practice as well as for research. Full-time faculty members with a range of academic and professional practice experience as well as by adjunct instructors who are experts in their field teach the courses. Those students interested in research at the master's level or continuing their education at the doctoral level should consider working with faculty involved in one of the university's related major research centers.

Master of Science in Environmental Engineering

The M.S. in Environmental Engineering is designed for those who want both specialized course work and the flexibility to tailor their program to their needs.

Admission Requirements

Applicants are expected to have an undergraduate degree in engineering or its equivalent. Students who lack an appropriate undergraduate background may be granted conditional admission in order to complete a bridge program or its equivalent. These courses are taken in addition to regular degree requirements; descriptions may be found in the undergraduate catalog. A minimum bachelor's GPA of 2.8 on a 4.0 scale, or equivalent, is normally required for admission. The Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) is required for all international applicants. The Graduate Record Examination (GRE) is required for international applicants and full-time domestic applicants.

Doctor of Philosophy in Environmental Engineering

This is a program for superior students with master's degrees in environmental engineering, civil engineering, or allied fields who wish to conduct advanced research in an area of environmental engineering. In exceptional circumstances, highly qualified students with bachelor's degrees in civil engineering or environmental engineering may be accepted directly into the doctoral program.

Admission Requirements

A minimum master's GPA of 3.5 on a 4.0 scale, or equivalent, is normally required for admission. The GRE (general section) is required of all applicants. The Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) is required for international applicants.

Transportation

NJIT's transportation program prepares students to be transportation planners, engineers, and managers who can plan, design, operate, and manage transportation systems capable of satisfying society's transportation needs.

Transportation is vital to our society's proper functioning, providing mobility of people, goods and services. It enables people to access job markets and participate in recreational, cultural, educational, and social activities. It adds value to products by moving them to their destination in time for their use. The transportation field also is a major contributor to the economy, as a consumer of resources and as a supplier of jobs.

Transportation functions in a very complex environment which, at the beginning of the 21st Century, is characterized by constant change in the technological, regulatory and legal frameworks. Transportation professionals must not only be able to meet the technological challenges of new systems, they must also be capable of fitting these systems into the social, economic, and physical environments in a manner that improves the quality of life for all.

Through the NJIT-based Institute for Transportation, the transportation graduate program provides excellent opportunities for students to engage in research on all forms of transportation, including all phases of activities concerned with the provision of services and the movement of people and goods. The Institute for Transportation is a major resource for public and private organizations and is well-known for its academic programs and research activities.
Master of Science in Transportation
This is a program for students from diverse educational backgrounds with a variety of career goals that prepares them for careers in designing, planning, operating, maintaining and managing urban and rural transportation systems. The master's degree is a valued professional credential for individuals engaged in the transportation field.

Graduate Certificate Program
A 12-credit graduate certificate in Transportation Studies is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.

Off-Campus Programs: At the New Jersey Department of Transportation (NJ DOT), in Trenton, NJIT offers sufficient courses to fulfill all degree requirements. All courses are taught by NJIT faculty.

Admission Requirements
Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in economics, mathematics, probability and statistics, and computers.

Doctor of Philosophy in Transportation
The doctoral program is for well-qualified students who are mature in scholarship and purpose. It offers a well-balanced mixture of theoretical studies and experimental research. A student must demonstrate creative thinking, self-motivation, and ability to do independent research. In their research, students are expected to deal with complex issues, effectively formulate difficult problems, devise new methodology, and achieve new and exceptional results.

Admission Requirements
Students should have adequate preparation in mathematical and other analytical techniques, and substantial knowledge of the ideas and techniques of synthesis. A thorough understanding of the social and economic factors intrinsic to the functioning and development of transport in urban areas also is necessary. It is expected that students will have earned a minimum GPA of 3.5 in a master's degree program in engineering, planning, or business administration from an accredited university. Outstanding students with baccalaureate degrees also may be accepted. All applicants must take the GRE. Full-time study is preferred for doctoral studies.

NJIT Faculty
A
Adams, Matthew, Assistant Professor
Axe, Lisa B., Professor, Chemical Engineering (Joint Faculty)

B
Bagheri, Sima, Professor Emeritus
Bandelt, Matthew, Assistant Professor
Borgaonkar, Ashish, Assistant Professor, Engineering Technology (Joint Faculty)
Boufadel, Michel, Professor

C
Chien, I Jy, Steven, Professor
Cianci, Andrew, Senior University Lecturer

D
Daniel, Janice R., Professor
Dauenheimer, Edward G., Professor Emeritus
Dimitrijevic, Branislav, Assistant Professor
Ding, Yuan, Associate Professor
Dresnack, Robert, Professor Emeritus
E
esmaili, danial, university lecturer

g
goncalves da silva, bruno, assistant professor

greenfeld, joshua s., professor emeritus

h
hsieh, hsin-neng, professor emeritus

k
karaa, fadi a., associate professor
khera, raj p., professor emeritus
konon, walter, professor

l
lee, joyoung, associate professor
liu, rongfang, professor

m
mahgoub, mohamed, associate professor, engineering technology (joint faculty)
marhaba, taha f., professor
meegoda, jay n, professor
milano, geraldine, senior university lecturer

o
olenik, thomas j., associate professor

p
pennock, william, assistant professor
potts, laramie, associate professor, engineering technology (joint faculty)

r
raghu, dorairaja, professor emeritus
rodriguez freire, lucia, assistant professor

s
saadeghvaziri, mohamad a., professor
saigal, sunil, distinguished professor
salek, franklin, professor emeritus
santos, stephanie r, senior university lecturer
schuring, john, r., professor emeritus
spasovic, lazar, professor

w
washington, david, associate professor, engineering technology (joint faculty)
Civil and Environmental Engineering

Wecharatana, Methi, Professor

Z

Zhang, Wen, Associate Professor

Programs

- Civil Engineering - M.S. (p. 498)
- Civil Engineering - M.S. online (p. 509)
- Critical Infrastructure Systems - M.S. (p. 504)
- Environmental Engineering - M.S. (p. 505)
- Transportation - M.S. (p. 506)

Double Majors (p. 106)

- Architecture - M.Arch. and Civil Engineering - M.S. (p. 166)

Programs

- Civil Engineering - Ph.D. (p. 510)
- Environmental Engineering - Ph.D. (p. 511)
- Transportation - Ph.D. (p. 513)

Programs

- Construction Management (p. 488)
- Environmental Engineering (p. 489)
- Geotechnical Engineering (p. 493)
- Hydrology and Water Resources Engineering (p. 496)
- Intelligent Transportation Systems (p. 497)
- Structural Engineering (p. 514)
- Transportation Studies (p. 516)

Civil and Environmental Engineering Courses

CE 501. Introduction to Soil Behavior. 3 credits, 4 contact hours.
Prerequisites: MECH 320, MECH 235 with a grade of C or better and MECH 236 with a grade of C or better(see undergraduate catalog for descriptions). Open only to the students in bridge program. Permission from CEE department graduate advisor is required. Covers the necessary concepts in strength of materials, geology and soil mechanics required for the bridge program in M.S. in Environmental Engineering and Geoenvironmental Engineering option.

CE 502. Civil Construction Methods. 3 credits, 3 contact hours.
Prerequisites: PHYS 111 and MATH 112, or equivalents Open only to students in Online M.S. in Civil Engineering, Construction Management Option. Covers essential concepts in civil and construction engineering including site surveys, construction materials, and soil behavior to partially satisfy bridge requirements.

CE 506. Remote Sensing of Environment. 3 credits, 3 contact hours.
Prerequisite: PHYS 234 (see undergraduate catalog for description). Covers the principles of remote sensing, general concepts, data acquisition procedures, data analysis and role of remote sensing in terrain investigations for civil engineering practices. Data collection from airborne and satellite platforms will be emphasized. Photographic and non-photographic sensing methodologies will be covered as well as manual and computer assisted data analysis techniques for site investigations and examination of ground conditions.

CE 531. Design of Masonry and Timber Structures. 3 credits, 3 contact hours.
Prerequisite: CE 332 (see undergraduate catalog for description). Study of basic properties of clay and concrete masonry units and wood. The masonry segment includes discussion of unreinforced bearing walls subjected to concentric as well as eccentric loads. Lateral-force resistance of unreinforced and reinforced masonry systems are introduced and new developments to strengthen and retrofit unreinforced masonry walls are discussed. The timber design portion includes design and behavior of wood fasteners, beams, columns, and beam-columns as well as introduction to plywood and glued laminated members.
CE 552. Geometric Design of Transportation Facilities. 3 credits, 3 contact hours.
Prerequisite: CE 350 or equivalent (see undergraduate catalog for description). Design principles and criteria related to highways and railroads resulting from requirements of safety, vehicle performance, driver behavior, topography, traffic, design speed, and levels of service. Elements of the horizontal and vertical alignments and facility cross-section, and their coordination in the design. Computer-aided design procedures including COGO, CADAM, Digital Terrain Modeling. Same as TRAN 552.

CE 553. Design and Construction of Asphalt Pavements. 3 credits, 3 contact hours.
Importance of designing proper asphalt pavements. Topics include the origin of crude, refining crude, types of asphalts, desired properties of asphalt cement, specification and tests for asphalt cement, aggregates for asphalt mixtures, aggregate analysis, gradation and blending, hot-mix asphalt (HMA) mix design, manufacture of HMA and HMA-paving, hot and cold recycling. Same as TRAN 553.

CE 590. Grad Coop Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from the civil engineering department and the Division of Career Development Services. Cooperative education/internship providing on-the-job reinforcement of academic programs in civil engineering. Work assignments and projects are developed by the co-op office in consultation with the civil engineering department; and evaluated by civil engineering faculty co-op advisors.

CE 591. Grad Coop Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from the civil engineering department and the Division of Career Development Services.

CE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: permission from the civil engineering department and the Division of Career Development Services.

CE 593. Graduate Co-Op Work Exp IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

CE 602. Geographic Information System. 3 credits, 3 contact hours.
Restriction: course or working knowledge of CADD or permission of instructor. Geographical/Land Information System (GIS/LIS) is a computerized system capable of storing, manipulating and using spatial data describing location and significant properties of the earth's surface. GIS is an interdisciplinary technology used for studying and managing land uses, land resource assessment, environmental monitoring and hazard/toxic waste control. Introduces this emerging technology and its applications. Same as MIP 652 and TRAN 602.

CE 605. Research Methods in Remote Sensing. 3 credits, 3 contact hours.
Prerequisites: CE 601 and MATH 661. Major components of RS data acquisition systems, overview of image processing techniques with emphasis on neural network and traditional pattern recognition, principal component transformations, and data reduction. Emphasizes geometric and mapping aspects of RS/GIS techniques for linking RS images with spatial data, sources of error, and accuracy assessment techniques. Hands-on experience with existing hardware/software (ERDAS & GENESIS).

CE 606. Geospatial Data Applications. 3 credits, 3 contact hours.
Prerequisite: CE 602. The course focuses on geospatial data processing, information extraction and analysis tools. It provides visualization and decision support applications using desktop GIS software. Examples of the student projects include: Applications of integrated geospatial date in environmental, infrastructure, urban planning and homeland security.

CE 610. Construction Management. 3 credits, 3 contact hours.
Restriction: B.S. degree in CE, technology, architecture, or related field. Managerial aspects of contracting. Study of an individual firm in relation to the entire construction industry. Topics include contractor organization and management, legal aspects of construction, and financial planning.

CE 611. Project Planning and Control. 3 credits, 3 contact hours.
Prerequisite: CE 610. Management tools as related to construction projects are analyzed and applied to individual projects. Emphasis is on network scheduling techniques, time-cost analysis, resource allocation and leveling, cost estimating, bidding strategy, and risk analysis.

CE 612. Machine Learning and Data Analytics for Civil Engineering Systems. 3 credits, 3 contact hours.
Prerequisites: CS 101, MATH 211, and MATH 279, or approval of instructor. This course provides students with hands-on and fundamental knowledge of machine learning, data science, and data mining methodologies for scraping, manipulating, transforming, cleaning, visualizing, summarizing, and modeling large-scale data in civil engineering and infrastructure systems using analytical tools. This course includes data management and analysis, data wrangling and exploration, unsupervised learning, pattern recognition, supervised learning for classification and regression purposes, data preprocessing, and model training and evaluation. Students will explore the capabilities of these concepts in addressing the challenging and interesting problems in the field of civil engineering, and they will develop skills to apply these techniques to solve multiple real-world civil engineering problems. Python programming language will be introduced and used throughout this course to illustrate practical examples and to show students how to apply the learned techniques in the civil engineering practice.

CE 614. Underground Construction. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in soil mechanics. Various aspects of underground construction, including rock and soft ground tunneling; open cut construction; underpinning; control of water; drilling and blasting rock; instrumentation; and estimating underground construction costs. Case studies and a field trip to an underground construction site will be included.

CE 615. Infrastructure and Facilities Remediation. 3 credits, 3 contact hours.
Restriction: graduate standing in civil engineering and basic knowledge of structures, and material science. Examines the methodology of inspection, field testing, evaluation and remediation of existing infrastructure and facilities, which include pipelines, tunnels, bridges, roadways, dams, and buildings. Typical materials distress and failure scenarios will be covered with remediation options through the use of case studies.
CE 616. Construction Cost Estimating. 3 credits, 3 contact hours.
Prerequisite: CE 610. Full range of construction cost-estimating methods including final bid estimates for domestic building and heavy/highway projects; computerized takeoff and estimating techniques; international construction; financial and cost reporting; databases; indices; risk; competition; performance; and profit factors.

CE 617. Historic Preservation. 3 credits, 3 contact hours.
This course addresses the many aspects of structural preservation from both an engineering and aesthetic perspective. Course topics include: permits and regulations, an overview of architectural styles, designation of historic structures, past methods of construction, current methods of preservation and the availability of grants and funding. Knowledge gained from the course will be applied directly to course projects involving the evaluation and recommendations needed for the proposed preservation of an existing structure.

CE 618. Applied Hydrogeology. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in earth science/geology, fluid mechanics, and calculus or permission of instructor. Examines ground water and contaminant movement through the subsurface environment. A basic understanding of the aquifer geology is emphasized. Hydrogeologic applications including well design, pumping tests, and computer modeling of subsurface flow, and methods to monitor and remediate contaminated groundwater are introduced.

CE 620. Open Channel Flow. 3 credits, 3 contact hours.
Prerequisite: undergraduate fluid mechanics. The principles developed in fluid mechanics are applied to flow in open channels. Steady and unsteady flow, channel controls, and transitions are considered. Application is made to natural rivers and estuaries.

CE 621. Hydrology. 3 credits, 3 contact hours.
Prerequisite: undergraduate fluid mechanics. The statistical nature of precipitation and runoff data is considered with emphasis on floods and droughts. The flow of groundwater is analyzed for various aquifers and conditions. Flood routing, watershed yield, and drainage problems are considered.

CE 622. Coastal Engineering. 3 credits, 3 contact hours.
Prerequisite: fluid mechanics and calculus. An introductory course covering basic wave theory, sediment transport and ocean circulation. The application of these principles to various coastal engineering problems will be discussed, including beach erosion, pollution transport in coastal waters, and the design of shore protection structures.

CE 623. Groundwater Hydrology. 3 credits, 3 contact hours.
Prerequisites: undergraduate fluid mechanics and computer programming, or consent of instructor. Basic principles of groundwater hydraulics; Darcian analysis of various aquifer systems; unsaturated flow into porous mediums; transport of contaminants in soil media; and mathematical models for fluid and contaminant transport.

CE 630. Matrix Analysis of Structures. 3 credits, 3 contact hours.
A review of matrix operations and energy methods, and development of flexibility and stiffness methods used in linear-elastic structural analysis. Behavior of continuous beams, plane trusses, space trusses, and frames are studied.

CE 631. Advanced Reinforced Concrete Design. 3 credits, 3 contact hours.
Prerequisites: an undergraduate course in theory and design of reinforced concrete. Analysis and design of pre-tensioned and post-tensioned prestressed concrete elements using the above two theories.

CE 632. Prestressed Concrete Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate course in theory and design of reinforced concrete. A review of basic concepts of elastic and ultimate strength theories and a study of the present design codes. Topics include: design of concrete building frames, two-way slabs, flat slabs, deep beams, and other structural elements using the above two theories.

CE 633. Structural Dynamics. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in structural analysis. Dynamic analysis of beams, frames, and other types of structures. Practical methods developed are applied to problems such as the analysis of the effects of earthquakes on buildings and moving loads on bridges.

CE 634. Fracture Mechanics of Engineering Materials. 3 credits, 3 contact hours.
Restriction: graduate standing in civil and/or mechanical engineering and basic knowledge of structures and mechanics of materials. Basic principles of fracture mechanics to increase understanding of cracking and fracture behavior of materials and structures. Emphasis on practical applications of fracture mechanics.

CE 636. Mechanics and Stability of Structures. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in theory of structural analysis. Topics include structural design concept; stability criteria; elastic and inelastic buckling; column buckling; lateral buckling of beams; stability of frames; stability of plates and shell; local buckling and post-buckling.

CE 637. Short Span Bridge Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in steel design and concrete design, and some knowledge of prestressed concrete fundamentals. Design and performance of highway and railroad bridges, particularly steel and prestressed concrete structures since they are most common in the northeast; and computer applications including bridge geometry, abutment design and composite beam design.
CE 638. Nondestructive Testing Methods in Civil Engineering. 3 credits, 3 contact hours.
Familiarizes the civil engineering student with nondestructive testing (NDT) techniques currently employed for evaluation and condition monitoring of civil structures and construction materials. Major emphasis in the application of NDT methodologies to steel, concrete, and timber as the construction material. Covers theories, principles, and testing methodologies associated with individual technologies from specific material point of view. Discusses advantages and limitations pertaining to the application of individual NDT technologies to construction materials.

CE 639. Applied Finite Element Methods. 3 credits, 3 contact hours.

CE 641. Engineering Properties of Soils. 3 credits, 3 contact hours.
Prerequisite: approved undergraduate course in soil mechanics within last five years. An in-depth study of physical and mechanical properties of soils. Topics include clay mineralogy, shear behavior and compressibility of fine and coarse grained soil; and in-situ measuring techniques such as vane shear, core penetration and pressure meter. Laboratory work includes consolidation test and triaxial test, with emphasis on analysis, interpretation and application of data to design problems.

CE 642. Foundation Engineering. 3 credits, 3 contact hours.
Prerequisites: approved undergraduate courses in soil mechanics and foundation engineering. The salient aspects of shallow foundation design such as bearing capacity and settlement analyses. Topics are relevant to the deep foundation, selection of the type and the determinate of load bearing capacity from soil properties, load tests, and driving characteristics utilizing wave equation analyses. Earth pressure theory and retaining wall design.

CE 643. Advanced Foundation Engineering. 3 credits, 3 contact hours.
Prerequisites: Approved undergraduate or graduate course in foundation designs within the last five years is required. Lateral and earth pressure computations for the design of retaining walls, bulkheads, cellular cofferdams, and sheetpiles. Also considers the design of internal bracing systems and anchors, soil nailing and reinforced earth. Slope stability of embankments and dams.

CE 644. Geology in Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate course in geology or permission of instructor. Geology has a significant influence on how we plan, design, and construct engineering works. This course examines how the geologic formations underlying a locale will ultimately determine land use, control structure design, and affect construction material availability. Included is a study of the various rock-forming processes and geologic agents that have shaped Earth's surface. The course also explores the role of geologic factors in assessing environmental impacts and natural hazards such as earthquakes, subsiding soils, and landslides. Case study applications and a field trip are included.

CE 645. Rock Mechanics. 3 credits, 3 contact hours.
Prerequisite: CE 342. Restriction: approved undergraduate course in soil mechanics within last five years or permission of instructor. Theoretical and experimental aspects of rock mechanics and rock engineering. Review of laboratory and field rock testing; empirical and analytical methods for describing strength, deformability and conductivity of intact rock and rock masses. Fracture mechanics and mechanics of discontinuous media, including flow through discontinuous media and hydraulic fracturing. Design and analysis of rock slopes, underground structures in rock and foundations on rock. Includes a term paper/design project.

CE 646. Geosynthetics & Soil Imp. 3 credits, 3 contact hours.
Prerequisite: CE 341 (see undergraduate catalog for description). Includes engineering properties of geosynthetics and their application in civil engineering, such as filtration, seepage, and erosion control; subgrade and slope stabilization. Soil improvement topics include preloading, electrokinetic stabilization, soil modification, admixtures and grouting.

CE 647. Geotechnical Aspects of Solid Waste. 3 credits, 3 contact hours.
Prerequisites: CE 341, CE 341A or equivalents (see undergraduate catalog for descriptions). Geotechnical aspects of solid waste such as municipal landfill, dredged materials, coal and incinerator ashes, identification and classification of waste materials, geological criteria for siting, laboratory and field testing, design for impoundment and isolation of waste, methods of stability analyses of landfill sites, techniques for stabilizing waste sites, leachate and gas collection and venting systems. Primary emphasis is on municipal wastes.

CE 648. Flow Through Soils. 3 credits, 3 contact hours.
Prerequisites: Approved undergraduate or graduate course in soil mechanics within the last five years is required. Explains the fundamentals of fluid flow through saturated and unsaturated soils and the use of computer programs for the solution of boundary value fluid flow problems in soils. The first two-thirds of the course are devoted to flow through saturated soils. The topics are mathematical description of flow through soils, solutions for steady state and transient state fluid flow and geotechnical applications. The last one-third is devoted to flow through unsaturated soils. Topics include steady state of transient state fluid flow and a presentation of how these concepts are applied to geoenvironmental problems.

CE 649. Design & Construction of Conc. 3 credits, 3 contact hours.
Importance of designing concrete pavements to resist distress or failure. Topics include the stresses in Rigid Pavement, Traffic and Loading, Material Characterization, Drainage, Pavement Performance, Rigid Pavement Design and Overlay Design.

CE 659. Flexible and Rigid Pavements. 3 credits, 3 contact hours.
Prerequisite: CE 341 or equivalent (see undergraduate catalog for description). Types of rigid (Portland cement) and flexible (bituminous) pavements. Properties of materials, including mineral aggregates. Design methods as functions of traffic load and expected life. Importance and consequences of construction methods. Maintenance and rehabilitation of deteriorated pavements. Same as TRAN 659.
CE 671. Performance and Risk Analysis of Infrastructure Systems. 3 credits, 3 contact hours.
This course presents a comprehensive systems approach to infrastructure asset management across areas of public and private infrastructure. Topics include the framework of integrated asset management illustrated in transportation, water and wastewater systems, the economic evaluation of infrastructure options, using life cycle cost analysis (LCCA) and cost-benefit analysis (CBA). The elements of performance measurement and modeling, including condition assessment and information management, failure and impact analysis are covered. Decision and risk analysis are covered to enable students to develop a holistic economic, performance and risk analysis approach to infrastructure management illustrated in a term project.

CE 672. Security Management of Critical Infrastructure. 3 credits, 3 contact hours.
This course focuses on the areas of vulnerability assessment and security management of critical infrastructure systems. A review of techniques for facility and network modeling and performance simulation, leads to sector-specific approaches to vulnerability analysis and critical infrastructure protection strategies using a Model-Based Vulnerability Analysis (MBVA). Covered critical infrastructure systems include water supply/environmental, transportation, power and energy systems, SCADA systems, cyber-infrastructure and telecommunications. The course ends with a review of the combined use of multi-criteria analysis techniques, expert heuristic response to scenarios and network analysis techniques in a general framework for vulnerability and security management of infrastructure systems in its key aspects: prevention, warning/detection and event mitigation and response planning and execution.

CE 700B. Masters Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. A written report must be submitted to the project advisor. The student cannot register in CE 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CE 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in CE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

CE 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (CE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

CE 702. Special Topics in Civil Engineering. 3 credits, 3 contact hours.
Restriction: advisor’s approval. Topics of special current interest in civil engineering.

CE 703. Concrete Durability. 3 credits, 3 contact hours.
Prerequisites: Undergraduate course in construction materials or reinforced concrete design, or permission of the instructor. This course will cover the design and maintenance of concrete structures and pavements from a material choice point of view. Students will learn how to design concrete mixtures, choose alternative and sustainable concrete materials, produce concrete specifications, protect concrete from long-term deterioration, and design solutions for repairing existing concrete. Students will learn about the mechanisms and chemistry and concrete deterioration. The following key topics will be covered: cement production, supplementary cementitious materials, mixture design and proportioning, concrete durability, dimensional stability, freeze-thaw attack, sulfate attack, corrosion, alkali-silica reaction, alternative cements, concrete specifications, and concrete construction.

CE 705. Mass Transportation Systems. 3 credits, 3 contact hours.
Prerequisites: CE 625 and TRAN 610 or IE 610. An investigation of bus, rapid transit, commuter railroad, and airplane transportation systems. Existing equipment, economics, capacity, and terminal characteristics are discussed, as well as new systems and concepts. Long- and short-range transportation systems are compared. Same as TRAN 705.

CE 711. Methods Improvement in Construction. 3 credits, 3 contact hours.
Prerequisite: CE 610. Improved methods in construction; various techniques of work sampling and productivity measurement; and current innovations in the construction industry for increasing efficiency.

CE 720. Water Resource Systems. 3 credits, 3 contact hours.
Prerequisites: CE 620, CE 621. A system methodology is applied to the analysis of water resource development and operation. Topics include operational hydrology, water quality criteria, streamflow requirements, resource allocation, and economics. Mathematical models are developed and employed in the evaluation of a case study.

CE 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.
CE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but which is not of sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for CE 726 if they have taken CE 725 in a prior semester.

CE 727. Independent Study III. 3 credits, 3 contact hours.
Restriction: written permission from department chairperson plus courses to be prescribed by the supervising faculty member. Covers areas of study in which one or more students may be interested but which is not of sufficiently broad interest to warrant a regular course offering.

CE 730. Plastic Analysis and Design. 3 credits, 3 contact hours.
Prerequisite: CE 639. Theory of plasticity applied to structural design. Study of methods of predicting strength and deformation of single and multi-story steel frames in the plastic range. Comparison of plastic and prestressed concrete.

CE 733. Design of Metal Structures. 3 credits, 3 contact hours.
Prerequisites: CE 639 and CE 636. Methods of design of metal structural systems. Topics include combined action of unsymmetrical sections, torsion of open and closed sections, buckling of columns and plates with various end conditions, and design of curved and boxed girders.

CE 734. Design of Tall Buildings and Space Structures. 3 credits, 3 contact hours.
Prerequisites: CE 639 and CE 636. Design of tall buildings and space structures emphasizing framing systems, and recent developments and current research related to the design of such structures.

CE 736. Finite Element Methods in Structural and Continuum Mechanics. 3 credits, 3 contact hours.
Prerequisites: MECH 630 and CE 630. Restriction: a working knowledge of computer programming. Finite element approaches for analysis of plane stress problems, plates in flexure, shells, and three-dimensional solids; and choice of interpolation functions, convergence, and the capabilities of the methods.

CE 737. Earthquake Engineering. 3 credits, 3 contact hours.
Prerequisite: CE 634. Practical design solutions for resisting the damaging effects of earthquake ground motions and other severe dynamic excitations. Factors which control dynamic response in elastic and inelastic ranges, and the nature of dynamic excitation. Theories of structural analysis and dynamics, and modern design methodologies on the behavior of structures.

CE 739. Structural Optimization. 3 credits, 3 contact hours.
Prerequisite: CE 639. Application of methods of mathematical programming to problems of optimal structural design. Optimal criteria methods, discrete and continuous systems, and code design will be covered.

CE 742. Geotechnology of Earthquake Engineering. 3 credits, 3 contact hours.
Prerequisite: CE 641. Explains the fundamentals of propagation of the earthquakes through soils to supporting structures and the use of computer programs in the solution of boundary value problems in soils. The first half is devoted to synthesis of earthquakes, mathematical formulation of the problem, measurement of applicable soil parameters, use of computer programs to solve 1-D wave propagation problems in soils with structures. The second half is devoted to soil liquefaction, soil-structure interaction, and design of machine foundations.

CE 753. Airport Design and Planning. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or EM 693 and CE 660. Planning of individual airports and statewide airport systems. Functional decision of air and landside facilities. Orientation, number and length of runways. Concepts of airport capacity. Passenger and freight terminal facility requirements. Airport access systems. FAA operating requirements. Financial, safety and security issues. Same as IE 753 and TRAN 753.

CE 755. Multi-modal Freight Transportation Systems Analysis. 3 credits, 3 contact hours.
Prerequisites: TRAN 610 or equivalent and CE 650 or EM 602 or equivalent. Quantitative methods for the analysis and planning of freight transportation services. The supply-performance-demand paradigm for freight transportation systems. Cost and performance as determined by system design and operations. Relationship of traffic and revenue to service levels and pricing. Optimal service design and redesign for transportation enterprises and operations planning. Fleet and facility investment planning. Applications to various modes. Same as EM 765 and TRAN 765.

CE 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Required of all candidates for the degree of Doctor of Philosophy. A minimum of 36 credits is required. Students must register for at least 6 credits of dissertation per semester until 36 credits are reached. Registration for additional credits may be permitted beyond the 6, with the approval of the advisor, to a maximum of 12 credits per semester. If the dissertation is not completed after 36 credits, registration for an additional 3 credits per semester is required thereafter. Registration for 3 credits is permitted during the summer session, hours to be arranged.

CE 790A. Doct Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: CE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in CE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).
CE 790B. Doct Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: CE 791. Since the CE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

CE 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: CE 791. Since the CE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in civil engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

CE 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

CE 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

CE 790F. Doct Dissertation & Res. 15 credits, 3 contact hours.

CE 791. Graduate Seminar. 0 credits, 1 contact hour.
A seminar in which faculty or others present summaries of advanced topics suitable for research. Students and faculty discuss research procedures, thesis organization, and content. Students present their own research for discussion and criticism. Required of all doctoral students registered for CE 790 unless requirement is waived, in writing, by the dean of graduate studies.

CE 792. Pre-Doctoral Dissertation. 3 credits, 3 contact hours.
Co-requisite: CE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in civil engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

CE 793B. Professional Project. 3 credits, 3 contact hours.

ENE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ENE 630. Physical Processes of Env Syst. 3 credits, 3 contact hours.

ENE 660. Introduction to Solid and Hazardous Waste Problems. 3 credits, 3 contact hours.
Pre or Corequisite: ENE 663. (May be taken concurrently.) Introduction to solid waste disposal. Industrial and urban sources of solid waste and conventional methods of waste disposal. Application of engineering principles related to these topics.

ENE 661. Environmental Microbiology. 3 credits, 3 contact hours.

ENE 662. Site Remediation. 3 credits, 3 contact hours.
Prerequisite: EM 631. Can be taken concurrently with EM 631. Examines site remediation from start to finish. Includes regulations, cleanup standards, remedial investigations, feasibility studies, risk assessment, and safety. Examines established and innovative cleanup technologies such as incineration, containment, bioremediation, vapor extraction and ground water recovery.

ENE 663. Water Chemistry. 3 credits, 3 contact hours.
Prerequisite: undergraduate general chemistry. The ability to analyze and solve a wide range of chemical equilibrium problems in water chemistry is developed.

ENE 664. Physical and Chemical Treatment. 3 credits, 3 contact hours.
Prerequisite: ENE 663. Physical and chemical operations and processes employed in the treatment of water and wastewater. Topics include gas transfer, coagulation, flocculation, solid-liquid separation, filtration, and disinfection.

ENE 665. Biological Treatment. 3 credits, 3 contact hours.
Pre or Corequisites: ENE 663, ENE 661. (May be taken concurrently.) Principles of evaluation and control of water pollution that describe aerobic treatment processes: oxidation ponds, trickling filters, and activated sludge. Anaerobic digestion and sludge handling and disposal as well as biodegradability study techniques for various wastes.

ENE 666. Analysis of Receiving Waters. 3 credits, 3 contact hours.
Pre or Corequisites: ENE 663 and ENE 661. Ecological responses of various types of receiving waters to municipal and industrial waste loadings. Mathematical models for water quality prediction and planning.

ENE 667. Solid Waste Disposal Systems. 3 credits, 3 contact hours.
Prerequisite: ENE 663. Review and evaluation of design criteria, methods, and equipment employed in handling and disposal of industrial and municipal solid wastes. Emphasis is on hazardous toxic waste, resource recovery, and regulatory constraints.

ENE 671. Environmental Impact Analysis. 3 credits, 3 contact hours.
Prerequisite: ENE 663. A graduate course dealing with physical aspects of the environment. Overview of environmental problems, federal and state standards, methodology for developing impact statements, case studies based on recent experience, basis for assessment and decision making.
EN 672. Stormwater Management. 3 credits, 3 contact hours.
This course provides a comprehensive study of stormwater management with emphasis on design practices. Topics include regulatory framework, an overview of structural and non-structural BMPs, groundwater recharge analysis, estimate of runoff, and design of detention basin and drainage systems.

EN 673. Sustainability and Life Cycle Analysis. 3 credits, 3 contact hours.
The course provides a systematic foundation for the connection between evolving technology and human activity impacts on natural systems by emphasizing the sources of environmental degradation and energy use and strategies to reduce risk and promote sustainability. The course provides hands-on experience with life cycle assessment computer tools and approaches. The course emphasizes relationships between industrial activities and regional and global natural systems: physical, chemical and biological focusing on the importance of sustainability goals and practices.

EN 700B. Master's Project. 3 credits, 3 contact hours.
Prerequisite: student must have sufficient experience and/or graduate courses in major field to work on the project. Subject matter to be approved by the department. Permission to register must be obtained from the project advisor. Extensive investigation, analysis, or design of environmental engineering problems not covered by regular graduate course work is required. A student with an exceptional project in ENE may, upon his/her own initiative and with the approval of his/her advisor, substitute the work of this course as the equivalent of the first 3 credits for EN 701 Master's Thesis. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EN 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in EN 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master's students registering for the first time in Master's Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

EN 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in environmental engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ENE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

EN 702. Special Topics in Environmental Engineering. 3 credits, 3 contact hours.
Restriction: advisor's approval. Topics of special current interest in environmental engineering.

EN 703. Biogeochemical Applications in Environmental Engineering. 3 credits, 3 contact hours.
Pre or Corequisites: ENE 663 Water Chemistry, ENE 661 Environmental Microbiology. This class will combine theoretical concepts (lectures) with laboratory and field studies to integrate the basic principles of environmental engineering, chemistry and microbiology to solve practical problems of assessment and treatment of contaminated sites. In the lectures, the students will be introduced to environmental regulations, the theoretical concepts for environmental sampling design, the procedures for analytical techniques, and traditional and cutting-edge remediation approaches. These lectures will be supplemented with peer-reviewed articles, technical reports, and operational methods. The field studies will consist in sampling collection methods, where the students will participate in a one-day sampling trip to a contaminated site to collect water, sediments, and plants samples. The students will then process the samples in the laboratory for further analysis for the contaminants of interest. Using this information, the students will propose one final remediation design. The final RI/RD will be presented to the whole class in a mock Community Advisory Group (CAG) session.

EN 720. Environmental Chemodynamics. 3 credits, 3 contact hours.
Introduction to concepts, mechanisms and models used to describe the transport of chemicals in the environment. Concepts and models are applied to air-water, sediment-water and soil-air interfaces.

EN 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

EN 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for EN 726 if they have taken EN 725 in a prior semester.

EN 790. Doctoral Dissert & Res. 0 credits, 0 contact hours.
Required of all students working toward the doctoral degree. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student has not completed the dissertation after completion of 36 credits, continued registration of 3 credits per semester is required.
Construction Management

This certificate trains individuals for highly skilled jobs in general contracting, heavy/highway and building construction, mechanical and electrical contracting, and construction management.

Who would be suited to take this program?

This certificate teaches managerial aspects of contracting and the study of an individual firm in relation to the entire construction industry. Topics include contractor organization and management, legal aspects of construction, and financial planning. In addition, this graduate certificate will allow professionals to specifically focus in on the legal aspect of Environmental Engineering, Construction Management or Legal, Ethical and Intellectual Property Issues for Engineering Managers.

What will I learn?

- Construction Management where you will study an individual firm in relation to the entire construction industry.
- Construction Cost Estimating, which includes a full range of construction cost-estimating methods, such as final bid estimates for domestic building and heavy/highway projects; computerized takeoff and estimating techniques; international construction; financial and cost reporting; databases; indices; risk; competition; performance; and profit factors.
- Project Control which focuses on the methodology that can be employed to plan project implementation and control progress.
• Facility Maintenance that has a strong emphasis on planning and control of facilities use, maintenance, utility management, managerial control, budgets and costs, personnel administration, legal and safety, flexibility measurement, and design.
• Legal Aspects in Construction, incorporating contract responsibilities of contractors, engineers, and owners; subcontracts and third-party liability; construction law and code compliance; and insurance and bonds.

Why study Construction Management at NJIT?

Construction Management can be studied partially online or at our NJIT Newark campus. You’ll have access to the same outstanding facilities and professors as full-time NJIT students, plus the flexibility you need to juggle all the aspects of your life.

This certificate teaches managerial aspects of contracting and the study of an individual firm in relation to the entire construction industry. Topics include contractor organization and management, legal aspects of construction, and financial planning. In addition, this graduate certificate will allow professionals to specifically focus in on the legal aspect of Environmental Engineering, Construction Management or Legal, Ethical and Intellectual Property Issues for Engineering Managers.

For more information about the online graduate certificate in Construction Management click here.

Prerequisites

Applicants should have an undergraduate degree in civil engineering, engineering or its equivalent, and should have proficiency in basic sciences and mathematics. Students who lack an appropriate undergraduate background may complete bridge courses. The complete list of bridge courses is as follows:

• MATH 112 (pre-req MATH 111) (Calculus 1 and 2)
• MATH 279 (pre-req MATH 112) (Probability and Stats for Engineers)
• CE 200/200A (pre-req MATH 111) (Surveying)
• CE 210 (Construction Materials and Procedures)
• CE 341/341A (pre-req MECH 320- for this program) (Soil Mechanics)
• MECH 320 (pre-req MATH 112 and PHYS 111/111A) (Statics and Strength of Materials)
• CS 101 (Intro to Programming)

Related Degree Programs

All credits for Construction Management relates in its entirety to either NJIT MS in Civil Engineering or NJIT MS in Engineering Management.

Gainful Employment Disclosure

Click here for the Gainful Employment Disclosure for this program.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td>3</td>
</tr>
<tr>
<td>CE 616</td>
<td>Construction Cost Estimating</td>
<td>3</td>
</tr>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td></td>
</tr>
<tr>
<td>EM 631</td>
<td>Legal Aspects in Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
</tbody>
</table>

ENVIRONMENTAL ENGINEERING

From the NJIT Department of Civil and Environmental Engineering, the Graduate Certificate in Environmental Engineering allows students to focus in Water Quality, Treatment and Infrastructure, Integrated Site Remediation, or Multidisciplinary Environmental Engineering. Environmental Engineers are
interested in ways to protect the environment, improve water quality, and are essential in planning, designing and constructing water and wastewater treatment plants, solid waste disposal systems, site remediation approaches and emission control measures.

Who would be suited to take this program?

Eligible participants are typically employees of major corporations, government agencies, private consulting and construction firms, and universities.

What will I learn?

- **Physical Processes of Environmental Systems** - Physical processes in various media (open water, porous media) under various hydraulic regimes (laminar and turbulent). Transport by diffusion, convection, and dispersion is considered along with absorption.

- **Environmental Microbiology** - Microbiology of natural and human impacted environment, fundamental microbiology in water treatment engineering, microbial detection methodologies, waterborne disease outbreaks, microbial risk assessment, biotechnologies for renewable energy, and other emerging topics

- **Site Remediation** - Regulations, cleanup standards, remedial investigations, feasibility studies, risk assessment, and safety. Established and innovative cleanup technologies such as incineration, containment, bioremediation, vapor extraction and ground water recovery.

- **Physical and Chemical Treatment** - Physical and chemical operations and processes employed in the treatment of water and wastewater. Gas transfer, coagulation, flocculation, solid-liquid separation, filtration, and disinfection.

- **Biological Treatment** - Principles of evaluation and control of water pollution that describe aerobic treatment processes such as oxidation ponds, trickling filters, and activated sludge; and anaerobic processes, and sludge handling and disposal as well as biodegradability study techniques for various wastes.

- **Environmental Impact Analysis** - Environmental problems, federal and state standards, methodology for developing impact statements, case studies based on recent experience, basis for assessment and decision making.

- **Stormwater Management** - With an emphasis on design practices, you will learn regulatory framework, an overview of structural and non-structural BMPs, groundwater recharge analysis, estimate of runoff, and design of detention basin and drainage systems.

- **Geotechnical Aspects of Solid Waste** - municipal landfill, dredged materials, coal and incinerator ashes, identification and classification of waste materials, geological criteria for siting, laboratory and field testing, design for impoundment and isolation of waste, methods of stability analyses of landfill sites, techniques for stabilizing waste sites, leachate and gas collection and venting systems.

- **Legal Aspects in Environmental Engineering** - Control of air, water, and solid waste pollution by federal, state, and local government statutes and international law. Preparation of environmental impact statements and the right of private citizens to bring suit under federal clean air and water pollution legislation are discussed, as well as limitations on these rights.

Why study Environmental Engineering at NJIT?

Students will learn to develop sustainable solutions to environmental problems, preparing to work with regional, national and global communities to protect the environment and improve water quality. Jobs in this field are essential in planning, designing and constructing water and wastewater treatment plants, solid waste disposal systems, site remediation approaches and emission control measures.

Into what industries might holders of this program find employment?

- Federal/State/Local Department of Environmental Protection (e.g., USDEP, NJDEP)
- Private consulting company conducting audits/reviews in environmental science
- Junior Civil Engineer
- Sr. Transportation Engineering Manager
- Hydrologist

Prerequisites

Applicants should have a bachelor’s degree from an accredited institution with some undergraduate background in a related field (environmental engineering, mathematics, etc.).

Related Degree Programs

All courses in this program related entirely to the NJIT MS in Environmental Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/environmental-ms/).

What are the Required Courses?
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>Select four (4) of the following:</td>
<td>12</td>
</tr>
<tr>
<td>ENE 661 [http://catalog.njit.edu/search/?P=ENE%20661]</td>
<td>Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>ENE 662 [http://catalog.njit.edu/search/?P=ENE%20662]</td>
<td>Site Remediation</td>
<td></td>
</tr>
<tr>
<td>ENE 664 [http://catalog.njit.edu/search/?P=ENE%20664]</td>
<td>Physical and Chemical Treatment</td>
<td></td>
</tr>
<tr>
<td>ENE 665 [http://catalog.njit.edu/search/?P=ENE%20665]</td>
<td>Biological Treatment</td>
<td></td>
</tr>
<tr>
<td>EM 631 [http://catalog.njit.edu/search/?P=EM%20631]</td>
<td>Legal Aspects in Environmental Engineering</td>
<td></td>
</tr>
</tbody>
</table>

ENVIRONMENTAL SCIENCE AND ENGINEERING

A combination of both science and engineering, the Graduate Certificate in Environmental Science and Engineering at NJIT helps students solve environmental issues from both a scientific point of view as well as from an engineering point of view. The program will ultimately force a mathematical mindset to employ the scientific method when monitoring and solving real world environmental issues.

Who would be suited to take this program?

Due to the nature of engineering courses, one would want to possess an engineering background in order to be eligible for this program. Participants are typically employees of major corporations, government agencies, private consulting and construction firms, and universities.

What will I learn?

- **Environmental Chemical Science** - Principles of physical, inorganic and organic chemistry are applied to understanding the origins of environmental pollutants, their transport, distribution and decomposition pathways.

- **Environmental Analysis** - The analysis of environmental samples is studied from the acquisition of representative samples, through sample handling, chain of custody, sample storage, analytical method selection, analysis, and data treatment.

- **Environmental Problem Solving** - Solutions for current environmental problems. Students are asked to respond to an imaginary Request for Proposal (RFP) in writing and before a team of technical experts at an oral presentation. Solutions proposed in student RFPs must reflect knowledge of environmental science and technology in current use.

- **Global Environmental Problems** - Relationships of the earth's temperature balance, global air circulation patterns, global energy needs, and control and remediation technologies.

- **Toxicology** - The assessment of acute, sub-acute and chronic effects of hazardous and toxic chemicals. Qualitative and quantitative measures of toxicity and testing protocols are addressed. The role of toxicology in risk assessment and risk management is discussed.

- **Environmental Microbiology** - 1) basic microbiology: biochemical principles, cell structure organization, microbial nutrition and growth, 2) the important microbes involved in environmental microbiology and address the environments where they are found, and 3) how they are detected and monitored, and their effects on humans, and the environment.

- **Energy and Sustainability** - Energy fundamentals including the basic principles necessary to understand energy systems. The technological and engineered systems for processing and using different energy non-renewable and renewable sources. The social and environmental consequences of energy production, distribution, and use, including a comparison of socioeconomic models of global energy applications.

- **Legal Aspects in Environmental Engineering** - Control of air, water, and solid waste pollution by federal, state, and local government statutes and international law. Preparation of environmental impact statements and the right of private citizens to bring suit under federal clean air and water pollution legislation are discussed, as well as limitations on these rights.
• **Sustainable Politics and Policy** - Sustainability development and institutional efforts to implement strategies at various geopolitical scales: international, national, regional, and local. The course introduces tools to measure progress toward sustainability through the use of metrics such as ecological footprint analysis and life-cycle analysis.

• **Physical Processes of Environmental Systems** - Physical processes in various media (open water, porous media) under various hydraulic regimes (laminar and turbulent). Transport by diffusion, convection, and dispersion is considered along with absorption.

• **Environmental Microbiology** - Microbiology of natural and human impacted environment, fundamental microbiology in water treatment engineering, microbial detection methodologies, waterborne disease outbreaks, microbial risk assessment, biotechnologies for renewable energy, and other emerging topics.

• **Site Remediation** - Regulations, cleanup standards, remedial investigations, feasibility studies, risk assessment, and safety. Established and innovative cleanup technologies such as incineration, containment, bioremediation, vapor extraction and ground water recovery.

• **Physical and Chemical Treatment** - Physical and chemical operations and processes employed in the treatment of water and wastewater. Gas transfer, coagulation, flocculation, solid-liquid separation, filtration, and disinfection.

• **Biological Treatment** - Principles of evaluation and control of water pollution that describe aerobic treatment processes such as oxidation ponds, trickling filters, and activated sludge; and anaerobic processes, and sludge handling and disposal as well as biodegradability study techniques for various wastes.

• **Environmental Impact Analysis** - Environmental problems, federal and state standards, methodology for developing impact statements, case studies based on recent experience, basis for assessment and decision making.

• **Stormwater Management** - With an emphasis on design practices, you will learn regulatory framework, an overview of structural and non-structural BMPs, groundwater recharge analysis, estimate of runoff, and design of detention basin and drainage systems.

• **Geotechnical Aspects of Solid Waste** - Municipal landfill, dredged materials, coal and incinerator ashes, identification and classification of waste materials, geological criteria for siting, laboratory and field testing, design for impoundment and isolation of waste, methods of stability analyses of landfill sites, techniques for stabilizing waste sites, leachate and gas collection and venting systems.

Why study Environmental Science and Engineering at NJIT?
This hybrid program allows for individuals to learn from both a theoretical point of view as well as a practical one. Students will learn to develop sustainable solutions to environmental problems, preparing to work with regional, national and global communities to protect the environment and improve water quality. Jobs in this field are essential in planning, designing and constructing water and wastewater treatment plants, solid waste disposal systems, site remediation approaches and emission control measures.

Into what industries might holders of this program find employment?
- Federal/State/Local Department of Environmental Protection (e.g., USDEP, NJDEP)
- Private consulting company conducting audits/reviews in environmental science
- Medical Centers
- Sr. Transportation Engineering Manager
- Hydrologist

Prerequisites
Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in a related field (biology, chemistry, environmental science, environmental engineering, mathematics, etc.).

Related Degree Programs
Depending on the courses selected, coursework would apply to either the NJIT MS in Environmental Science (https://catalog.njit.edu/graduate/science-liberal-arts/chemistry-environmental-science/environmental-science-ms/) or the NJIT MS in Environmental Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/environmental-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses: choose four (4) courses in total, two (2) courses from each group.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Select two (2) of the following:</td>
<td></td>
</tr>
<tr>
<td>EVSC 610</td>
<td>Environmental Chemical Science</td>
<td>6</td>
</tr>
</tbody>
</table>

RUxj
Geotechnical Engineering

Geotechnical Engineering Certificate

The Geotechnical Engineering certificate provides a strong foundation and detailed technical program in the design and construction of geotechnical structures such as foundations, retaining walls, and dams as well as design of environmental remediations. This is a 12-credit certificate. Students may pursue classes from geotechnical or a geo-environmental focus areas.

Who would be suited to take this program?

Students and professionals interested in the areas of Geotechnical and Geo-environmental Engineering. Graduates of the program will be well positioned to understand and design a variety of geotechnical structures and environmental remediations.

What are the prerequisites?

Applicants should have a bachelor's degree from an accredited institution in either Civil Engineering, Civil Technology, Mechanical Engineering or bachelor's degree in Mathematics, Physics with relevant experience and appropriate prerequisites. NJIT’s standard admission requirements apply to this graduate certificate.

What will I learn?
This program prepares individuals to apply geotechnical engineering principles, which deal with the analysis, design, inspection, and construction of earth and earth supported structures, to the application of environmental problems, such as waste containment, waste disposal, construction of landfills, soil permeation, soil analysis, and soil improvement. Includes instruction in soil mechanics, soil dynamics, soil behavior, waste management and containment systems, geosynthetics, geochemistry, earth structures, geo-environmental engineering, geotechnical engineering, earthquake engineering, foundation engineering and tunneling.

Why Study Geotechnical Engineering at NJIT?
NJIT is situated in Newark, minutes from Newark Penn Station. Jersey City and New York City are also a short train ride away, providing easy access to these commercial areas with many companies that employ Geotechnical and Environmental Engineers. NJIT is a top 100 university, classified as R1 very high research activity, with faculty performing cutting-edge research and publishing in top venues. NJIT also consistently ranks highly on added-value and diversity.

Into what industries might holders of this program find employment?
Modern industries need the kind of information that comes from trained individuals who can analyze, design, manage and/or inspect the construction of geotechnical infrastructure. Positions in the industry include:

- Geotechnical Engineer
- Environmental Engineer
- Forensic Engineer
- Project Engineer
- Project Manager
- Construction Manager

Related Degree Programs
Credits from this graduate certificate can be applied toward the NJIT MS in Civil Engineering (Geotechnical or Geo-Environmental Concentration) degree.

COURSE DESCRIPTIONS

Familiarizes the civil engineering student with nondestructive testing (NDT) techniques currently employed for evaluation and condition monitoring of civil structures and construction materials. Major emphasis in the application of NDT methodologies to steel, concrete, and timber as the construction material. Covers theories, principles, and testing methodologies associated with individual technologies from specific material point of view. Discusses advantages and limitations pertaining to the application of individual NDT technologies to construction materials.

CE 641. Engineering Properties of Soils, 3 credits.
Prerequisite: approved undergraduate course in soil mechanics within last five years. An in-depth study of physical and mechanical properties of soils. Topics include clay mineralogy, shear behavior and compressibility of fine and coarse grained soil; and in-situ measuring techniques such as vane shear, core penetration and pressure meter. Laboratory work includes consolidation test and triaxial test, with emphasis on analysis, interpretation and application of data to design problems.

CE 642. Foundation Engineering, 3 credits.
Prerequisites: approved undergraduate courses in soil mechanics and foundation engineering. The salient aspects of shallow foundation design such as bearing capacity and settlement analyses. Topics are relevant to the deep foundation, selection of the type and the determination of load bearing capacity from soil properties, load tests, and driving characteristics utilizing wave equation analyses. Earth pressure theory and retaining wall design.

CE 643. Advanced Foundation Engineering, 3 credits.
Prerequisites: Approved undergraduate or graduate course in foundation designs within the last five years is required. Lateral and earth pressure computations for the design of retaining walls, bulkheads, cellular cofferdams, and sheet piles. Also considers the design of internal bracing systems and anchors, soil nailing and reinforced earth. Slope stability of embankments and dams.

CE 646. Geosynthetics & Soil Imp, 3 credits.
Prerequisite: CE 341 (see undergraduate catalog for description). Includes engineering properties of geosynthetics and their application in civil engineering, such as filtration, seepage, and erosion control; subgrade and slope stabilization. Soil improvement topics include preloading, electrokinetic stabilization, soil modification, admixtures and grouting.

CE 647. Geotechnical Aspects of Solid Waste, 3 credits.
Prerequisites: CE 341, CE 341A or equivalents (see undergraduate catalog for descriptions). Geotechnical aspects of solid waste such as municipal landfill, dredged materials, coal and incinerator ashes, identification and classification of waste materials, geological criteria for siting, laboratory and field testing, design for impoundment and isolation of waste, methods of stability analyses of landfill sites, techniques for stabilizing waste sites, leachate and gas collection and venting systems. Primary emphasis is on municipal wastes.

CE 648. Flow Through Soils, 3 credits.

Prerequisites: Approved undergraduate or graduate course in soil mechanics within the last five years is required. Explains the fundamentals of fluid flow through saturated and unsaturated soils and the use of computer programs for the solution of boundary value fluid flow problems in soils. The first two-thirds of the course are devoted to flow through saturated soils. The topics are mathematical description of flow through soils, solutions for steady state and transient state fluid flow and geotechnical applications. The last one-third is devoted to flow through unsaturated soils. Topics include steady state of transient state fluid flow and a presentation of how these concepts are applied to geo-environmental problems.

CE 742. Geotechnology of Earthquake Engineering, 3 credits.

Prerequisite: CE 641. (http://catalog.njit.edu/file://search/%3Fp=CE%20641/). Explains the fundamentals of propagation of the earthquakes through soils to supporting structures and the use of computer programs in the solution of boundary value problems in soils. The first half is devoted to synthesis of earthquakes, mathematical formulation of the problem, measurement of applicable soil parameters, use of computer programs to solve 1-D wave propagation problems in soils with structures. The second half is devoted to soil liquefaction, soil-structure interaction, and design of machine foundations.

ENE 660. Introduction to Solid and Hazardous Waste Problems, 3 credits.

Prerequisite: ENE 663. (May be taken concurrently.) Introduction to solid waste disposal. Industrial and urban sources of solid waste and conventional methods of waste disposal. Application of engineering principles related to these topics.

ENE 662. Site Remediation, 3 credits.

Prerequisite: EM 631. Can be taken concurrently with EM 631. Examines site remediation from start to finish. Includes regulations, cleanup standards, remedial investigations, feasibility studies, risk assessment, and safety. Examines established and innovative cleanup technologies such as incineration, containment, bioremediation, vapor extraction and ground water recovery.

ENE 671. Environmental Impact Analysis, 3 credits.

Prerequisite or corequisite: ENE 663. A graduate course dealing with physical aspects of the environment. Overview of environmental problems, federal and state standards, methodology for developing impact statements, case studies based on recent experience, basis for assessment and decision making.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geotechnical Core - Select one from the following:</td>
<td></td>
</tr>
<tr>
<td>CE 641</td>
<td>Engineering Properties of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CE 644</td>
<td>Geology in Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 645</td>
<td>Rock Mechanics</td>
<td></td>
</tr>
</tbody>
</table>

Students select one of the following two options.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 1: Geotechnical Option - Select three from the following:</td>
<td>9</td>
</tr>
<tr>
<td>CE 642</td>
<td>Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 643</td>
<td>Advanced Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 646</td>
<td>Geosynthetics & Soil Imp</td>
<td></td>
</tr>
<tr>
<td>CE 648</td>
<td>Flow Through Soils</td>
<td></td>
</tr>
<tr>
<td>CE 742</td>
<td>Geotechnology of Earthquake Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 638</td>
<td>Nondestructive Testing Methods in Civil Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 2: Geo-environmental Option - Select three from the following:</td>
<td>9</td>
</tr>
<tr>
<td>CE 646</td>
<td>Geosynthetics & Soil Imp</td>
<td></td>
</tr>
<tr>
<td>CE 648</td>
<td>Flow Through Soils</td>
<td></td>
</tr>
<tr>
<td>CE 647</td>
<td>Geotechnical Aspects of Solid Waste</td>
<td></td>
</tr>
</tbody>
</table>
Hydrology and Water Resources Engineering

From the NJIT Department of Chemicals and Materials Engineering, the Graduate Certificate in Polymers and Plastics prepares students to apply mathematical and scientific principles to the design, development and operational evaluation of synthesized macromolecular compounds and their application to specific engineering uses. This includes the development of industrial materials with tailored properties, the design of lightweight structural components, the use of liquid or solid polymers, and the analysis and control of From the NJIT Department of Civil and Environmental Engineering, the Graduate Certificate in Hydrology and Water Resources Engineering prepares individuals to apply mathematical and scientific principles to the design, development and operational evaluation of systems for collecting, storing, moving, conserving and controlling surface- and groundwater, including water quality control, water cycle management, management of human and industrial water requirements, water delivery, availability, and flood control.

Who would be suited to take this program?

This program is designed Civil or Environmental Engineers in mind. Geologists and Hydrologists and public health officials must work together utilizing the techniques learned here to help build and maintain inhabitable land/towns/cities, thus both occupations would be suited for this program.

What will I learn?

- **Physical Processes of Environmental Systems** - Physical processes in various media (open water, porous media) under various hydraulic regimes (laminar and turbulent). Transport by diffusion, convection, and dispersion is considered along with absorption.

- **Introduction to Solid and Hazardous Waste Problems** - Solid waste disposal; industrial and urban sources of solid waste and conventional methods of waste disposal.

- **Environmental Microbiology** - The microbiology of natural and human impacted environment, fundamental microbiology in water treatment engineering, microbial detection methodologies, waterborne disease outbreaks, microbial risk assessment, biotechnologies for renewable energy, and other emerging topics that help enhance your problem-solving skills and increase your knowledge base.

- **Water Chemistry** - The ability to analyze and solve a wide range of chemical equilibrium problems in water chemistry.

- **Stormwater Management** - Regulatory framework, an overview of structural and non-structural BMPs, groundwater recharge analysis, estimate of runoff, and design of detention basin and drainage systems.

- **Applied Hydrogeology** - Ground water and contaminant movement through the subsurface environment; aquifer geology; hydrogeologic applications including well design, pumping tests, and computer modeling of subsurface flow, and methods to monitor and remediate contaminated groundwater.

- **Open Channel Flow** - The principles developed in fluid mechanics are applied to flow in open channels. Steady and unsteady flow, channel controls, and transitions are considered. Application is made to natural rivers and estuaries.

- **Hydrology** - The statistical nature of precipitation and runoff data is considered with emphasis on floods and droughts. The flow of groundwater is analyzed for various aquifers and conditions. Flood routing, watershed yield, and drainage problems are considered.

- **Mathematical Fluid Dynamics I** - Introduction to the basic ideas of fluid dynamics, with an emphasis on rigorous treatment of fundamentals and the mathematical developments and issues. The course focuses on the background and motivation for recent mathematical and numerical work on the Euler and Navier-Stokes equations, and presents a mathematically intensive investigation of various model equations of fluid dynamics (e.g., the Korteweg-de-Vries equations).

Why study Hydrology and Water Resources Engineering at NJIT?

The field of hydrology is a crucial area of scientific study and employment for people interested in protecting the earth's water resources, in combating water pollution and in providing engineering hydrology. Hydrologists work in conjunction with the work of civil engineers in developing water resources infrastructure. Hydrology is the scientific study of the effects, properties and distribution of water on the earth's surface in soil, underlying rock structures and in the earth's atmosphere. The NJIT Graduate Certificate in Hydrology and Water Resources enables students to transition into this highly important field.

Into what industries might holders of this program find employment?

- Water Resources Engineering
- Hydrology
- Agriculture
Civil Engineering

Prerequisites

Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in a related field (chemical engineering, manufacturing engineering, materials science, materials engineering, etc.).

Related Degree Programs

This graduate certificate may transition into either the NJIT MS in Civil Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/civil-ms/) or the NJIT MS in Environmental Engineering (https://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/environmental-ms/).

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td>12</td>
</tr>
<tr>
<td>Select four (4) of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 630 (http://catalog.njit.edu/search/?P=ENE%20630)</td>
<td>Physical Processes of Env Syst.</td>
<td></td>
</tr>
<tr>
<td>ENE 660 (http://catalog.njit.edu/search/?P=ENE%20660)</td>
<td>Introduction to Solid and Hazardous Waste Problems</td>
<td></td>
</tr>
<tr>
<td>ENE 661 (http://catalog.njit.edu/search/?P=ENE%20661)</td>
<td>Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>ENE 663 (http://catalog.njit.edu/search/?P=ENE%20663)</td>
<td>Water Chemistry</td>
<td></td>
</tr>
<tr>
<td>ENE 672 (http://catalog.njit.edu/search/?P=ENE%20672)</td>
<td>Stormwater Management</td>
<td></td>
</tr>
<tr>
<td>CE 618 (http://catalog.njit.edu/search/?P=CE%20618)</td>
<td>Applied Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>CE 620 (http://catalog.njit.edu/search/?P=CE%20620)</td>
<td>Open Channel Flow</td>
<td></td>
</tr>
<tr>
<td>CE 621 (http://catalog.njit.edu/search/?P=CE%20621)</td>
<td>Hydrology</td>
<td></td>
</tr>
<tr>
<td>MATH 715 (http://catalog.njit.edu/search/?P=MATH%20715)</td>
<td>Mathematical Fluid Dynamics I</td>
<td></td>
</tr>
</tbody>
</table>

Intelligent Transportation Systems

The Intelligent Transportation Systems (ITS) Certificate Program aims on studying ITS in a systematic and focused way. This certificate program provides the current and future ITS workforce with flexible, accessible ITS learning through training, technical assistance, and educational resources. The program will assist graduate students, educators, and transportation professionals in developing their knowledge, skills, and abilities to build technical proficiency for ITS.

Who would be suited to take this program?

This certificate program is ideal for emerging Intelligent Transportation System (ITS) engineers or project managers in the field. Some job titles include:

- ITS Analyst
- ITS Project Manager
- ITS Engineer

What will I learn?

- **Traffic Studies and Capacity** - 1) elementary probability and statistics; 2) characteristics of the traffic stream; 3) fundamental traffic flow relationships. Also, the principal methodologies used to perform transportation facility capacity analyses for: basic freeway sections, weaving areas, ramps and ramp junctions, multi-lane and two lane roadways, signalized and unsignalized intersections.
- **Intelligent Transportation Systems Introduction** - The fundamentals of ITS including ITS national/regional architectures, designing process, and the state-of-the-practice technologies used to improve the safety, efficiency and control of surface transportation systems, including Connected Vehicles. Technological and operational issues of ITS and using them for advanced traffic management and connected vehicles.
• **Advanced Transportation Modeling** - Discuss advanced modeling techniques for the evaluation of ITS applications. The modeling techniques covered will include Macroscopic, Mesoscopic, and Microscopic modeling tools to hone students’ hands-on skills and practical experience for ITS project design and evaluation.

• **Geographic Information System** - Geographic Information System (GIS) and its applications for Intelligent Transportation Systems (ITS). Topics include fundamental data structures and basic functions, methods of data capture and sources of data, and the nature and characteristics of spatial data and objects. Students will be designing, building, querying, updating, maintaining and managing relational databases, using the Structured Query Language (SQL).

• **Database Fundamentals** - extensive, pragmatic experience in designing, building, querying, updating, maintaining and managing relational databases, using the Structured Query Language (SQL). You will also learn logical and physical database design. SQL will be extensively covered, and students will design and implement sophisticated SQL queries.

• **Data Management System Design** - methods of database design and conceptual modeling, physical storage for database information and fundamental notions of concurrency control and recovery in database systems. This topic requires basic knowledge of data structures and relational database technology.

Why study Intelligent Transportation Design (ITS) at NJIT?

NJIT has long been offering both the MS in Transportation, for transportation engineers, and the MS in Computer Science, for technology journeymen. This program combines the strengths of both in tightly focused package.

Into what industries might holders of this program find employment?

• Federal/State/Local Department of Transportation (e.g., USDOT, NJ DOT)
• Private consulting company conducting ITS Design, Operation, and Evaluation (e.g., Cambridge Systematics, Leidos, Booz Allen Hamilton)
• Information Technology (IT) company developing ITS, Smart City, and Connected Vehicle technologies and applications (e.g., SIEMENS, IBM)

Prerequisites

Applicants should have a bachelor’s degree from an accredited institution with some undergraduate background in economics, mathematics, probability and statistics, and computers (specifically, database design). Students who lack an appropriate background may be admitted and required to make up deficiencies by taking a program of courses designed in consultation with graduate advisors.

Related Degree Programs

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 615</td>
<td>Traffic Studies and Capacity</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 755</td>
<td>Intelligent Transportation Systems</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 698</td>
<td>Advanced Transportation Modeling</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TR 602</td>
<td>Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>IS 531</td>
<td>Database Fundamentals</td>
<td></td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
</tbody>
</table>

M.S. in Civil Engineering

Degree Requirements

Students who do not have a bachelor's degree in civil engineering, but who want to obtain a master's degree in civil engineering must complete a bridge program for their chosen area of specialization. These courses are not counted for degree credit. See the areas of specialization in this section for specific bridge programs. Please note that prerequisites for bridge courses also must be met. See the undergraduate catalog for descriptions of 100- to 400-level courses. Some of the bridge courses may be waived depending on the student's background.

The program as shown below offers numerous areas of specialization, each with its own list of required and elective courses and bridge program. Students must maintain a minimum GPA of 3.0 in core courses and a minimum overall GPA of 3.0. Once the choice of specialization is made, the student consults his/her specialization advisor to plan and develop an individualized and cohesive sequence of courses that will meet the program requirements of at least 30 graduate degree credits.
Other suitable electives may be taken subject to approval of program advisor.

Students are able to substitute Master’s thesis in their program. With permission of their research advisor, students intending to do an MS thesis should first register in the CE 700B (Masters Project). Students must receive a satisfactory (S) grade in 700B before registering for CE 701B (Masters Thesis). Students taking CE 701B must register in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in CE 700B.

M.S. in Civil Engineering, Construction Engineering and Management

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 210</td>
<td>Construction Materials and Procedures</td>
<td>3</td>
</tr>
<tr>
<td>CE 200</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CE 200A</td>
<td>Surveying Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MECH 320</td>
<td>Statics and Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 279</td>
<td>Statistics and Probability for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>CE 341</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 341A</td>
<td>Soil Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 credits as follows:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td></td>
</tr>
</tbody>
</table>

Specialty Electives		
12 to 18 credits as follows:	12-18	
CE 614	Underground Construction	
CE 615	Infrastructure and Facilities Remediation	
CE 616	Construction Cost Estimating	
CE 617	Historic Preservation	
CE 644	Geology in Engineering	
CE 671	Performance and Risk Analysis of Infrastructure Systems	
CE 711	Methods Improvement in Construction	
CE 700B	Masters Project	
CE 701B	Master’s Thesis	
EM 632	Legal Aspects in Construction	

| General Electives | |
| 0 to 6 credits of General Department Electives | 0-6 |

Management/Leadership Electives		
3 to 6 credits as follows:	0-6	
ACCT 615	Management Accounting	
FIN 600	Corporate Finance I	
EPS 622	Sustainable Politics and Policy	
HRM 601	Organizational Behavior	

| Total Credits | 30 |

M.S. in Civil Engineering, Environmental Engineering, Water Quality Program

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality Bridge Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 320</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>
M.S. in Civil Engineering

CHEM 126 General Chemistry II

Total Credits 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 663</td>
<td>Water Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENE 661</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>or EVSC 627</td>
<td>Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>Specialty Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 to 18 credits as follows:</td>
<td>12-18</td>
<td></td>
</tr>
<tr>
<td>ENE 664</td>
<td>Physical and Chemical Treatment</td>
<td></td>
</tr>
<tr>
<td>ENE 665</td>
<td>Biological Treatment</td>
<td></td>
</tr>
<tr>
<td>ENE 672</td>
<td>Stormwater Management</td>
<td></td>
</tr>
<tr>
<td>CE 671</td>
<td>Performance and Risk Analysis of Infrastructure Systems</td>
<td></td>
</tr>
<tr>
<td>ENE 700B</td>
<td>Master's Project</td>
<td></td>
</tr>
<tr>
<td>ENE 701B</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>General Electives</td>
<td>0-6</td>
<td></td>
</tr>
<tr>
<td>0 to 6 credits of General Department Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management/Leadership Electives</td>
<td>3-6</td>
<td></td>
</tr>
<tr>
<td>3 to 6 credits as follows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>CE 711</td>
<td>Methods Improvement in Construction</td>
<td></td>
</tr>
<tr>
<td>EM 631</td>
<td>Legal Aspects in Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 30

M.S. in Civil Engineering, Environmental Engineering Integrated Site Remediation

CHEM 126 General Chemistry II

Total Credits 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Site Remediation Bridge Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 126</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 501</td>
<td>Introduction to Soil Behavior</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 663</td>
<td>Water Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENE 661</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>or EVSC 627</td>
<td>Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>Specialty Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 to 18 credits as follows:</td>
<td>12-18</td>
<td></td>
</tr>
<tr>
<td>ENE 660</td>
<td>Introduction to Solid and Hazardous Waste Problems</td>
<td></td>
</tr>
<tr>
<td>ENE 662</td>
<td>Site Remediation</td>
<td></td>
</tr>
<tr>
<td>ENE 671</td>
<td>Environmental Impact Analysis</td>
<td></td>
</tr>
<tr>
<td>CE 602</td>
<td>Geographic Information System</td>
<td></td>
</tr>
<tr>
<td>ENE 700B</td>
<td>Master's Project</td>
<td></td>
</tr>
<tr>
<td>ENE 701B</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>General Electives</td>
<td>0-6</td>
<td></td>
</tr>
<tr>
<td>0 to 6 credits of General Department Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management/Leadership Electives</td>
<td>3-6</td>
<td></td>
</tr>
<tr>
<td>3 to 6 credits as follows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>CE 711</td>
<td>Methods Improvement in Construction</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Civil Engineering, Geotechnical Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 320</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 332</td>
<td>Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 333</td>
<td>Reinforced Concrete Design</td>
<td>2</td>
</tr>
<tr>
<td>CE 341</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 341A</td>
<td>Soil Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 443</td>
<td>Foundation Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MATH 322</td>
<td>Differential Equations for Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Bridge Program

Students must attain a minimum GPA of 3.0 in the three core courses listed below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 641</td>
<td>Engineering Properties of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CE 643</td>
<td>Advanced Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 648</td>
<td>Flow Through Soils</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Geotechnical Design Courses

6 to 9 credits as follows:

- CE 642 Foundation Engineering
- CE 647 Geotechnical Aspects of Solid Waste
- CE 700B Masters Project
- CE 742 Geotechnology of Earthquake Engineering
- CE 646 Geosynthetics & Soil Imp

Geology/Rock Mechanics Courses

3 to 6 credits as follows: 0-6

- CE 644 Geology in Engineering
- CE 614 Underground Construction
- CE 602 Geographic Information System
- Pending Extraction and Storage of Energy Resources

General Electives

0 to 12 credits as follows:

- Pavements
 - CE 553 Design and Construction of Asphalt Pavements
 - CE 649 Design & Construction of Concr
 - CE 659 Flexible and Rigid Pavements
 - CE 702 Special Topics in Civil Engineering
 - Pending Management of Infrastructure Assets

- Structural
 - CE 615 Infrastructure and Facilities Remediation
 - CE 631 Advanced Reinforced Concrete Design
 - CE 638 Nondestructive Testing Methods in Civil Engineering

- Numerical Methods
 - ME 622 Finite Element Methods in Mechanical Engineering
 - MATH 614 Numerical Methods I
Management/Leadership Electives

3 to 6 credits as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td></td>
</tr>
<tr>
<td>CE 616</td>
<td>Construction Cost Estimating</td>
<td></td>
</tr>
<tr>
<td>CE 711</td>
<td>Methods Improvement in Construction</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>CE 701B</td>
<td>Master's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Students pursuing a thesis option or receiving financial aid at any point in their studies must complete a minimum of 6 credits of CE 701 Master's Thesis in place of 3 credits reduction from the Advanced Geotechnical Design Courses Requirements and 3 Credits reduction from the Management/Leadership.

M.S. in Civil Engineering, Structural Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 333</td>
<td>Reinforced Concrete Design</td>
<td>2</td>
</tr>
<tr>
<td>CE 341</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 341A</td>
<td>Soil Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 360</td>
<td>Sustainable Civil Engr Mat</td>
<td>3</td>
</tr>
<tr>
<td>CE 432</td>
<td>Steel Design</td>
<td>2</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MECH 236</td>
<td>Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>MECH 237</td>
<td>Strength Of Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 23

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 630</td>
<td>Matrix Analysis of Structures</td>
<td>3</td>
</tr>
<tr>
<td>CE 634</td>
<td>Structural Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>CE 636</td>
<td>Mechanics and Stability of Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Design Courses

9 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 631</td>
<td>Advanced Reinforced Concrete Design</td>
<td></td>
</tr>
<tr>
<td>CE 632</td>
<td>Prestressed Concrete Design</td>
<td></td>
</tr>
<tr>
<td>CE 637</td>
<td>Short Span Bridge Design</td>
<td></td>
</tr>
<tr>
<td>CE 700B</td>
<td>Masters Project</td>
<td></td>
</tr>
<tr>
<td>CE 733</td>
<td>Design of Metal Structures</td>
<td></td>
</tr>
<tr>
<td>CE 734</td>
<td>Design of Tall Buildings and Space Structures</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Materials Course

3 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 638</td>
<td>Nondestructive Testing Methods in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 703</td>
<td>Concrete Durability</td>
<td></td>
</tr>
<tr>
<td>MTSE 601</td>
<td>Fundamentals of Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>MTSE 602</td>
<td>Thermodynamics of Materials</td>
<td></td>
</tr>
<tr>
<td>MTSE 610</td>
<td>Mechanical Properties of Materials</td>
<td></td>
</tr>
</tbody>
</table>

Construction/Management/Leadership Courses

6 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td></td>
</tr>
<tr>
<td>CE 616</td>
<td>Construction Cost Estimating</td>
<td></td>
</tr>
</tbody>
</table>
CE 711
Methods Improvement in Construction

EM 632
Legal Aspects in Construction

HRM 601
Organizational Behavior

CE 701B
Master's Thesis

Geotechnical and Foundation Engineering Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 641</td>
<td>Engineering Properties of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CE 642</td>
<td>Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 643</td>
<td>Advanced Foundation Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

M.S. in Civil Engineering, Transportation Engineering

Bridge Program

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 200</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CE 200A</td>
<td>Surveying Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 350</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>ECON 265</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Mathematical Analysis for Technology</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
</tr>
</tbody>
</table>

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 615</td>
<td>Traffic Studies and Capacity</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 650</td>
<td>Urban Systems Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Specialty Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 659</td>
<td>Flexible and Rigid Pavements</td>
<td></td>
</tr>
<tr>
<td>TRAN 552</td>
<td>Geometric Design of Transportation Facilities</td>
<td>12-18</td>
</tr>
<tr>
<td>TRAN 603</td>
<td>Introduction to Urban Transportation Planning</td>
<td>12-18</td>
</tr>
<tr>
<td>TRAN 625</td>
<td>Public Transportation Operations and Technology</td>
<td>12-18</td>
</tr>
<tr>
<td>TRAN 653</td>
<td>Traffic Safety</td>
<td></td>
</tr>
<tr>
<td>TRAN 655</td>
<td>Land Use Planning</td>
<td></td>
</tr>
<tr>
<td>TRAN 700B</td>
<td>Master'S Project</td>
<td></td>
</tr>
<tr>
<td>TRAN 701B</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>TRAN 752</td>
<td>Traffic Control</td>
<td></td>
</tr>
<tr>
<td>TRAN 755</td>
<td>Intelligent Transportation Systems</td>
<td></td>
</tr>
</tbody>
</table>

General Electives

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
</tr>
</tbody>
</table>

See List of Department General Electives

Management/Leadership Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td>6</td>
</tr>
<tr>
<td>CE 711</td>
<td>Methods Improvement in Construction</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
M.S. in Critical Infrastructure Systems

Degree Requirements

A minimum of 30 degree credits, not including any bridge courses, is required. Candidates must consult with the graduate advisor (not thesis advisor) in designing appropriate programs of study.

Students must attain a minimum GPA of 3.0 in the core courses listed below, and a minimum overall GPA of 3.0.

Master of Science in Critical Infrastructure Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4 Core Courses are required and are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 671</td>
<td>Performance and Risk Analysis of Infrastructure Systems</td>
<td></td>
</tr>
<tr>
<td>CE 672</td>
<td>Security Management of Critical Infrastructure</td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td></td>
</tr>
<tr>
<td>MIP 675</td>
<td>Elements of Infrastructure Planning</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select six courses (or 4 courses and a Thesis) from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Infrastructure Life-Cycle Management (CILC)</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Planning and Facilities Management:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 602</td>
<td>Geographic Information System</td>
<td></td>
</tr>
<tr>
<td>CE 615</td>
<td>Infrastructure and Facilities Remediation</td>
<td></td>
</tr>
<tr>
<td>Engineered Systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN 705</td>
<td>Mass Transportation Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 610</td>
<td>Power System Steady-State Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 642</td>
<td>Introduction to Communication Systems: Evolution to 5G and Beyond</td>
<td></td>
</tr>
<tr>
<td>Program/Impact Management:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 610</td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td></td>
</tr>
<tr>
<td>CE 616</td>
<td>Construction Cost Estimating</td>
<td></td>
</tr>
<tr>
<td>IE 651</td>
<td>Industrial Simulation</td>
<td></td>
</tr>
<tr>
<td>IE 605</td>
<td>Engineering Reliability</td>
<td></td>
</tr>
<tr>
<td>IE 614</td>
<td>Safety Engineering Methods</td>
<td></td>
</tr>
<tr>
<td>ENE 662</td>
<td>Site Remediation</td>
<td></td>
</tr>
<tr>
<td>ENE 663</td>
<td>Water Chemistry</td>
<td></td>
</tr>
<tr>
<td>ENE 671</td>
<td>Environmental Impact Analysis</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>Critical Infrastructure Security and Emergency Management (CISE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency and Preparedness Management (Joint UMDNJ):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 613</td>
<td>Design of Emergency Management Information Systems</td>
<td></td>
</tr>
<tr>
<td>IS 614</td>
<td>Command and Control Systems</td>
<td></td>
</tr>
<tr>
<td>Enabling Systems and Technologies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td></td>
</tr>
<tr>
<td>TRAN 615</td>
<td>Traffic Studies and Capacity</td>
<td></td>
</tr>
<tr>
<td>TRAN 752</td>
<td>Traffic Control</td>
<td></td>
</tr>
<tr>
<td>TRAN 755</td>
<td>Intelligent Transportation Systems</td>
<td></td>
</tr>
<tr>
<td>EM 771</td>
<td>Operations Cost and Management Control</td>
<td></td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
</tbody>
</table>
CS 631 Data Management System Design
CS 632 Advanced Database System Design
CS 782 Pattern Recognition and Applications
IE 706 A Queueing Approach to Performance Analysis
IE 621 Systems Analysis and Simulation

Public Health Systems and Emergency Preparedness:
RBHS Courses
Principles and Methods of Epidemiology
Introduction to Environmental Health
Public Health Preparedness I: Agents of Mass Injury or Destruction
Public Health Preparedness II: Emergency Management and Response
Health/Risk Communications
Other Electives: Master’s Thesis

Total Credits

1 Students receiving financial aid at any point in their studies must complete 6 credits of CE 701.
2 Other suitable electives may be taken subject to approval of program advisor, particularly in the area of Public Health Systems and Emergency Preparedness.

M.S. in Environmental Engineering

Degree Requirements
Students who lack appropriate background are asked to make up deficiencies by taking a program of bridge courses, including any prerequisites, that is designed in consultation with graduate advisors. See the undergraduate catalog for description of bridge courses.

The program comprises 30 credits of required and elective courses. The student consults the graduate advisor to plan and maintain an individualized and cohesive sequence of courses.

Students receiving financial aid at any point in their studies must complete 6 credits of ENE 701. Any students are able to substitute Master’s thesis in their program.

M.S. in Environmental Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 320</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 322</td>
<td>Hydraulic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 501</td>
<td>Introduction to Soil Behavior</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 126</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MECH 234</td>
<td>Engineering Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>MECH 236</td>
<td>Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 663</td>
<td>Water Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENE 660</td>
<td>Introduction to Solid and Hazardous Waste Problems</td>
<td>3</td>
</tr>
<tr>
<td>ENE 661</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>Graduate mathematics or computer science course approved by graduate advisor</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Select six of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 602</td>
<td>Geographic Information System</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Transportation

Degree Requirements

Students who lack an appropriate background may be admitted and required to make up deficiencies by taking a program of bridge courses designed in consultation with graduate advisors. These courses are taken in addition to the degree requirements. See the undergraduate catalog for descriptions of 100 to 400-level courses. Students may be required to take or demonstrate that they already have taken courses equivalent to the bridge courses.

Students must select one area of specialization and take a minimum of 30 credits. TRAN 792 Pre-Doctoral Research is required for all students who receive departmental or research-based awards. A maximum of 6 credits may be taken from the 500-level courses for the master of science.

Three general areas of specialization are available. While they share a common methodological core, each is designed to suit various interests:

- **Transportation Engineering** focuses on traffic engineering, physical design and operational aspects of transportation systems. This area is best suited for students with an undergraduate engineering degree.
- **Transportation Planning** emphasizes the analysis and planning aspects, in particular the integration of transportation systems with urban and regional considerations such as economics, land use, and the environment.
- **Advanced Transportation Systems and Technologies** emphasizes the use of emerging technologies such as intelligent transportation systems in planning, design and operations of multi- and inter-modal transportation systems.

Additional elective courses for all areas of specialization may be taken with approval of the graduate advisor.

Students are able to substitute Master’s thesis in their program. With permission of their research advisor, students intending to do an MS thesis should first register in the TRAN 700B (Masters Project). Students must receive a satisfactory (S) grade in 700B before registering for TRAN 701B (Masters Thesis). Students taking TRAN 701B must register in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in TRAN 700B.

M.S. in Transportation Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 350</td>
<td>Transportation Engineering ¹</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>ECON 265</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Mathematical Analysis for Technology</td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

¹ Students who have demonstrated professional transportation work experience may have this course waived.
Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 603</td>
<td>Introduction to Urban Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 610</td>
<td>Transportation Economics</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 650</td>
<td>Urban Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or EM 602</td>
<td>Management Science</td>
<td></td>
</tr>
</tbody>
</table>

Area of Specialization Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 615</td>
<td>Traffic Studies and Capacity</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 625</td>
<td>Public Transportation Operations and Technology</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 752</td>
<td>Traffic Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select four of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 611</td>
<td>Project Planning and Control</td>
<td></td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
<td></td>
</tr>
<tr>
<td>ENE 671</td>
<td>Environmental Impact Analysis</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>IE 651</td>
<td>Industrial Simulation</td>
<td></td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td></td>
</tr>
<tr>
<td>ME 635</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>MGMT 692</td>
<td>Strategic Management</td>
<td></td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td></td>
</tr>
<tr>
<td>TRAN 552</td>
<td>Geometric Design of Transportation Facilities</td>
<td></td>
</tr>
<tr>
<td>TRAN 602</td>
<td>Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>TRAN 608</td>
<td>Behavioral Issues in Transportation Studies</td>
<td></td>
</tr>
<tr>
<td>TRAN 640</td>
<td>Distribution Logistics</td>
<td></td>
</tr>
<tr>
<td>TRAN 653</td>
<td>Traffic Safety</td>
<td></td>
</tr>
<tr>
<td>TRAN 659</td>
<td>Flexible and Rigid Pavements</td>
<td></td>
</tr>
<tr>
<td>TRAN 700B</td>
<td>Master'S Project</td>
<td></td>
</tr>
<tr>
<td>TRAN 701B</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>TRAN 753</td>
<td>Airport Design and Planning</td>
<td></td>
</tr>
<tr>
<td>TRAN 754</td>
<td>Port Design and Planning</td>
<td></td>
</tr>
<tr>
<td>TRAN 755</td>
<td>Intelligent Transportation Systems</td>
<td></td>
</tr>
<tr>
<td>TRAN 760</td>
<td>Urban Trans Networks</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 30

M.S. in Transportation Planning

Bridge Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 350</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>ECON 265</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Mathematical Analysis for Technology</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 16

1. Students who have demonstrated professional transportation work experience may have this course waived.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 603</td>
<td>Introduction to Urban Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 610</td>
<td>Transportation Economics</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 650</td>
<td>Urban Systems Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>
or EM 602 Management Science

Area of Specialization Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 655</td>
<td>Land Use Planning</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 625</td>
<td>Public Transportation Operations and Technology</td>
<td>3</td>
</tr>
<tr>
<td>or TRAN 705</td>
<td>Mass Transportation Systems</td>
<td></td>
</tr>
<tr>
<td>TRAN 765</td>
<td>Multi-modal Freight Transportation Systems Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select four of the following: 12

- CE 611 Project Planning and Control
- ENE 671 Environmental Impact Analysis
- HRM 601 Organizational Behavior
- HRM 606 Human Resource Management
- MATH 661 Applied Statistics
- MGMT 691 Legal and Ethical Issues in a Digital World
- MGMT 692 Strategic Management
- MIS 620 E-Commerce Technologies
- TRAN 602 Geographic Information Systems
- TRAN 608 Behavioral Issues in Transportation Studies
- TRAN 615 Traffic Studies and Capacity
- TRAN 640 Distribution Logistics
- TRAN 643 Transportation Finance
- TRAN 653 Traffic Safety
- TRAN 720 Discrete Choice Modeling for Travel Demand Forecasting
- TRAN 753 Airport Design and Planning
- TRAN 755 Intelligent Transportation Systems

Total Credits 30

Advanced Transportation Systems and Technologies

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 350</td>
<td>Transportation Engineering (^1)</td>
<td>3</td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>ECON 265</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Mathematical Analysis for Technology</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits 16

\(^1\) Students who have demonstrated professional transportation work experience may have this course waived.

Code

Title

Credits

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 603</td>
<td>Introduction to Urban Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 610</td>
<td>Transportation Economics</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 650</td>
<td>Urban Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or EM 602</td>
<td>Management Science</td>
<td></td>
</tr>
</tbody>
</table>

Area of Specialization Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN 615</td>
<td>Traffic Studies and Capacity</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 755</td>
<td>Intelligent Transportation Systems</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 765</td>
<td>Multi-modal Freight Transportation Systems Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select four of the following: 12

- CS 610 Data Structures and Algorithms
M.S. Online in Civil Engineering

Degree Requirements

Students who lack an appropriate background are asked to make up deficiencies by taking a program of bridge courses that is designed in consultation with the graduate advisor. These courses are not typically available online and taken in addition to the degree requirements. Please note that the prerequisites for bridge course must also be met.

A minimum of 30 credits, not including any bridge courses, is required. Candidates must consult with the graduate advisor (not thesis advisor) in designing appropriate programs of study.

Students must attain a minimum GPA of 3.0 in the core courses listed below, and a minimum overall GPA of 3.0.

Students receiving financial aid at any point in their studies must complete 6 credits of CE 701. Any students are able to substitute Master's thesis in their program.

Online M.S. in Civil Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 101</td>
<td>Computer Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>ECON 265</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 320</td>
<td>Statics and Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CE 200</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>or CE 200A</td>
<td>Surveying Laboratory</td>
<td></td>
</tr>
<tr>
<td>CE 210</td>
<td>Construction Materials and Procedures</td>
<td>3</td>
</tr>
<tr>
<td>CE 320</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 341</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>
Ph.D. in Civil Engineering

Degree Requirements

The department approves specific degree requirements and dissertation topics on an individual basis. Students must attain a minimum overall GPA of 3.0. Students must conduct independent original research in a specific area of civil engineering. Students must select an advisor willing to supervise dissertation work.

Ph.D. in Civil Engineering (students entering with a master’s degree in civil engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700-level course work</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td></td>
</tr>
<tr>
<td>CE 790</td>
<td>Doct Dissertation & Res</td>
<td>2</td>
</tr>
<tr>
<td>CE 792</td>
<td>Pre-Doctoral Dissertation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>CE 791</td>
<td>Graduate Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 12

1 No more than 3 credits may be received for CE 725 (Independent Study) and no more than 3 credits may be received for CE 726 (Independent Study). 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

2 Ph.D. students who pass the Qualifying Examination (QE) must register for 3 credits of pre-doctoral research (CE 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (CE 790 Doctoral Dissertation & Research) each semester until they complete all degree requirements.

3 Required of all doctoral students every semester.

Ph.D. in Civil Engineering (students entering with only a baccalaureate degree in civil engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600-700-level course work</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td></td>
</tr>
<tr>
<td>CE 790</td>
<td>Doct Dissertation & Res</td>
<td>2</td>
</tr>
<tr>
<td>CE 792</td>
<td>Pre-Doctoral Dissertation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Required of all doctoral students every semester.
2022-2023 Graduate Catalog

CE 791
Graduate Seminar

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700-level course work</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 790</td>
<td>Doctoral Dissert & Res</td>
<td>2</td>
</tr>
<tr>
<td>ENE 792</td>
<td>Pre-Doctoral Research</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 791</td>
<td>Graduate Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 36

1. A minimum of 12 credits of this requirement must be 700 level courses. No more than 3 credits may be received for CE 725 (Independent Study) and no more than 3 credits may be received for CE 726 (Independent Study). 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

2. Ph.D. students who pass the Qualifying Examination (QE) must register for 3 credits of pre-doctoral research (CE 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (CE 790 Doct Dissertation & Res) each semester until they complete all degree requirements.

3. Required of all doctoral students every semester.

Preliminary Qualifying Examination

Full-time students must take the preliminary qualifying exam for the first time within one year of beginning active study and must pass it completely by the next time the examination is offered. Part-time students must take the preliminary qualifying exam for the first time within three years of the beginning of active study and must pass it completely by the next time the examination is offered. Exceptional students having only bachelor’s degrees who are admitted directly into the doctoral program must take the preliminary qualifying examination within one and one-half years of admission and must pass it within two years. All students are permitted to take the examination only twice.

Dissertation Committee

The committee consists of a minimum of five members, one of whom is external to the Ph.D. program or to NJIT. The majority of the committee members are NJIT Graduate Faculty from the student’s program or department having research experience or developing research interests related to the dissertation research. The dissertation committee chairperson typically is the doctoral candidate’s dissertation advisor. This chairperson must be a tenured or tenure-track faculty member in the program. Two committee members, including an external member, may serve as co-advisors. The advisor, or at least one of the co-advisors, must be a tenured or tenure-track faculty member from the program. The other members of the dissertation committee, except for an external member from outside the university, must be members of NJIT’s Graduate Faculty. Former students of any committee member, who are less than four years beyond doctoral completion, are specifically excluded from membership. The external members should either have appropriate faculty rank elsewhere or have sufficient research expertise.

Research Proposal

Doctoral students must prepare a written research proposal and make an oral presentation for approval by their dissertation committee. The proposal must be presented after formation of the committee but within twelve months after passing the qualifying examination. Research is expected to investigate or develop a unique contribution to science and technology.

Dissertation Defense

An oral defense of the dissertation is required after submission of the final document to the department for approval. Signatures of all members of the dissertation committee must be received for final approval to be granted.

Ph.D. in Environmental Engineering

Degree Requirements

The department approves specific degree requirements and dissertation topics on an individual basis. Students must attain a minimum overall GPA of 3.0. Students must conduct independent original research in a specific area of environmental engineering. Students must select an advisor willing to supervise dissertation work.
1 No more than 3 credits may be received for ENE 725 (Independent Study) and no more than 3 credits may be received for ENE 726 (Independent Study). 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

2 Ph.D. students who pass the Qualifying Examination (QE) must register for 3 credits of pre-doctoral research (ENE 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (ENE 790 Doctoral Dissertation & Research) each semester until they complete all degree requirements.

3 Required of all full-time doctoral students every semester.

Ph.D. in Environmental Engineering (students entering with only a baccalaureate degree in environmental engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>600-700-level course work 1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 790</td>
<td>Doctoral Dissert & Res 2</td>
<td></td>
</tr>
<tr>
<td>ENE 792</td>
<td>Pre-Doctoral Research 2</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>Graduate Seminar 3</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits: 36

1 A minimum of 12 credits of this requirement must be 700 level courses. No more than 3 credits may be received for ENE 725 (Independent Study) and no more than 3 credits may be received for ENE 726 (Independent Study). 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

2 Ph.D. students who pass the Qualifying Examination (QE) must register for 3 credits of pre-doctoral research (ENE 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (ENE 790 Doctoral Dissertation & Research) each semester until they complete all degree requirements.

3 Required of all full-time doctoral students every semester.

Qualifying Examination

Full-time students must take the qualifying examination for the first time within one year of beginning active study and must pass it completely by the next time the examination is offered. Part-time students must take the qualifying examination for the first time within three years of the beginning of active study and must pass it completely by the next time it is offered. Exceptional students having only bachelor’s degrees who are admitted directly into the doctoral program must take the qualifying examination within one and one-half years of admission and must pass it within two years. All students are permitted to take the examination only twice.

Dissertation Committee

The committee consists of a minimum of five members, one of whom is external to the Ph.D. program or to NJIT. The majority of the committee members are NJIT Graduate Faculty from the student’s program or department having research experience or developing research interests related to the dissertation research. The dissertation committee chairperson typically is the doctoral candidate’s dissertation advisor. This chairperson must be a tenured or tenure-track faculty member in the program. Two committee members, including an external member, may serve as co-advisors. The advisor, or at least one of the co-advisors, must be a tenured or tenure-track faculty member from the program. The other members of the dissertation committee, except for an external member from outside the university, must be members of NJIT’s Graduate Faculty. Former students of any committee member, who are less than four years beyond doctoral completion, are specifically excluded from membership. The external members should either have appropriate faculty rank elsewhere or have sufficient research expertise.

Research Proposal

Doctoral students must prepare a written research proposal and make an oral presentation for approval by their dissertation committee. The proposal must be presented after formation of the committee but within twelve months after passing the qualifying examination. Research is expected to investigate or develop a unique contribution to science and technology.

Dissertation Defense

An oral defense of the dissertation is required after submission of the final document to the department for approval. Signatures of all members of the dissertation committee must be received for final approval to be granted.
Ph.D. in Transportation Engineering

Degree Requirements

Independent original research must be conducted by the candidate in a specific area of transportation. Dissertation work must be of publishable quality.

Ph.D. in Transportation Engineering (students entering with a master’s degree in transportation engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700-level courses (^1)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN 790</td>
<td>Doctoral Dissertation (^2)</td>
<td>0</td>
</tr>
<tr>
<td>TRAN 792</td>
<td>Pre-Doctoral Research (^2)</td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN 791</td>
<td>Doctoral Seminar (^3)</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

\(^1\) No more than 3 credits may be received for TRAN 725 (Independent Study) and no more than 3 credits may be received for TRAN 726 (Independent Study). 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

\(^2\) Ph.D. students who pass the Qualifying Examination (QE) must register for 3 credits of pre-doctoral research (TRAN 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal.

Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (TRAN 790 Doctoral Dissertation & Research) each semester until they complete all degree requirements.

\(^3\) Required of all full-time doctoral students every semester.

Ph.D. in Transportation Engineering (students entering with only a baccalaureate degree in transportation engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600-700-level courses (^1)</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN 790</td>
<td>Doctoral Dissertation</td>
<td>0</td>
</tr>
<tr>
<td>TRAN 792</td>
<td>Pre-Doctoral Research (^2)</td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN 791</td>
<td>Doctoral Seminar (^3)</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

\(^1\) A minimum of 12 credits of this requirement must be 700 level courses. No more than 3 credits may be received for TRAN 725 (Independent Study) and no more than 3 credits may be received for TRAN 726 (Independent Study). 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. A Ph.D. student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

\(^2\) Ph.D. students who pass the Qualifying Examination (QE) must register for 3 credits of pre-doctoral research (TRAN 792 Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal.

Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (TRAN 790 Doctoral Dissertation & Research) each semester until they complete all degree requirements.

\(^3\) Required of all full-time doctoral students every semester.

Qualifying Examination

All doctoral students must pass a doctoral qualifying examination. To prepare adequately for the examination, students should take appropriate coursework in transportation as well as other related subjects.

The examination has four parts: the first three are written, and the fourth is oral. The oral part is a presentation made to the graduate faculty in Transportation and is given after the written parts are evaluated.

- Part I Analytical Techniques
Dissertation Committee

The committee consists of a minimum of five members, one of whom is external to the Ph.D. program or to NJIT. The majority of the committee members are NJIT Graduate Faculty from the student’s program or department having research experience or developing research interests related to the dissertation research. The dissertation committee chairperson typically is the doctoral candidate’s dissertation advisor. This chairperson must be a tenured or tenure-track faculty member in the program. Two committee members, including an external member, may serve as co-advisors. The advisor, or at least one of the co-advisors, must be a tenured or tenure-track faculty member from the program. The other members of the dissertation committee, except for an external member from outside the university, must be members of NJIT’s Graduate Faculty. Former students of any committee member, who are less than four years beyond doctoral completion, are specifically excluded from membership. The external members should either have appropriate faculty rank elsewhere or have sufficient research expertise.

Research Proposal

Doctoral students must prepare a written research proposal and make an oral presentation for approval by their dissertation committee. The proposal must be presented after formation of the committee but within twelve months after passing the qualifying examination. Research is expected to investigate or develop a unique contribution to science and technology.

Dissertation

A program committee must approve a dissertation topic and an NJIT faculty member, approved by the program, must be available to supervise the dissertation research. An oral defense of the dissertation is required after the dissertation committee accepts the written document.

Structural Engineering

Structural Engineering Graduate Certificate

The Structural Engineering certificate provides a strong foundation and detailed technical knowledge in design and construction of structures. This is a 12-credit certificate.

Who would be suited to take this program?

Students and professionals interested in the area of Structural Engineering. The design and construction of structures require both a deep understanding of theoretical concepts and detailed knowledge of practices. Graduates of the program will be well positioned to understand and design variety of key structures.

What are the prerequisites?

Applicants should have a bachelor’s degree from an accredited institution in either Civil Engineering, Civil Technology, Mechanical Engineering, Mathematics, Physics, or have relevant experience.

NJIT’s standard admission requirements apply to this graduate certificate.

What will I learn?

The certificate provides expertise to analyze, design and construction of infrastructure. Graduates of the program use in-depth knowledge analyze, design and construction of infrastructure to ensure that the infrastructure is designed and implemented with the best practices in mind. This requires the ability to perform sophisticated analysis and design, coupled with the ability to perform forensic analysis. It also requires the ability to develop and maintain tools and technologies to enhance the design and construction of infrastructure.

Why Study Structural Engineering at NJIT?

NJIT is situated in Newark, minutes from Newark Penn Station, Jersey City and New York City are also a short train ride away, providing easy access to these commercial areas with many companies that employ Structural Engineers. NJIT is a top 100 university, classified as R1 very high research activity, with faculty performing cutting-edge research and publishing in top venues. NJIT also consistently ranks highly on added-value and diversity.

Into what industries might holders of this program find employment?

Modern building and infrastructure systems require a new workforce that comes from trained structural engineer who can analyze, design and construct such systems. Positions in the industry include:
• Assistant Engineer
• Structural Engineer
• Forensic Engineer
• Bridge Engineer
• Project Engineer
• Project Manager

Related Degree Programs

Credits from this graduate certificate can be applied toward the NJIT MS in Civil Engineering (Structural Concentration) degree.

COURSE DESCRIPTIONS

CE 630. Matrix Analysis of Structures. 3 credits, 3 contact hours.

A review of matrix operations and energy methods, and development of flexibility and stiffness methods used in linear-elastic structural analysis. Behavior of continuous beams, plane trusses, space trusses, and frames are studied.

CE 631. Advanced Reinforced Concrete Design. 3 credits, 3 contact hours.

Prerequisites: an undergraduate course in theory and design of reinforced concrete. A review of basic concepts of elastic and ultimate strength theories and a study of the present design codes. Topics include design of concrete building frames, two-way slabs, flat slabs, deep beams, and other structural elements using the above two theories.

CE 632. Prestressed Concrete Design. 3 credits, 3 contact hours.

Prerequisites: undergraduate course in theory and design of reinforced concrete. Analysis and design of pre-tensioned and post-tensioned prestressed concrete elements for both determinate and indeterminate structures will be studied. Examples of prestressed elements used in buildings and bridges will be discussed, as well as the source and magnitude of prestress losses.

CE 634. Structural Dynamics. 3 credits, 3 contact hours.

Prerequisite: undergraduate course in structural analysis. Dynamic analysis of beams, frames, and other types of structures. Practical methods developed are applied to problems such as the analysis of the effects of earthquakes on buildings and moving loads on bridges.

CE 636. Mechanics and Stability of Structures. 3 credits, 3 contact hours.

Prerequisite: undergraduate course in theory of structural analysis. Topics include structural design concept; stability criteria; elastic and inelastic buckling; column buckling; lateral buckling of beams; stability of frames; stability of plates and shell; local buckling and post-buckling.

CE 637. Short Span Bridge Design. 3 credits, 3 contact hours.

Prerequisites: undergraduate courses in steel design and concrete design, and some knowledge of prestressed concrete fundamentals. Design and performance of highway and railroad bridges, particularly steel and prestressed concrete structures since they are most common in the northeast; and computer applications including bridge geometry, abutment design and composite beam design.

CE 638. Nondestructive Testing Methods in Civil Engineering. 3 credits, 3 contact hours.

Familiarizes the civil engineering student with nondestructive testing (NDT) techniques currently employed for evaluation and condition monitoring of civil structures and construction materials. Major emphasis in the application of NDT methodologies to steel, concrete, and timber as the construction material. Covers theories, principles, and testing methodologies associated with individual technologies from specific material point of view. Discusses advantages and limitations pertaining to the application of individual NDT technologies to construction materials.

CE 641. Engineering Properties of Soils. 3 credits, 3 contact hours.

Prerequisite: approved undergraduate course in soil mechanics within last five years. An in-depth study of physical and mechanical properties of soils. Topics include clay mineralogy, shear behavior and compressibility of fine and coarse grained soil; and in-situ measuring techniques such as vane shear, core penetration and pressure meter. Laboratory work includes consolidation test and triaxial test, with emphasis on analysis, interpretation and application of data to design problems.

CE 703. Concrete Durability. 3 credits, 3 contact hours.

Prerequisites: Undergraduate course in construction materials or reinforced concrete design, or permission of the instructor. This course will cover the design and maintenance of concrete structures and pavements from a material choice point of view. Students will learn how to design concrete mixtures, choose alternative and sustainable concrete materials, produce concrete specifications, protect concrete from long-term deterioration, and design solutions for repairing existing concrete. Students will learn about the mechanisms and chemistry and concrete deterioration. The following key topics
will be covered: cement production, supplementary cementitious materials, mixture design and proportioning, concrete durability, dimensional stability, freeze-thaw attack, sulfate attack, corrosion, alkali-silica reaction, alternative cements, concrete specifications, and concrete construction.

CE 733. Design of Metal Structures. 3 credits, 3 contact hours.

Prerequisites: CE 636. Methods of design of metal structural systems. Topics include combined action of unsymmetrical sections, torsion of open and closed sections, buckling of columns and plates with various end conditions, and design of curved and boxed girders.

CE 734. Design of Tall Buildings and Space Structures. 3 credits, 3 contact hours.

Prerequisites: CE 636. Design of tall buildings and space structures emphasizing framing systems, and recent developments and current research related to the design of such structures.

CE 742. Geotechnology of Earthquake Engineering. 3 credits, 3 contact hours.

Prerequisite: CE 641. Explains the fundamentals of propagation of the earthquakes through soils to supporting structures and the use of computer programs in the solution of boundary value problems in soils. The first half is devoted to synthesis of earthquakes, mathematical formulation of the problem, measurement of applicable soil parameters, use of computer programs to solve 1-D wave propagation problems in soils with structures. The second half is devoted to soil liquefaction, soil-structure interaction, and design of machine foundations.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 630</td>
<td>Matrix Analysis of Structures</td>
<td></td>
</tr>
<tr>
<td>CE 631</td>
<td>Advanced Reinforced Concrete Design</td>
<td></td>
</tr>
<tr>
<td>CE 632</td>
<td>Prestressed Concrete Design</td>
<td></td>
</tr>
<tr>
<td>CE 634</td>
<td>Structural Dynamics</td>
<td></td>
</tr>
<tr>
<td>CE 635</td>
<td>Fracture Mechanics of Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>CE 637</td>
<td>Short Span Bridge Design</td>
<td></td>
</tr>
<tr>
<td>CE 638</td>
<td>Nondestructive Testing Methods in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 641</td>
<td>Engineering Properties of Soils</td>
<td></td>
</tr>
<tr>
<td>CE 703</td>
<td>Concrete Durability</td>
<td></td>
</tr>
<tr>
<td>CE 733</td>
<td>Design of Metal Structures</td>
<td></td>
</tr>
<tr>
<td>CE 734</td>
<td>Design of Tall Buildings and Space Structures</td>
<td></td>
</tr>
<tr>
<td>CE 742</td>
<td>Geotechnology of Earthquake Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Transportation Studies

Transportation is vital to our society's proper functioning, providing mobility of people, goods and services. It enables people to access job markets and participate in recreational, cultural, educational, and social activities. It adds value to products by moving them to their destination in time for their use. The transportation field also is a major contributor to the economy, as a consumer of resources and as a supplier of jobs.

Who is suited for this program?

Students whose goals are to become transportation planners, engineers, and managers who can plan, design, operate, and manage transportation systems capable of satisfying society's transportation needs.

What will I learn?

- Urban travel patterns and trends; community and land activity related to transportation study techniques including survey methods, network analysis, assignment and distribution techniques. Case studies of statewide and urban areas are examined.
- Various urban problems subject to engineering analysis, and modern techniques for their solution, including inductive and deductive mathematical methods, mathematical modeling and simulation, and decision making under uncertainty.
- Traffic laws and ordinances; regulatory measures; traffic control devices; markings, signs and signals; timing of isolated signals; timing and coordination of arterial signal systems; operational controls; flow, speed, parking; principles of transportation system management/ administration; highway lighting; and state-of-the-art surveillance and detection devices and techniques. Hands-on experience with TRAF/NETSIM and FREESIM.
• Presentation of the technological and engineering aspects of public transportation systems. Historical development of public transportation technologies. Vehicle and right-of-way characteristics, capacity and operating strategies. Public transportation system performance. Advanced public transportation systems.
• Distribution logistics emphasizing systems engineering techniques used to optimize corporate profit and customer service: transportation modes; inventory policies; warehousing and order processing; and the best logistics gross margin.

Why study Transportation Studies at NJIT?
Transportation planning in the United States is in the midst of a shift similar to that taking place in the United Kingdom, away from the singular goal of moving vehicular traffic and towards an approach that takes into consideration the communities and lands which streets, roads, and highways pass through. We need people like you to lead the way.

Prerequisites
Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in economics, mathematics, probability and statistics, and computers. Students who lack an appropriate background may be admitted and required to make up deficiencies by taking a program of courses designed in consultation with graduate advisors.

Related Degree Programs
Credential relates in its entirety to NJIT MS in Transportation (http://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/transportation-ms/) or MS in Civil Engineering (http://catalog.njit.edu/graduate/newark-college-engineering/civil-environmental/civil-ms/).

Gainful Employment Disclosure
Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/transportation-studies-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN 603</td>
<td>Introduction to Urban Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 650</td>
<td>Urban Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 752</td>
<td>Traffic Control</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TRAN 610</td>
<td>Transportation Economics</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 625</td>
<td>Public Transportation Operations and Technology</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 640</td>
<td>Distribution Logistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Electrical and Computer Engineering

Electrical Engineering
The Department of Electrical and Computer Engineering serves the community, the state and the nation by educating engineers, expanding knowledge and developing new tools for solving complex technological problems. The department's graduate programs offer students with backgrounds in electrical engineering or related areas unusual opportunities to specialize in advanced phases of electrical engineering. In addition to more than 30 full-time faculty members devoted to teaching and research, students are taught by adjunct professors from industry who offer specialty courses in their area of expertise and serve on thesis and dissertation committees.

The master's degree programs provide state-of-the-art training at advanced levels in areas of technical specialization, including faculty-supervised research. Students in the doctoral program conduct significant original research in areas of interest to department members. Students also have opportunities to conduct thesis research at industrial sites, hospitals, biomedical engineering facilities, and university centers and departments.

Master of Science in Electrical Engineering
A program for students with an undergraduate degree in engineering who wish either to specialize in an advanced phase of electrical engineering or prepare for a more advanced degree.
Admission Requirements

Applicants are expected to have undergraduate backgrounds in physics, mathematics (through differential equations and vector analysis), electrical networks and devices, electronics, analysis and design methods, transients, electromagnetic fields, and appropriate laboratory work in some of these areas. GRE scores must be submitted. International students must also achieve a minimum TOEFL score of 550 (213 computer-based). For further information, see the Admissions section in this catalog.

Graduate Certificate Program

A 12-credit graduate certificate in Telecommunications Networking is available as a step toward this degree. See Graduate Certificates in the Degree Programs section of this catalog. For further information, call the Associate Vice President of Continuing and Distance Education, Division of Continuing Professional Education, 1 (800) 624-9850 or (973) 596-3060; e-mail cpe@njit.edu

Doctor of Philosophy in Electrical Engineering

This is a program for superior students with master's degrees in electrical engineering or allied fields who wish to conduct advanced research in an area of electrical engineering.

Exceptional Candidates with a Bachelor of Science in Electrical Engineering

Highly qualified students with bachelor's degrees in electrical engineering may be accepted directly into the doctoral program. Contact the doctoral program coordinator for further information.

Admission Requirements

Applicants are expected to have a broad background in engineering, mathematics, physics, and computer science. At least half of undergraduate course work should have been in the physical sciences or similar fields. Doctoral students should have majored in electrical engineering or related field, with course work at the master's level in mathematics, physics and/or computer science. In addition, students are expected to be proficient in computer programming. A minimum master's GPA of 3.5 on a 4.0 scale, or equivalent, is required for admission. GRE scores must be submitted. International students must also achieve a minimum TOEFL score of 550 (213 computer-based).

Students who lack an appropriate background will be required to take additional courses that cannot be applied as degree credits.

Computer Engineering

Focus on interdisciplinary course work and research provides students enrolled in the M.S. and Ph.D. in Computer Engineering programs with an advanced background in both the hardware and software aspects of computing.

The master's program prepares computer engineers to successfully make the hardware-software design trade-offs inherent to computing today. The rapid development of computer hardware and software in the last decade has created a demand for engineers who are not only knowledgeable in both these areas, but who also understand their interaction. The fields of embedded computer system design and computer networks are based squarely on this knowledge.

The doctoral program is designed for superior students with a master's degree in computer engineering, computer science, electrical engineering, or other related fields, who wish to pursue advanced research in the area of computer engineering. The master's and doctoral programs emphasize computer architecture and systems, computer networking, intelligent systems, microprocessor-based systems, and VLSI system design.

Master of Science in Computer Engineering

This program prepares its graduates to successfully handle problems requiring in-depth knowledge of both computer hardware and software, and more important, their interaction. Students may concentrate in microprocessor-based systems, parallel computing systems, computer networking, VLSI system design, or machine vision systems. All applicants must submit GRE scores. International students must achieve a minimum TOEFL score of 550 (pencil and paper) and (213 computer-based).

Admission Requirements

Applicants are expected to have an undergraduate education in engineering or computer science. Applicants with baccalaureate degrees in areas other than computer engineering may be admitted and required to complete a bridge program. Those with undergraduate degrees in other fields should consult the MSCOE Program Advisor for bridge requirements. Bridge courses do not count toward degree requirements.

Graduate Certificate Program

A 12-credit graduate certificate in Information Assurance is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.
Doctor of Philosophy in Computer Engineering

This program is intended for superior students with a master's degree in computer engineering, computer science, electrical engineering, or other related fields, who wish to pursue advanced research in computer engineering. The program emphasizes the following areas: computer architecture and systems, computer networking, intelligent systems, microprocessor-based systems, and VLSI systems design.

Admission Requirements

Applicants are expected to have a master's degree in computer engineering, computer science, electrical engineering, or other related fields. Students who lack an appropriate background may be admitted and required to take bridge courses that cannot be applied as degree credits.

Students must demonstrate superior academic background in engineering, mathematics, and physical science; skills in programming; and proficiency in major areas of computer engineering and science. A minimum master's GPA of 3.5 on a 4.0 scale, or equivalent, is required for admission. GRE scores must be submitted. International students must also achieve a minimum TOEFL score of 550 (213 computer-based).

Superior undergraduate students may apply to be admitted directly into the Ph.D. program. Such an accelerated program requires a minimum entrance GPA of 3.5 and an interview with the Electrical and Computer Engineering Department Graduate Affairs Committee.

Internet Engineering

The objective of the master of science in internet engineering program is to educate students in the field of internet engineering, with emphasis on computer internetworking and relevant applications.

Admission Requirements

Applicants should have an undergraduate degree in Computer Engineering, Electrical Engineering or other relevant discipline from an accredited institution (or its equivalent). All applicants must submit scores on the Graduate Record Examinations (GRE) verbal, quantitative, and analytical aptitude tests. International students must also achieve a minimum TOEFL score of 550 (pencil and paper) and 213 (computer-based). Applicants with undergraduate degrees in computer science, computer engineering or electrical engineering from an accredited institution are expected to have a GPA of at least 3.0 on a 4.0 scale. These students should have taken ECE 321 Random Signals and Noise, or another equivalent course; ECE 333 Signals and Systems; and proficiency in C++ programming.

Power and Energy Systems (PES)

The master of science in power and energy systems is a program for students with an undergraduate degree in engineering who wish either to specialize in an advanced phase of electrical power engineering and energy systems to prepare for a more advanced degree.

Admission Requirements

Applicants are expected to have undergraduate backgrounds in physics, mathematics (through differential equations and vector analysis), electrical networks and devices, electronics, analysis and design methods, transients, electromagnetic fields, and appropriate laboratory work in some of these areas. GRE scores must be submitted. International students must also achieve a minimum TOEFL score of 79 out 120 (or 550 in the old score system). For further information, see the Admissions section in this catalog.

Graduate Certificate Program

A 12-credit graduate certificate in Power and Energy Systems is available and can be taken as a step toward this degree. See Graduate Certificates in the Degree Programs section of this catalog. For further information, call the Associate Vice President of Continuing and Distance Education, Division of Continuing Professional Education, 1 (800) 624-9850 or (973) 596-3060; e-mail cpe@njit.edu.

Telecommunications

Telecommunications is one of the most rapidly growing fields in engineering. Telecommunications specialization also is rapidly becoming necessary in such diverse fields as banking, reservation systems, office information systems, corporate networks, and the Internet. Rapid technological progress in gigabit optical networks, multimedia communications, and wireless network access, make the future of the field very exciting.

Master of Science in Telecommunications

The objective of this program is to educate individuals in one or more telecommunication specializations.

Admission Requirements

Applicants are expected to have an undergraduate degree in computer science, computer engineering or electrical engineering from an accredited institution (or its equivalent) with a minimum GPA of 3.0 on a 4.0 scale. These students should have taken CS 333 Introduction to UNIX Operating Systems, ECE 321 Random Signals and Noise and ECE 333 Signals and Systems (or their equivalents). Students without this course work will be required to complete a bridge program. Applicants having degrees in other fields may be considered for admission on an individual basis and required
to complete a bridge program. GRE scores must be submitted. International students must also achieve a minimum TOEFL score of 550 (pencil and paper) and 213 (computer-based).

Graduate Certificate Program

A 12-credit graduate certificate in Telecommunications Networking is available as a step toward this degree. See "Graduate Certificates" in this catalog. For further information about extension programs and graduate certificates, call the associate vice president of continuing and distance education, Division of Continuing Professional Education, 1 (800) 624-9850 or (973) 596-3060; e-mail cpe@njit.edu

NJIT Faculty

A

Abdi, Ali, Professor

Akansu, Ali N., Professor

Ansari, Nirwan, Professor

B

Bar-Ness, Yeheskel, Distinguished Professor Emeritus

C

Carpinelli, John D., Professor

Carr, William N., Professor Emeritus

Cornely, Roy H., Professor Emeritus

D

Dhawan, Atam P., Distinguished Professor

F

Feknous, Mohammed, University Lecturer

Frank, Joseph Associate Professor Emeritus

Friedland, Bernard, Distinguished Professor

G

Ge, Hongya, Associate Professor

Grebel, Haim, Professor

H

Haddad, Richard A., Professor Emeritus

Haimovich, Alexander M., Professor

Hou, Sui-Hoi Edwin, Associate Professor

Hubbi, Walid, Associate Professor

K

Kam, Moshe, Professor and Dean of NCE

Khreishah, Abdallah, Assistant Professor

Klapper, Jacob, Professor Emeritus

Kliewer, Joerg, Associate Professor

Ko, Dong-Kyun, Assistant Professor
L
Liu, Qing, Assistant Professor
Liu, Xuan, Assistant Professor

M
Manzhura, Oksana Yu, University Lecturer
Meyer, Andrew U., Professor Emeritus
Misra, Durgamadhab, Professor

N
Nguyen, Hieu, Assistant Professor
Niver, Edip, Professor

R
Raj, Ratna, University Lecturer
Rojas-Cessa, Roberto, Associate Professor
Rosenstark, Solomon, Professor Emeritus

S
Savir, Jacob, Distinguished Professor
Shi, Yun-Qing, Professor
Simeone, Osvaldo, Associate Professor
Sohn, Kenneth S., Professor Emeritus
Sosnowski, Marek, Professor

T
Tsybeskov, Leonid, Professor and Chair

W
Wang, Cong, Assistant Professor
Whitman, Gerald, Professor

Z
Zhou, Mengchu, Distinguished Professor
Ziavras, Sotirios G., Professor

Programs
- Computer Engineering - M.S. (p. 528)
- Electrical Engineering - M.S. (p. 530)
- Internet Engineering - M.S. (p. 532)
- Power and Energy Systems - M.S. (p. 534)
- Telecommunications - M.S. (p. 535)

Programs
- Computer Engineering - Ph.D. (p. 539)
- Electrical Engineering - Ph.D. (p. 542)
Programs

- Power Systems Engineering (p. 545)

Electrical and Computer Engineering Courses

ECE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from Department of Electrical and Computer Engineering and Division of Career Development Services. Cooperative education/internship providing on-the-job reinforcement of academic programs in electrical and computer engineering. Assignments and projects are developed by the co-op office in consultation with the electrical and computer engineering department. Work assignments are related to student's major and are evaluated by faculty coordinators in the ECE department. Credits for this course may not be used to fulfill any electrical or computer engineering degree requirement.

ECE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: ECE 590 and permission from Department of Electrical and Computer Engineering and Division of Career Development Services. See ECE 590 course description. Credits for this course may not be used to fulfill any electrical or computer engineering degree requirement.

ECE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: graduate standing and permission from Department of Electrical and Computer Engineering and Division of Career Development Services. See ECE 590 course description. Credits for this course may not be used to fulfill any electrical or computer engineering degree requirement.

ECE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ECE 601. Linear Systems. 3 credits, 3 contact hours.
Methods of linear-system analysis, in both time and frequency domains, are studied. Techniques used in the study of continuous and discrete systems include state-variable representation, matrices, Fourier transforms, LaPlace transforms, inversion theorems, sampling theory, discrete and fast Fourier transforms, and Z-transforms. Computer simulation of linear systems is used, and, where feasible, computer solutions are obtained.

ECE 605. Discrete Event Dynamic Systems. 3 credits, 3 contact hours.
Covers the theory of discrete event dynamic systems with applications in modeling, control, analysis, validation, simulation, and performance evaluation of computer systems, flexible manufacturing systems, robotic systems, intelligent supervisory control systems, and communication networks. Emphasis on Petri net and automation based approaches.

ECE 610. Power System Steady-State Analysis. 3 credits, 3 contact hours.
Prerequisite: B.S. in EE or ME. Steady-state analysis of power system networks, particularly real and reactive power flows under normal conditions and current flows under faulty conditions. Symmetrical components and digital solutions are emphasized.

ECE 611. Transients in Power Systems. 3 credits, 3 contact hours.
Prerequisite: ECE 610. Transient performance of power systems with lumped properties, interruption of arcs, restriking voltage, re-ignition inertia effects, switching of rotational systems, magnetic saturation in stationary networks, harmonic oscillations, saturated systems, transient performance of synchronous machines.

ECE 612. Computer Methods Applied to Power Systems. 3 credits, 3 contact hours.
Prerequisite: undergraduate computer programming. Digital computer techniques proven successful in the solution of power system problems, particularly in the electric utility industry. Emphasis on short-circuit, load flow, and transient stability problems. Matrix sparsity is considered.

ECE 613. Protection of Power Systems. 3 credits, 3 contact hours.
Prerequisite: ECE 610 or equivalent Coils, condensers, and resistors as protective devices; fundamental principles of protective relaying; relay operating characteristics; power and current directional relays; differential relays; distance and wire pilot relays; heating and harmonic effects; and Computer-based protective device coordination.

ECE 616. Power Electronics. 3 credits, 3 contact hours.
Prerequisite: B.S. in electrical engineering. Principles of thyristor devices, dynamic characteristics of choppers, commutation, protection, voltage-fed and current-fed inverter drives, cycloconverters, pulse width modulation, phase control, and microcomputer control, with case studies.

ECE 617. Economic Control of Interconnected Power Systems. 3 credits, 3 contact hours.
Economic Control of Interconnected Power Systems: Advanced techniques for operating power systems in the most economic manner while meeting various network constraints; economic dispatch, penalty factors, optimal power flow, short-term electricity markets and locational marginal prices will be studied.

ECE 618. Photovoltaic Semiconductors and Renewable Energy. 3 credits, 3 contact hours.
This course introduces renewable energy systems. It covers the fundamental concepts of energy and radiation with specific solar energy applications and photovoltaics, electrical energy storage systems, and thermal energy and storage. The second part covers the basic science of wind energy systems and their electrical system designs. The third part covers the bioenergy systems from resources to final products and conversion technologies. It finally introduces other promising energy sources.
ECE 619. Intelligent Sensing for Smart Grid and Smart City. 3 credits, 3 contact hours.
Prerequisites: Basic knowledge on electromagnetics and circuit theory, ECE361 Electromagnetic Fields I or equivalent. This course introduces the fundamentals and applications of intelligent sensing technology to smart grid and smart city. The course covers the fundamental sensing principles, types and selection of sensors including electromagnetic field sensors, amplifiers and bridge circuits, and sensing system architecture. Estimation and evaluation of sensor calibration and their responses by using finite element method, sensor noise and shielding design will be addressed. Signal analysis techniques such as wavelet analysis and sensor fusion will be discussed. Anomaly detection, fault classification and prediction and decision making on sensor data by machine learning, and the applications of electromagnetic sensing in power systems will be covered. Advanced sensor applications topics in IoT, smart grid and smart city will also be included.

ECE 620. Electromagnetic Field Theory. 3 credits, 3 contact hours.
Prerequisite: undergraduate electromagnetic field theory or equivalent. Maxwell’s equations, boundary conditions and formulation of potentials. LaPlace and Poisson equations for electrostatic and magnetostatic problems and the method of images. Dielectric and magnetic materials, force and energy concepts. Quasi-static and time varying fields, plane, cylindrical and spherical waves. Green's functions, transmission lines.

ECE 622. Wave Propagation. 3 credits, 3 contact hours.
Prerequisite: ECE 620 or equivalent. Fundamentals of electromagnetics; radiation and scattering; Green's functions; integral equations; numerical methods; ray optics and asymptotics.

ECE 624. Optical Engineering. 3 credits, 3 contact hours.
This course covers basic optical concepts, emphasizing those common to many optical instruments, such as light sources and their characteristics, polarization, coherence, and interferometry. The course introduces CAD tools for lenses, optical filters, and instrument design. The course also focuses on topics concerning optical systems, such as flat panel displays and micromechanical optical systems.

ECE 625. Fiber and Integrated Optics. 3 credits, 3 contact hours.
Prerequisite: undergraduate electromagnetic field theory and solid-state circuits. Planar dielectric waveguides, step and graded index fibers and dispersion in fibers. The p-n junction and heterostructures, light emitting diodes and semiconductor lasers, p-î-n and avalanche photodetectors, optical transmitter and receiver designs, optical fiber communication system design concepts.

ECE 626. Optoelectronics - Nonlinear Modulators for Optical Communication. 3 credits, 3 contact hours.

ECE 630. Microwave Engineering. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in electromagnetic field theory. Review of transmission line theory and the Smith chart; scattering matrix representation, LC and microstrip matching networks; signal flow graph analysis; micro-wave transistor amplifier design, which includes power gain, stability, noise figure circles; oscillator design.

ECE 632. Antenna Theory. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in electromagnetic field theory. Fundamentals of electromagnetic field theory; far field approximation, antenna characteristics (gain, impedance, pattern, etc.); elementary antenna types (dipoles, loops, etc.), antenna array theory, wire antennas; broadband antennas.

ECE 636. Computer Networking Laboratory. 3 credits, 3 contact hours.
This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e.g. RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the OPNET modeling tool and perform simulations that will help them evaluate their design approaches and expected network performance.

ECE 637. Internet and Higher-Layer Protocols. 3 credits, 3 contact hours.
The course introduces the protocols and standards of the TCP/IP suite that govern the functioning of the Internet. The material covered in class is a top-down approach on introduction, discussion, and analysis of protocols from the data-link layer to the application layer. Alternative protocols to the TCP/IP suite and new protocols adopted by this suite are discussed. Numerical examples related to network planning and protocol functioning are analyzed.

ECE 638. Network Management and Security. 3 credits, 3 contact hours.
Prerequisites: ECE 683 or CS 652, and ECE 637 or CS 656. Thorough introduction to current network management technology and techniques, and emerging network management standards. In-depth study of the existing network security technology and the various practical techniques that have been implemented for protecting data from disclosure, for guaranteeing authenticity of messages, and from protecting systems for network-based attacks. SNMP family of standards including SNMP, SNMPv2, and RMON (Remote Monitoring), OSI systems management. Various types of security attacks (such as intruders, viruses, and worms), Conventional Encryption and Public Key Cryptology. Various security services and standards (such as Kerberos, Digital Signature Standard, Pretty Good Privacy, SNMPv2 security facility). Same as CIS 696.

ECE 639. Principles of Broadband Networks. 3 credits, 3 contact hours.
Prerequisites: ECE 673, ECE 683 or CS 652 or equivalent. This course covers fundamental concepts of broadband networks. Topics include Broadband ISDN, Switching Techniques, ATM, SONET/SDH, Congestion Control, High-Speed Switching Architectures, Traffic Modeling of Broadband Services, Admission Control, Traffic Scheduling, IP/ATM Convergence, QoS Provisioning in IP Networks, and Optical Networks.
ECE 640. Digital Signal and Data Processing. 3 credits, 3 contact hours.
Prerequisite: ECE 601 or equivalent. The fundamentals of signal theory and transforms are introduced in this course. The representation of signals in the time and complex domains is covered. Z-transform is presented and Laplace transform to Z-transform mapping techniques are studied. Fourier analysis tools for analog and discrete-time signals are developed and tied with popular engineering applications. The subspace methods and eigendecomposition are studied. Their big data applications are presented. Basic design techniques to design digital filters are covered in this course.

ECE 641. Laboratory for High Performance Digital Signal Processing. 3 credits, 3 contact hours.

ECE 642. Introduction to Communication Systems: Evolution to 5G and Beyond. 3 credits, 3 contact hours.
Corequisite: ECE 673. Principles of communication theory applied to the representation and transmission of information, starting from analog communication to digital communication and ending at modern cellular systems as 5G and beyond. Topics include analysis of deterministic and random signals, amplitude modulation, angle modulation, sampling, quantization, geometric representation of signals, digital modulation as QAM, PSK, and OFDM, error probability, matched filter and correlation receivers, and the performance analysis of communication systems.

ECE 643. Digital Image Processing I. 3 credits, 3 contact hours.
Prerequisite: ECE 601. Introductory course in digital image processing. Topics include image models, digitization and quantization, image enhancement in spatial and frequency domains, image restoration, image segmentation and analysis.

ECE 644. Wireless Communications: Fundamentals to 5G. 3 credits, 3 contact hours.
Prerequisites: ECE 321 or MATH 333. This course is focused on the technical challenges and solutions to physical and link layer design of wireless communication systems. Course topics include characterization of the wireless channel, the cellular concept, digital modulation techniques, spread spectrum, multiple access techniques including CDMA and OFDM, diversity techniques. Advanced techniques such as LTE, MIMO, 5G NR technologies are introduced. Matlab is used for examples and assignments.

ECE 645. Design of Wireless Networks: 5G Architecture and Services. 3 credits, 3 contact hours.
Prerequisites: EE 321 or MATH 333, or equivalent (see undergraduate catalog for descriptions). Introduction to wireless network design, management, and planning stages. Topics include demand modeling, radio planning, network optimization, and information handling architecture with emphasis on resource allocation and mobility management aspects. Investigation of signaling load optimizations and internetworking problems.

ECE 650. Electronic Circuits. 3 credits, 3 contact hours.
Prerequisite: senior undergraduate level semiconductor circuits. Methods of analysis and design of linear and digital semiconductor circuits are studied. Topics include low and high frequency models, passive and active biasing techniques, I-C analysis and design, op-amp circuits, and active filters.

ECE 653. Micro/Nanotechnologies for Interacing Live Cells. 3 credits, 3 contact hours.
In this course, we will study technologies and tools available for interfacing live cells from a sub-cellular, single-cell, and multi-cellular (tissue models) approach. We will introduce key concepts of the biology of cells and tissues and will explore the technologies (micro-/nanotechnologies) and tools (sensors and actuators) available for the investigation of cell and tissue biology. Same as BME 653.

ECE 657. Semiconductor Devices. 3 credits, 3 contact hours.
Fundamental principles of solid state materials necessary for understanding semiconductor devices. Topics include crystal structure; energy bands; electron and hole generation, and transport phenomena; generation and recombination processes, and high field effects. P-N junction diode, metal semiconductor contact, and bipolar and metal oxide semiconductor transistors, including switching phenomena and circuit models. Introduction to: photonic devices-light emitting diodes, semiconductor lasers, photodetectors, and solar cells; microwave devices-tunnel and IMPATT diodes, transferred electron devices, and charge-coupled capacitors.

ECE 658. VLSI Design I. 3 credits, 3 contact hours.
Analysis and design of digital integrated circuits; basic building blocks and dependence on circuit parameters of propagation delay; noise margin; fan-out; fan-in; and power dissipation for circuits of different logic families, including NMOS, CMOS and BiCMOS; subsystem designs in combinational and sequential logic; Memory Systems; HSPICE circuit simulation is used for digital characteristics evaluation. Mentor Graphics Layout design tools are used for chip design.

ECE 659. Fabrication Principles of Electronic and Optoelectronic Devices. 3 credits, 3 contact hours.
Prerequisite: ECE 657 or equivalent. Overview of all major processing steps in fabrication of integrated circuits such as crystal growth, epitaxy, oxidation, diffusion, ion implantation and etching. Formation of thin film structures along with techniques for defining submicron structures. Emphasizes silicon device technology but also includes processing of compound semiconductors such as gallium arsenide.

ECE 660. Control Systems I. 3 credits, 3 contact hours.
Prerequisites: undergraduate course equivalent to EE 333 or ME 305 (see undergraduate catalog for descriptions) and ECE 601 or equivalent or permission from instructor. Introduction to feedback control. Review of state-space analysis. Frequency-domain methods for analysis: Routh-Hurwitz stability algorithms, Root-loci; Nyquist and Bode plots; system ?type.? Controllability and observability. The separation principle and design by pole placement. Linear observers. Optimization of quadratic performance criteria. Elements of random processes. The Kalman filter as an optimum observer. Robustness considerations.

ECE 661. Control System Components. 3 credits, 3 contact hours.
Prerequisite: ECE 660. The theoretical and practical requirements for analog and digital state-of-the-art control system components are covered. Actuators, amplifiers, sensors, encoders, resolvers and other electromagnetic devices are included. A complete system is designed using current vendor catalog data. Problems affecting the system performance are analyzed using measures of functionality, reliability and cost.
ECE 664. Applied Advanced Control Systems. 3 credits, 3 contact hours.
Prerequisite: EE 486 or equivalent (see undergraduate catalog for description). Emphasizes the practical aspects of modern computer control systems. Topics include: Architecture of digital signal processors (DSP) and microcontrollers, real-time data acquisition devices and interface, programming a DSP, review of sampling theorems and properties of discrete-time systems, introduction of control systems theory, design and implementation of parameter optimized controllers, state variable controllers, and cancellation controllers. An experimental project using a TMS320C2x DSP-based data acquisition system is an integral part of this course.

ECE 667. Bio-Control Systems. 3 credits, 3 contact hours.
The course provides an introduction to dynamic and control in biological systems, with particular emphasis on engineering aspects of biological oscillators/waves which govern the basic operations of all living organisms and especially higher order life forms. A combination of theoretical and simulation tools will be applied to analyze the qualitative and quantitative properties of selected biological systems. Feedback and control mechanisms in selected biological systems will be introduced. Same as BME 667.

ECE 673. Random Signal Analysis. 3 credits, 3 contact hours.
Fundamentals of the theory of random variables. Introduction to the theory of random processes. Topics include functions of random variables, sequences of random variables, central limit theorem, properties of random processes, correlation, spectral analysis and linear systems with random inputs.

ECE 681. High Performance Routers and Switches. 3 credits, 3 contact hours.
The course introduces the different system comprising and Internet routing including the processors for networking function and protocol compliance, switching functions and packet classification for deep-layer inspection capable routers or network appliances. This course material describe the different functions that Internet routers perform and discusses the different approaches used for improving performance of high-end routers. The content includes a discussion on switch architectures.

ECE 683. Cloud and IoT Networking and Security. 3 credits, 3 contact hours.
This course will introduce the students to the basic networking concepts that enable the management and security of cloud and IoT networks. This course will start with the study of the fundamentals of computer networking and layering. Then, several techniques and protocols that enable and secure these technologies will be studied such as, specialized and advanced packet capture tips, virtualization / IEEE 802.15 Bluetooth / IEEE 802.15.4 ZigBee / IEEE 802.16e WiMAX / Home RF / ZWave / RFID / Infrared / PBCC / 3G / 4G / 5G, and specialized data traffic reconstruction and viewing techniques.

ECE 684. Advanced Microprocessor Systems. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in computer architecture and microprocessors, and some experience in assembly language programming. Architecture of advanced microprocessors; CPU architecture, memory management and protection, interrupt and exception facilities, instruction sets, systems aspects including peripheral interfaces, communications ports, and real-time systems.

ECE 689. Computer Arithmetic Algorithms. 3 credits, 3 contact hours.
Prerequisite: undergraduate course in logic design. Data representation, integers, floating point and residue representation. Bounds on arithmetic speed, algorithms for high speed addition, multiplication, and division. Pipelined arithmetic. Hardware implementation and control issues.

ECE 690. Computer Systems Architecture. 3 credits, 3 contact hours.
Prerequisites: ECE 684 and COE 353 (see undergraduate catalog for description) or CS 650. Discusses advanced topics in modern computer systems architecture such as pipelined and superscalar processors, parallel computers (vector, SIMD, MIMD), multithreaded and dataflow architectures, cache and memory hierarchy, and system interconnect architectures. Also discusses relevant system software design issues such as shared memory and message-passing communication models, cache coherence and synchronization mechanisms, latency-hiding techniques, virtual memory management, program partitioning and scheduling. Examples are drawn from real systems.

ECE 692. Embedded Computing Systems. 3 credits, 3 contact hours.
Pre-requisites: ECE 353 (COE) or ECE 684 (EE) and CS 105 (or equivalents). Introduction of the methodology for the design and implementation of embedded computing systems, and its application to real-world problems. Topics include Embedded System Design Process, UML, ARM Instruct Set Architectures, CPU's Hardware Platforms, Software Design and Analysis, Embedded Operating Systems, Real-Time Scheduling, Hardware Accelerators, Distributed Embedded Systems, and Design Methodology and Quality Assurance.

ECE 698. Selected Topics in Electrical and Computer Engineering. 3 credits, 3 contact hours.
Special area course given when suitable interest develops. Advance notice of forthcoming topics will be given.

ECE 699. Selected Topics in Electrical and Computer Engineering II. 3 credits, 3 contact hours.
See description for ECE 698 above.

ECE 700B. Master's Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. A written report must be submitted to the project advisor. The student cannot register in ECE 700B more than once and the incomplete (I) grade is not allowed. Master's students registering for the first time in Master's Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.
ECE 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ECE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ECE 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ECE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ECE 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

ECE 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for ECE 726 if they have taken ECE 725 in a prior semester.

ECE 739. Laser Systems. 3 credits, 3 contact hours.
Prerequisite: ECE 620 or permission of instructor. Optical resonators, laser radiation and oscillation. Laser characteristics: semiconductor lasers, gas and glass lasers; mode-locking, Q-switching. Quantum-well lasers, noise; modulation and detection of laser light, optical systems for communication and computation.

ECE 740. Advanced Digital Signal Processing. 3 credits, 3 contact hours.
Prerequisites: ECE 601, ECE 640 and ECE 673. Topics in stationary discrete time stochastic processes; modeling of discrete time processes, Yule-walker equations, aspects of discrete wiener theory; principle of orthogonality, linear predictors; Levinson-Durbin recursion and algorithm, lattice predictors, method of least squares (RLS) algorithm, systolic array implementation of QRD-Ls.

ECE 742. Communication Systems II. 3 credits, 3 contact hours.
Prerequisites: ECE 642 and ECE 673 or equivalents. Principles of digital communication. Topics include fundamentals of information theory, digital modulation techniques, optimum detector receivers for digitally modulated signals, the bandlimited gaussian channel and intersymbol interference, equalization, spread spectrum, CDMA.

ECE 743. Image Data Hiding, Forensics. 3 credits, 3 contact hours.
Prerequisites: ECE 643 or CS 659 or equivalent As we have entered digital world, information forensics and security have become critically important. With digital images as media, this course covers digital watermarking, reversible data hiding, steganography and steganalysis, forensics and counter-forensics, including image tampering detection, classification of double JPEG/MPEG compressions, camera classification from given images, classification of photographic images from computer graphic images, and so on.

ECE 744. Optimization for Data Engineering. 3 credits, 3 contact hours.
With the emergence of advanced sensing and monitoring technologies, data has become the new oil of our digital economy. In all the engineering fields, ranging from power systems and transportation systems to online shopping, web servers, sensors and cameras are continuously collecting huge amounts of data, but this data will not have any meaning without proper processing, analysis, and learning. Optimization techniques provide the core foundation for the processing of the data and learning from it. This course covers the basic analytical and algorithmic optimization tools that lay the foundation for the data analytics and deep learning systems. Specific topics include single-objective convex optimization (duality, optimality conditions, algorithms), gradients-based methods, and the fundamentals of multi-objective optimization and game theory. The theoretical foundation and the fundamental algorithms are applied to real-world scenarios that utilize supervised learning models, including nonlinear regression, logistic regression, support vector machines, and deep neural networks.

ECE 747. Signal Decomposition Techniques: Transforms, Sub-bands, and Wavelets. 3 credits, 3 contact hours.
Prerequisites: ECE 640 and ECE 673. Multiresolution signal decomposition techniques, transforms, sub-bands, and wavelets. Time-frequency localization properties of multiresolution algorithms. Evaluation and critique of proposed decomposition strategies from compression and performance standpoints. Applications to speech and video compression, and localized feature extraction. These are basic signal processing tools used in diverse applications such as speech and image processing and storage, seismology, machine vision.

ECE 754. Statistical Machine Learning and Pattern Recognition. 3 credits, 3 contact hours.
Prerequisites: Good knowledge of graduate probability, as in ECE 673 or equivalent, and linear algebra; or permission of instructor. This course provides a systematic introduction to machine learning and pattern recognition using information-theoretic performance criteria as guiding principles. Topics covered include linear and kernel models for classification and regression, sample complexity and VC dimension, probabilistic graphical models and approximate inference.
ECE 755. Advanced Topics in Digital Communications. 3 credits, 3 contact hours.
Prerequisites: ECE 642 and ECE 673 or equivalent. Advanced topics in digital communication systems, in the presence of intersymbol interference, noise, and fading; modulation and demodulation in the presence of Gaussian noise, efficient signaling with coded modulation, Viterbi algorithm, digital transmission with intersymbol interference, and digital signaling over imperfect channels.

ECE 756. Advanced Topics in Semiconductor Devices. 3 credits, 3 contact hours.
Prerequisite: ECE 657 or permission of instructor. Builds on ECE 657. Covers photonic devices particularly semiconductor laser and photodetectors for optical systems; microwave and other high-speed devices; and bipolar transistors.

ECE 758. VLSI Design Il. 3 credits, 3 contact hours.
Prerequisite: ECE 658 (with ECE 657 suggested). Use of CMOS, BiCMOS, and bipolar semiconductor technology in VLSI design. Digital techniques are emphasized with minor coverage of analog design. Application areas for full custom, gate arrays, standard cell, and compiled designs are compared. Mentor VLSI design tools running on the HP and Sun workstations are used in the course projects for each enrollee. The course attempts to provide a design environment for projects that is similar to that encountered by VLSI designers in industry.

ECE 760. Control Systems Il. 3 credits, 3 contact hours.
Prerequisites: ECE 601 and ECE 660. Properties of nonlinear systems and basic concepts of stability including small-signal linearization. State plane methods are introduced, with emphasis on controller design for systems that can be represented by second-order approximations. Concepts of equivalent gain, describing function, and dual-input describing function as applied to a large class of nonlinear systems. Representation of linear sampled-data systems in discrete state variable form, stability and performance of discrete-event systems. Full-state feedback, pole placement and observer design. Linear quadratic control and Kalman filtering.

ECE 776. Information Theory. 3 credits, 3 contact hours.
Prerequisites: ECE 642 and ECE 673 or equivalent. Classical theory of information developed from Shannon's theory. Information measure, Markov sources and extensions, the adjacent source, uniquely decodable and instantaneous codes and their construction, Shannon's first and second theorems, mutual information, and performance bounds on block and convolutional codes.

ECE 777. Statistical Decision Theory in Communications. 3 credits, 3 contact hours.
Prerequisite: ECE 642 or equivalent. Relation between detection theory and statistical hypothesis testing problem. Use of Bayes decision criteria, Neyman-Pearson, and mini-max tests; receiver operating characteristics. Representation of signals in signal space, probability of error calculations. Estimation of random and non-random signal parameters, Cramer-Rao Inequality. The general Gaussian problem and the use of covariance matrices.

ECE 783. Computer Communication Networks. 3 credits, 3 contact hours.
Prerequisites: ECE 673 and ECE 683. Data link control and communication channels. Delay models in data networks. Queueing analysis techniques are taught in detail. Multi-access communication techniques. Routing in computer communication networks.

ECE 788. Selected Topics in Electrical and Computer Engineering. 3 credits, 3 contact hours.
Special-area course given when suitable interest develops. Advance notice of forthcoming topics will be given.

ECE 789. Selected Topics in Electrical and Computer Engineering Il. 3 credits, 3 contact hours.
See description for ECE 788.

ECE 790. Doctrl Dissrtn & Research. 0 credits, 0 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790A. Doctrl Dissrtn & Research. 1 credit, 1 contact hour.
Co-requisite: ECE 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in ECE 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

ECE 790B. Doctrl Dissrtn & Research. 3 credits, 3 contact hours.
Co-requisite: ECE 791. Since the ECE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ECE 790C. Doctrl Dissertation & Resrch. 6 credits, 6 contact hours.
Co-requisite: ECE 791. Since the ECE 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).
ECE 790D. Doct Dissertation & Resrch. 9 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790E. Doct Dissertation & Resrch. 12 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790F. Doct Dissertation & Resrch. 15 credits, 3 contact hours.
Required of all students working toward the Ph.D. in Computer Engineering or in Electrical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.

ECE 790G. Doct Dissertation & Resrch. 18 credits, 3 contact hours.

ECE 791. Graduate Seminar. 0 credits, 0.5 contact hours.
All master's and doctoral students must register for two semesters and six semesters of ECE 791 Graduate Seminar, respectively. To receive a satisfactory grade, students must attend at least five seminars during the semester, as approved by the seminar supervisor.

ECE 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: ECE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in electrical or computer engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ECE 792C. Pre-Doctoral Research. 6 credits, 3 contact hours.

M.S. in Computer Engineering

Degree Requirements
The MSCoE program at NJIT is flexible and customizable to a student's individual goals. It allows students to pursue computer engineering disciplines in depth, as well as to take a selection of courses from other NJIT engineering, computer science or management majors. The program provides in-depth studies of modern computer engineering topics including computer architecture and embedded systems, intelligent systems, communications and networking, signal, information and data processing, machine learning, and cyber-physical systems. BS CoE degree (or equivalent) is a general enrollment requirement.

Program Requirements and Options
Upon entering the program, students select an area of specialization supervised by the MSCoE Program Advisor. The master's program consists of 30 credits. There are three program options: 24 course credits and 6 credits of master's thesis; or 27 course credits and 3 credits of master's project; or 30 course credits not to include either a master's project or thesis. Students should consult with the Program Advisor or designee before registering for courses to make sure they are meeting degree requirements. As a requirement for graduation, students must achieve a 3.0 cumulative GPA in graduate-level courses not including the master's thesis. Courses at the 500-or-below level are not acceptable for credit toward a graduate degree in computer engineering.

With permission of their research advisor, students intending to do an MS thesis may first register in the 700B MS Project course. They must receive a satisfactory (S) grade in 700B before 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in 700B.

Bridge Program
Students who lack an appropriate background may be admitted and be required to take selected courses in addition to the degree requirements in order to make up deficiencies. They must attain a grade of B or better in each course. At the discretion of the department, students who have taken courses equivalent to these may have their bridge programs reduced accordingly.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 353</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 395</td>
<td>Microprocessor Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ECE 231</td>
<td>Circuits and Systems I</td>
<td>3</td>
</tr>
</tbody>
</table>
Bridge Courses (undergraduate degree in electrical engineering)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 506</td>
<td>Foundations of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>ECE 353</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 395</td>
<td>Microprocessor Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ECE 684</td>
<td>Advanced Microprocessor Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 11

MSCoE Required Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 690</td>
<td>Computer Systems Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 6

ECE Department Focused Areas:

Communications, Signal Processing and Microwave; Computer Networking; Computer Architecture; Solid State, VLSI and Electro-optics Systems; and Intelligent Systems.

Students need to contact the MSCoE Program Adviser or designee for guidance and suggested courses for different focus areas. Three non-ECE graduate courses of 600 level may be chosen including CS 610 and must be approved as not all outside ECE department courses are applied for MSCoE.

Recommended MSEE Technical Electives – total 8 courses/24 credits

(additional courses including those in Computer Science and Management can be selected and approved by the program advisor)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 605</td>
<td>Discrete Event Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 610</td>
<td>Power System Steady-State Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 611</td>
<td>Transients in Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 613</td>
<td>Protection of Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 616</td>
<td>Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 617</td>
<td>Economic Control of Interconnected Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 618</td>
<td>Photovoltaic Semiconductors and Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>ECE 626</td>
<td>Optoelectronics - Nonlinear Modulators for Optical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>ECE 639</td>
<td>Principles of Broadband Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 640</td>
<td>Digital Signal and Data Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 641</td>
<td>Laboratory for High Performance Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 642</td>
<td>Introduction to Communication Systems: Evolution to 5G and Beyond</td>
<td>3</td>
</tr>
<tr>
<td>ECE 644</td>
<td>Wireless Communications: Fundamentals to 5G</td>
<td>3</td>
</tr>
<tr>
<td>ECE 645</td>
<td>Design of Wireless Networks: 5G Architecture and Services</td>
<td>3</td>
</tr>
<tr>
<td>ECE 657</td>
<td>Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECE 658</td>
<td>VLSI Design I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 660</td>
<td>Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 661</td>
<td>Control System Components</td>
<td>3</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 681</td>
<td>High Performance Routers and Switches</td>
<td>3</td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td>3</td>
</tr>
<tr>
<td>ECE 684</td>
<td>Advanced Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 690</td>
<td>Computer Systems Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>
M.S. in Electrical Engineering

Degree Requirements

The MSEEE program at NJIT is flexible and customizable to a student’s individual goals. It allows students to pursue electrical engineering disciplines in depth, as well as to take a selection of courses from other NJIT engineering, computer science or management majors. The program provides in-depth studies of modern engineering topics including physical devices, circuits and systems, communications and networking, signal, information and data processing. BS EE degree (or equivalent) is a general enrollment requirement.

Program Requirements and Options

Upon entering the program, students select an area of specialization supervised by the MSEEE Program Advisor. The master’s program consists of 30 credits. There are three program options: 24 course credits and 6 credits of master’s thesis; or 27 course credits and 3 credits of master’s project; or 30 course credits not to include either a master’s project or thesis. Students should consult with the Program Advisor or designee before registering for courses to make sure they are meeting degree requirements. As a requirement for graduation, students must achieve a 3.0 cumulative GPA in graduate-level courses not including the master’s thesis. Courses at the 500-or-below level are not acceptable for credit toward a graduate degree in electrical engineering.

Additional Thesis Option:

With permission of their research advisor, MS EE students intending to do an MS thesis may first register in the 700B MS Project course; They must receive a satisfactory (S) grade in 700B before 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in 700B.

Bridge Program

Students who lack an appropriate background may be admitted and be required to take selected courses in addition to the degree requirements in order to make up deficiencies. They must attain a grade of B or better in each course. At the discretion of the department, students who have taken courses equivalent to these may have their bridge programs reduced accordingly.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 321</td>
<td>Random Signals and Noise</td>
<td>3</td>
</tr>
<tr>
<td>ECE 232</td>
<td>Circuits and Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 361</td>
<td>Electromagnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td>ECE 362</td>
<td>Electromagnetic Waves Propagation</td>
<td>3</td>
</tr>
<tr>
<td>ECE 372</td>
<td>Electronic Circuits II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 18

1 Not Mandatory for MS Students
2022-2023 Graduate Catalog

MSEE Required Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 601</td>
<td>Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 6

ECE Department Focused Areas:

Communications, Signal Processing and Microwave; Computer Networking; Computer Architecture; Solid State, VLSI and Electro-optics Systems; Intelligent Systems.

Students need to contact the MSEE Program Adviser or designee for guidance and suggested courses for different focus areas. Two non-ECE graduate courses of 600 level may be chosen and must be approved as not all outside ECE department courses are applied for MSEE.

Recommended MSEE Technical Electives – total 8 courses/24 credits

(additional courses including those in Computer Science and Management can be selected and approved by the program advisor)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 605</td>
<td>Discrete Event Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 610</td>
<td>Power System Steady-State Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 611</td>
<td>Transients in Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 613</td>
<td>Protection of Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 616</td>
<td>Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 617</td>
<td>Economic Control of Interconnected Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 618</td>
<td>Photovoltaic Semiconductors and Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>ECE 626</td>
<td>Optoelectronics - Nonlinear Modulators for Optical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>ECE 639</td>
<td>Principles of Broadband Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 640</td>
<td>Digital Signal and Data Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 641</td>
<td>Laboratory for High Performance Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 642</td>
<td>Introduction to Communication Systems: Evolution to 5G and Beyond</td>
<td>3</td>
</tr>
<tr>
<td>ECE 644</td>
<td>Wireless Communications: Fundamentals to 5G</td>
<td>3</td>
</tr>
<tr>
<td>ECE 645</td>
<td>Design of Wireless Networks: 5G Architecture and Services</td>
<td>3</td>
</tr>
<tr>
<td>ECE 657</td>
<td>Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECE 658</td>
<td>VLSI Design I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 660</td>
<td>Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 661</td>
<td>Control System Components</td>
<td>3</td>
</tr>
<tr>
<td>ECE 681</td>
<td>High Performance Routers and Switches</td>
<td>3</td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td>3</td>
</tr>
<tr>
<td>ECE 684</td>
<td>Advanced Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 690</td>
<td>Computer Systems Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 692</td>
<td>Embedded Computing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 698</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECE 744</td>
<td>Optimization for Data Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECE 754</td>
<td>Statistical Machine Learning and Pattern Recognition</td>
<td>3</td>
</tr>
<tr>
<td>ECE 758</td>
<td>VLSI Design II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 760</td>
<td>Control Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 776</td>
<td>Information Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 788</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Thesis
M.S. in Internet Engineering

Degree Requirements

The bridge program curriculum requires a basic knowledge of computer and communications fundamentals.

All master's degree candidates must complete a minimum of 30 credits, 9 in core courses and 21 in elective courses; or 21 credits must be from ECE courses.

The required courses provide the basics of Internet Engineering. Electives are to be chosen from the available course pool to tailor the program to the student’s professional needs and interests. This program utilizes graduate courses in Electrical and Computer Engineering, Computer and Information Science, Management Information Systems, and Management Programs at NJIT. They provide the necessary blend of education required for appropriate strength in Internet Engineering.

M.S. in Internet Engineering (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Digital Communications Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 251</td>
<td>Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

1 Bridge courses are usually selected from this list, but some additional bridge courses, appropriate to each student's background, may be required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
<td>3</td>
</tr>
<tr>
<td>Electives 1</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Select seven of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 681</td>
<td>High Performance Routers and Switches</td>
<td></td>
</tr>
<tr>
<td>ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 639</td>
<td>Principles of Broadband Networks</td>
<td></td>
</tr>
<tr>
<td>ECE 645</td>
<td>Design of Wireless Networks: 5G Architecture and Services</td>
<td></td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>MIS 625</td>
<td>Management Strategies for E-Commerce</td>
<td></td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td></td>
</tr>
<tr>
<td>ECE 788</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>or ECE 789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 791</td>
<td>Graduate Seminar 2</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

1 Other (new) courses related to Internet Engineering may be selected as electives with approval from the Graduate Advisor
2 Two semesters are required.
M.S. in Internet Engineering (Master's project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bridge Courses</td>
<td></td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Digital Communications Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 251</td>
<td>Digital Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Bridge courses are usually selected from this list, but some additional bridge courses, appropriate to each student's background, may be required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 602</td>
<td>Java Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>ECE 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select six of the following:</td>
<td>18</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 681</td>
<td>High Performance Routers and Switches</td>
<td></td>
</tr>
<tr>
<td>ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 639</td>
<td>Principles of Broadband Networks</td>
<td></td>
</tr>
<tr>
<td>ECE 645</td>
<td>Design of Wireless Networks: 5G Architecture and Services</td>
<td></td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>MIS 625</td>
<td>Management Strategies for E-Commerce</td>
<td></td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td></td>
</tr>
<tr>
<td>ECE 788</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>or ECE 789</td>
<td>Selected Topics in Electrical and Computer Engineering II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>ECE 791</td>
<td>Graduate Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

1. Other (new) courses related to Internet Engineering may be selected as electives with approval from the Graduate Advisor

2. Two semesters are required.

M.S. in Internet Engineering (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bridge Courses</td>
<td></td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Digital Communications Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 251</td>
<td>Digital Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Bridge courses are usually selected from this list, but some additional bridge courses, appropriate to each student's background, may be required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
</tbody>
</table>
M.S. in Power and Energy Systems

Degree Requirements

Bridge Program

Students who have earned a Bachelor of Science in Engineering Technology (B.S.E.T.) degree, or who lack an appropriate background may be admitted and be required to take selected courses in addition to the degree requirements in order to make up deficiencies. They must attain a grade of B or better in each course. At the discretion of the department, students who have taken courses equivalent to these may have their bridge programs reduced accordingly.

Master's Program

This master's program consists of 30 credits. As a requirement for graduation, students must achieve a 3.0 cumulative GPA in graduate-level courses, not including the master's thesis or project. The project grade must be B or better.

Master's Project/Master's Thesis

If you do a Master's Project, you need to take in total 9 courses plus ECE 700B Master's Project; and if you do a Master's thesis, you need to take 8 courses plus two semesters of ECE 701B Master's Thesis. These options are highly recommended if you like research and plan to pursue for your Ph.D. degree.

Additional Thesis Option:

With permission of their research advisor, in MS PES program students intending to do an MS thesis may first register in the 700B MS Project course; They must receive a satisfactory (S) grade in 700B before 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in 700B.

M.S. in Power and Energy Systems

### Code	Title	Credits
ECE 683 | Cloud and IoT Networking and Security | 3
CS 602 | Java Programming | 3

Thesis

<table>
<thead>
<tr>
<th>Code & Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 701B & 701B</td>
<td>6</td>
</tr>
</tbody>
</table>

Electives

Select five of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
</tr>
<tr>
<td>ECE 681</td>
<td>High Performance Routers and Switches</td>
</tr>
<tr>
<td>ECE 638</td>
<td>Network Management and Security</td>
</tr>
<tr>
<td>ECE 639</td>
<td>Principles of Broadband Networks</td>
</tr>
<tr>
<td>ECE 645</td>
<td>Design of Wireless Networks: 5G Architecture and Services</td>
</tr>
<tr>
<td>ECE 636</td>
<td>Computer Networking Laboratory</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
</tr>
<tr>
<td>MIS 625</td>
<td>Management Strategies for E-Commerce</td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
</tr>
<tr>
<td>ECE 788</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
</tr>
<tr>
<td>or ECE 789</td>
<td>Selected Topics in Electrical and Computer Engineering II</td>
</tr>
</tbody>
</table>

Seminar

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 791</td>
<td>Graduate Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits: 30

1. Other (new) courses related to Internet Engineering may be selected as electives with approval from the Graduate Advisor.
2. Two semesters are required.
Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 601</td>
<td>Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 610</td>
<td>Power System Steady-State Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Specialized Courses/Electives

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 611</td>
<td>Transients in Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 616</td>
<td>Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 618</td>
<td>Photovoltaic Semiconductors and Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>ECE 698</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 613</td>
<td>Protection of Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 617</td>
<td>Economic Control of Interconnected Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 698</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECE 698</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECE 605</td>
<td>Discrete Event Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 620</td>
<td>Electromagnetic Field Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>ECE 658</td>
<td>VLSI Design I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 661</td>
<td>Control System Components</td>
<td>3</td>
</tr>
<tr>
<td>ECE 664</td>
<td>Applied Advanced Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 681</td>
<td>High Performance Routers and Switches</td>
<td>3</td>
</tr>
<tr>
<td>ECE 692</td>
<td>Embedded Computing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 788</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 607</td>
<td>Advanced Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 610</td>
<td>Applied Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENE 671</td>
<td>Environmental Impact Analysis ¹</td>
<td>3</td>
</tr>
<tr>
<td>IE 614</td>
<td>Safety Engineering Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 30

¹ MGMT 692 Strategic Management and other business and management courses can be included as optional electives based on the student background, instructor approval and advisor approval.

M.S. in Telecommunications

Degree Requirements

The curriculum requires a basic knowledge of computer and communications fundamentals such as programming, data structures, computer architecture, signals and systems, and basic communication systems. Bridge courses do not count toward the degree. The bridge courses are selected from the following list depending on individual background in consultation with the graduate advisor. See the undergraduate catalog (http://catalog.njit.edu/undergraduate/newark-college-engineering/#coursestext) for descriptions of 200- to 400-level courses.

Candidates must complete a minimum of 30 credits: 12 in core courses and 18 in elective courses in an area of specialization with a minimum overall GPA of 3.0. In addition, a minimum average 3.0 GPA is required in the five core courses. Students with an exceptionally strong telecommunications background may be allowed to replace required courses with advanced electives. Permission of the graduate advisor is required.
M.S. in Telecommunications (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 353</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 252</td>
<td>Microprocessors</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 333</td>
<td>Introduction to UNIX Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 321</td>
<td>Random Signals and Noise</td>
<td>3</td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Digital Communications Systems</td>
<td>3</td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 642</td>
<td>Introduction to Communication Systems: Evolution to 5G and Beyond</td>
<td>3</td>
</tr>
<tr>
<td>ECE 644</td>
<td>Wireless Communications: Fundamentals to 5G</td>
<td>3</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select six of the following: ¹</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td></td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>or ECE 690</td>
<td>Computer Systems Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>or ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 665</td>
<td>Algorithmic Graph Theory</td>
<td></td>
</tr>
<tr>
<td>CS 668</td>
<td>Parallel Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 742</td>
<td>Communication Systems II</td>
<td></td>
</tr>
<tr>
<td>ECE 755</td>
<td>Advanced Topics in Digital Communications</td>
<td></td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

¹ These courses are to be used in an area of specialization.

M.S. in Telecommunications (Master's project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 353</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 252</td>
<td>Microprocessors</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 333</td>
<td>Introduction to UNIX Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 321</td>
<td>Random Signals and Noise</td>
<td>3</td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Digital Communications Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
ECE 321 Random Signals and Noise and ECE 333 Signals and Systems may be substituted for.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 642</td>
<td>Introduction to Communication Systems: Evolution to 5G and Beyond</td>
<td>3</td>
</tr>
<tr>
<td>ECE 644</td>
<td>Wireless Communications: Fundamentals to 5G</td>
<td>3</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 683</td>
<td>Cloud and IoT Networking and Security</td>
<td>3</td>
</tr>
<tr>
<td>ECE 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
<tr>
<td>or CS 700B</td>
<td>Master's Project</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select five of the following: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td></td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>or ECE 690</td>
<td>Computer Systems Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>or ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 668</td>
<td>Parallel Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 742</td>
<td>Communication Systems II</td>
<td></td>
</tr>
<tr>
<td>ECE 755</td>
<td>Advanced Topics in Digital Communications</td>
<td></td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

33

These courses are to be used in an area of specialization.

M.S. in Telecommunications (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 353</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 252</td>
<td>Microprocessors</td>
<td>3</td>
</tr>
<tr>
<td>CS 332</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 333</td>
<td>Introduction to UNIX Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 505</td>
<td>Programming, Data Structures, and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ECE 321</td>
<td>Random Signals and Noise</td>
<td>3</td>
</tr>
<tr>
<td>ECE 333</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Digital Communications Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 701C</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>
Electives
Select four of the following: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td></td>
</tr>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td></td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>or ECE 690</td>
<td>Computer Systems Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>or ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 668</td>
<td>Parallel Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 742</td>
<td>Communication Systems II</td>
<td></td>
</tr>
<tr>
<td>ECE 755</td>
<td>Advanced Topics in Digital Communications</td>
<td></td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 33

1 These courses are to be used in an area of specialization.

Area of Specialization
The following are suggested areas of specialization and sample elective courses for each. Students may develop an individual area of specialization in consultation with a graduate advisor.

Management and Administration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
</tbody>
</table>

Communication Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 742</td>
<td>Communication Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 755</td>
<td>Advanced Topics in Digital Communications</td>
<td>3</td>
</tr>
</tbody>
</table>

Networking

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 633</td>
<td>Distributed Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 650</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 690</td>
<td>Computer Systems Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Cognitive Cloud Networking - Architectures and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 656</td>
<td>Internet and Higher-Layer Protocols</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 637</td>
<td>Internet and Higher-Layer Protocols</td>
<td></td>
</tr>
<tr>
<td>CS 668</td>
<td>Parallel Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
<tr>
<td>ECE 639</td>
<td>Principles of Broadband Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 673</td>
<td>Random Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 783</td>
<td>Computer Communication Networks</td>
<td>3</td>
</tr>
</tbody>
</table>
Information Technologies

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 696</td>
<td>Network Management and Security</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 638</td>
<td>Network Management and Security</td>
<td></td>
</tr>
</tbody>
</table>

Other CS and ECE courses related to telecommunications may be selected as elective courses with the written approval of the corresponding graduate advisor.

Additional Thesis Option:

With permission of their research advisor, MS Telecom students intending to do an MS thesis may first register in the 700B MS Project course; They must receive a satisfactory (S) grade in 700B before 701B MS Thesis registration in the immediate following semester with the same advisor. The MS thesis topic should be continuation of the work done in 700B.

Ph.D. in Computer Engineering

Degree Requirements

To graduate, students must have an approved dissertation and are expected to attain an overall GPA of at least 3.5. Students need always to get departmental approval for the courses they take for their degree requirements.

Ph.D. in Computer Engineering (students with a master's in computer engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>700-level course work <sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td>ECE 790 Doctrl Dissrtn & Research <sup>2</sup></td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td>ECE 791 Graduate Seminar <sup>3</sup></td>
<td>0</td>
</tr>
</tbody>
</table>

No more than 6 credits may be ECE 725 or ECE 726 Independent Study. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Additionally, ECE 630, ECE 632, ECE 639, ECE 681, ECE 657, ECE 618, ECE 692, ECE 690, ECE 605 and ECE 666 can be 700-level course substitutes because of lack of 700-level course in these tracks. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student's dissertation committee may ask the student to take additional courses.

Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (ECE 792B Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (ECE 790) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

Students must register six semesters for this seminar. Student must attend at least 5 seminars per semester. Part-time students may request that this requirement be waived for some semesters.

Ph.D. in Computer Engineering (students with a Baccalaureate degree in computer engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>600 and 700-level courses <sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td>ECE 790 Doctrl Dissrtn & Research <sup>2</sup></td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td>ECE 791 Graduate Seminar <sup>3</sup></td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits 36
Ph.D. students with a recognized Baccalaureate degree are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits). Master’s project (course 700), Master’s thesis (course 701), or more than two independent study courses (courses 725 and 726) cannot be used to satisfy these coursework requirements. No more than 6 credits may be ECE 725 or ECE 726 Independent Study. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Additionally, ECE 630, ECE 632, ECE 639, ECE 681, ECE 657, ECE 618, ECE 692, ECE 690, ECE 605 and ECE 666 can be replaced as 700-level courses because of lack of 700-level course in these tracks. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student's dissertation committee may ask the student to take additional courses.

Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (ECE 792B Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (ECE 790A Doct Dissertation & Res) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

Students must register six semesters for this seminar. Student must attend at least 5 seminars per semester. Part-time students may request that this requirement be waived for some semesters.

Deadlines

Students who do not meet the following deadlines will be dismissed from the Ph.D. program.

- The required coursework for the Ph.D. program and the (major part of the) QE must be completed successfully by the end of the second year in the program.
- The dissertation proposal must be defended successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier.
- The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

Selection of Dissertation Advisor

Students must select a dissertation topic and advisor within 6 months of joining the program. Advisors are assigned based on student preferences and availability of funding. Change of advisor requires consent of the previous advisor and departmental approval. In cases where more than one advisor is directing the dissertation, the primary advisor must be on the core departmental faculty.

Qualifying Examination

Goal: ECE Department’s qualifying exam needs to be a constructive component in the development of a student’s research skills and along with the course work requirements to identify students qualified for research.

Exam Structure: The Ph. D. Qualifying Exam has two parts: I) GPA requirement on selected courses, and II) Research potential assessment.

Part I. GPA Course Requirements:

ECE Course Requirement: Prequalified doctoral students are required to pass four courses selected from a list of relevant doctoral courses (“core courses”) with a GPA of at least 3.5 or higher.

Each research group (Communications, Signal Processing and Microwave; Computer Networking; Computer Architecture, Electronic and Photonic Devices; and Intelligent Systems) has its own list of courses. Courses are listed at the bottom of this section.

Part II. Research Potential Assessment Oral Qualifier:

The research potential assessment oral qualifying examination must be taken within the first year from the time the student starts the Ph.D. program if he/she has a MS degree. In the case of a student accepted into the BS-Ph.D. track, the exam must be taken within two years from the time the student starts the Ph.D. program. For the students accepted with a MS degree, within the first two semesters from the time the student starts the Ph.D. program the student must complete one Independent Research course in his/her research area of interest. For the Independent Research course, the student registers with a faculty member who may or may not be the student’s prospective Ph.D. advisor.

The oral exam committee will be assigned by the Associate Chair for Graduate Studies of the ECE Department. It will be chaired by a faculty member from an area different from the student’s area of interest. In addition to the Chair, the committee will include three faculty members in the student’s area of interest. The supervisor of the independent research work or the student’s prospective advisor may be part of the committee.

A student must send in an official application for taking the oral Qualifying exam to the Associate Chair for Graduate Studies, at least one month before the target date of the oral exam committee. The student is responsible to find a time such that all committee members can attend. In the application, the student should identify the research focus area for the exam and outline how the course requirements (if any) for that focus area have been met.
For the oral exam, the student will prepare a written report to the committee and to the associate chair for graduate studies at least one week before the exam date. The report should be written following the standard format of a conference paper, with 4-6 pages in double column, font size 11. The subject of the oral exam is to be chosen by the student. It is recommended that this choice be made in consultation with a faculty advisor and the ECE associate chair for graduate studies. A suitable basis for the examination may include, but is not restricted to:

- A paper/report (conference, journal, technical report, patent, and/or published or submitted)
- A conference paper submission based on research under the supervision of a faculty advisor.
- An M.S. thesis in preparation or previously completed thesis
- A final project report derived from an ECE Independent Study course.

During the exam the student will make a 30-minute oral presentation of his/her own independent research to the oral exam committee.

The oral presentation will be followed by an open-ended question and answer session that may include questions specific to the research project as well as questions generally relevant to the research area regarding fundamental knowledge underpinning the project topic. In addition, basic questions from various different areas can be asked to determine student's breadth of understanding.

Since this examination will occur in the early stages of research, and since the oral exam is not a doctoral defense, the presented paper need not lead to a Ph.D. thesis proposal. For the examination committee, evaluation of the originality and novelty of the research contribution will be secondary to an evaluation of the student’s critical thinking skills. Specifically, the committee will focus on the student’s ability to analyze, interpret and articulate both strengths and weaknesses of the work. Outstanding students, who have published several papers prior to starting their Ph.D. program, are encouraged to take the oral qualifying exam during the first semester of the Ph.D. program.

The committee will provide a written evaluation of the student’s potential for Ph.D. research (in terms of technical ability, and oral and written communications skill) to the department. The committee members can seek input from the prospective Ph.D. advisor when making such evaluation, but the advisor is excluded from participating in formulating the written evaluation. Each member of the Ph. D. Qualifying committee votes to pass or fail the student. The written report should include the vote. The vote of 3:1 or 4:0 is needed for the student to pass the Ph.D. Qualifying Exam.

The ECE department will make the final decision of pass or fail based on the exam committee’s report. The student will be allowed two chances to take the Ph.D. Qualifying Exam. The second attempt must be taken within six months from the time the student made the first qualifying exam. Failure to do so will automatically dismiss the student's qualification for further doctoral study.

The Ph. D. Qualifying Exam is offered year around. Five Areas of the Ph. D. Qualifying Exam

- Communications, Signal Processing and Microwave
- Computer Networking
- Computer Architecture
- Electronic and Photonic Devices
- Intelligent Systems

The student needs to select a minimum of 4 courses out of 6 courses (or equivalent) required by each area: Students can take additional courses as per the advisement of area. Here are the suggested courses for different areas:

<table>
<thead>
<tr>
<th>Communication</th>
<th>Signal Processing</th>
<th>Microwave</th>
<th>Networking</th>
<th>Computer Architecture</th>
<th>Electronic & Photonic</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 725</td>
</tr>
<tr>
<td>ECE 726</td>
</tr>
<tr>
<td>ECE 742</td>
<td>ECE 740</td>
<td>ECE 742</td>
<td>ECE 783</td>
<td>ECE 690</td>
<td>ECE 758</td>
<td>ECE 788</td>
</tr>
<tr>
<td>ECE 744</td>
<td>ECE 743</td>
<td>ECE 630</td>
<td>ECE 681</td>
<td>ECE 758</td>
<td>ECE 657</td>
<td>ECE 666</td>
</tr>
<tr>
<td>ECE 776</td>
<td>ECE 788</td>
<td>ECE 632</td>
<td>ECE 744</td>
<td>ECE 692</td>
<td>ECE 756</td>
<td>ECE 605</td>
</tr>
<tr>
<td>ECE 777</td>
<td>ECE 777</td>
<td>ECE 744</td>
<td>ECE 639</td>
<td>ECE 689</td>
<td>ECE 618</td>
<td>ECE 618</td>
</tr>
</tbody>
</table>

Formation of Dissertation Committee

A dissertation committee must be formed within three months after passing the qualifying examination. The dissertation committee must be approved by the ECE Department Graduate Affairs Committee at the time of its formation and before the presentation of the research proposal. The dissertation committee chairperson typically is the doctoral candidate’s program advisor, but other faculty may be selected, provided that they are from the ECE Department. The committee consists of a minimum of five members, one of whom is external to the ECE Department or to NJIT, and at least three of whom are members of the ECE department. The dissertation advisor must be a tenure-track or tenured faculty member at NJIT. If the dissertation...
advisor is an ECE department faculty member, then the chair of the student’s dissertation committee may be any tenure-track or tenured faculty member in the ECE Department at NJIT. If the dissertation advisor is not a member of the ECE department at NJIT, then the chair of the student’s dissertation committee must be a tenured faculty member in the ECE department at NJIT. If the dissertation advisor is not an ECE department faculty member, there must be a co-advisor who is a tenure-track or tenured faculty member in the ECE department at NJIT.

Research Proposal

Doctoral candidates must prepare a written research proposal for approval by their dissertation committee. The proposal must be presented after formation of the committee but within twelve months after passing the qualifying exam. The proposal should show that facilities are available to do the work. Research is expected to investigate or develop a unique contribution to science and technology. Research may be experimental, analytical, applied, or theoretical, provided it satisfies these criteria and is approved by the dissertation committee. The research proposal would normally include title and goal of the proposed dissertation; a detailed discussion of background material, including a literature search; a summary of work accomplished to date; a statement of how the residency requirement will be met; and a proposed time table for completion of research.

Dissertation and Defense

A dissertation should demonstrate original research that contributes to knowledge in the field. The dissertation should result in scholarly publication and must be defended in a publicly-announced oral defense. A typed version of the completed dissertation should be available to the committee at least three (3) weeks before the oral defense is scheduled and an unbound copy of the thesis should be available in the Department Secretary’s office (235 ECEC) three weeks before the defense. Successful defense of the dissertation is determined by vote of the dissertation committee. All members of the committee must be present to hear the defense. In regard to format, the standard reference is the latest edition of the Estrin/Roche manual Guidelines for Scientific and Professional Theses. The Office of Graduate Studies policies on number of copies, deadlines, and submission of dissertation and abstracts are also to be followed. Every member of the dissertation committee must sign the approval page of the final dissertation document. Students cannot be certified by the ECE department for the doctoral degree until the student publishes at least one paper in a peer-reviewed journal deemed of acceptable quality by the dissertation advisor.

Ph.D. in Electrical Engineering

Degree Requirements

To graduate, students must have an approved dissertation and are expected to attain an overall GPA of at least 3.5. Students need always to get departmental approval for the courses they take for their degree requirements.

Ph.D. in Electrical Engineering (students with a master’s in electrical engineering or equivalent)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>700-level courses 1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 790</td>
<td>Doctrl Dissrtn & Research 2</td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 791</td>
<td>Graduate Seminar 3</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

1 No more than 6 credits may be ECE 725 Independent Study I or ECE 726 Independent Study II Independent Study. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Additionally, ECE 630, ECE 632, ECE 639, ECE 681, ECE 657, ECE 618, ECE 692, ECE 690, ECE 605 and ECE 666 can be 700-level course substitutes because of lack of 700-level course in these tracks. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student's dissertation committee may ask the student to take additional courses. Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (ECE 792B Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (ECE 790A Doctrnl Dissrtn & Research) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

2 Students must register six semesters for this seminar. Student must attend at least 5 seminars per semester. Part-time students may request that this requirement be waived for some semesters.

Ph.D. in Electrical Engineering (students with a Baccalaureate degree in electrical engineering or equivalent)
Ph.D. students with a recognized Baccalaureate degree are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits). Master’s project (course 700), Master’s thesis (course 701), or more than two independent study courses (courses 725 and 726) cannot be used to satisfy these coursework requirements. No more than 6 credits may be ECE 725 Independent Study I or ECE 726 Independent Study II. 700-level courses may be substituted by 600-level courses if the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. Additionally, ECE 630, ECE 632, ECE 639, ECE 681, ECE 657, ECE 618, ECE 690, ECE 605 and ECE 686 can be replaced as 700-level courses because of lack of 700-level course in these tracks. Whether or not a program requires additional courses above the aforementioned minimum requirements, a Ph.D. student's dissertation committee may ask the student to take additional courses.

Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (ECE 792B Pre-Doctoral Research) per semester until they defend successfully the dissertation proposal. Ph.D. students who defend the dissertation proposal successfully must then register for the 1-credit dissertation course (ECE 790A Doctrl Dissrtn & Research) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

Students must register six semesters for this seminar. Student must attend at least 5 seminars per semester. Part-time students may request that this requirement be waived for some semesters.

Deadlines

Students who do not meet the following deadlines will be dismissed from the Ph.D. program.

- The required coursework for the Ph.D. program and the (major part of the) QE must be completed successfully by the end of the second year in the program.
- The dissertation proposal must be defended successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier.
- The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

Selection of Dissertation Advisor

Students must select a dissertation topic and advisor within 6 months of joining the program. Advisors are assigned based on student preferences and availability of funding. Change of advisor requires consent of the previous advisor and departmental approval. In cases where more than one advisor is directing the dissertation, the primary advisor must be on the core departmental faculty.

Qualifying Examination

Goal: ECE Department’s qualifying exam needs to be a constructive component in the development of a student’s research skills and along with the course work requirements to identify students qualified for research.

Exam Structure: The Ph. D. Qualifying Exam has two parts: I) GPA requirement on selected courses, and II) Research potential assessment.

Part I. GPA Course Requirements:

ECE Course Requirement: Prequalified doctoral students are required to pass four courses selected from a list of relevant doctoral courses (“core courses”) with a GPA of at least 3.5 or higher.

Each research group (Communications, Signal Processing and Microwave; Computer Networking; Computer Architecture, Electronic and Photonic Devices; and Intelligent Systems) has its own list of courses. Courses are listed at the bottom of this section.

Part II. Research Potential Assessment Oral Qualifier:

The research potential assessment oral qualifying examination must be taken within the first year from the time the student starts the Ph.D. program if he/she has a MS degree. In the case of a student accepted into the BS-Ph.D. track, the exam must be taken within two years from the time the student starts the Ph.D. program. For the students accepted with a MS degree, within the first two semesters from the time the student starts the Ph.D. program
the student must complete one Independent Research course in his/her research area of interest. For the Independent Research course, the student registers with a faculty member who may or may not be the student’s prospective Ph.D. advisor.

The oral exam committee will be assigned by the Associate Chair for Graduate Studies of the ECE Department. It will be chaired by a faculty member from an area different from the student’s area of interest. In addition to the Chair, the committee will include three faculty members in the student’s area of interest. The supervisor of the independent research work or the student’s prospective advisor may be part of the committee.

A student must send in an official application for taking the oral Qualifying exam to the Associate Chair for Graduate Studies, at least one month before the target date of the oral exam committee. The student is responsible to find a time such that all committee members can attend. In the application, the student should identify the research focus area for the exam and outline how the course requirements (if any) for that focus area have been met.

For the oral exam, the student will prepare a written report to the committee and to the associate chair for graduate studies at least one week before the exam date. The report should be written following the standard format of a conference paper, with 4-6 pages in double column, font size 11. The subject of the oral exam is to be chosen by the student. It is recommended that this choice be made in consultation with a faculty advisor and the ECE associate chair for graduate studies. A suitable basis for the examination may include, but is not restricted to:

• A paper/report (conference, journal, technical report, patent, and/or published or submitted) • A conference paper submission based on research under the supervision of a faculty advisor.

• An M.S. thesis in preparation or previously completed thesis

• A final project report derived from an ECE Independent Study course.

During the exam the student will make a 30-minute oral presentation of his/her own independent research to the oral exam committee.

The oral presentation will be followed by an open-ended question and answer session that may include questions specific to the research project as well as questions generally relevant to the research area regarding fundamental knowledge underpinning the project topic. In addition, basic questions from various different areas can be asked to determine student’s breadth of understanding.

Since this examination will occur in the early stages of research, and since the oral exam is not a doctoral defense, the presented paper need not lead to a Ph.D. thesis proposal. For the examination committee, evaluation of the originality and novelty of the research contribution will be secondary to an evaluation of the student’s critical thinking skills. Specifically, the committee will focus on the student’s ability to analyze, interpret and articulate both strengths and weaknesses of the work. Outstanding students, who have published several papers prior to starting their Ph.D. program, are encouraged to take the oral qualifying exam during the first semester of the Ph.D. program.

The committee will provide a written evaluation of the student’s potential for Ph.D. research (in terms of technical ability, and oral and written communications skill) to the department. The committee members can seek input from the prospective Ph.D. advisor when making such evaluation, but the advisor is excluded from participating in formulating the written evaluation. Each member of the Ph. D. Qualifying committee votes to pass or fail the student. The written report should include the vote. The vote of 3:1 or 4:0 is needed for the student to pass the Ph.D. Qualifying Exam.

The ECE department will make the final decision of pass or fail based on the exam committee’s report. The student will be allowed two chances to take the Ph.D. Qualifying Exam. The second attempt must be taken within six months from the time the student made the first qualifying exam. Failure to do so will automatically dismiss the student’s qualification for further doctoral study.

The Ph. D. Qualifying Exam is offered year around. Five Areas of the Ph. D. Qualifying Exam

• Communications, Signal Processing and Microwave

• Computer Networking

• Computer Architecture

• Electronic and Photonic Devices

• Intelligent Systems

The student needs to select a minimum of 4 courses out of 6 courses (or equivalent) required by each area: Students can take additional courses as per the advisement of area. Here are the suggested courses for different areas:

<table>
<thead>
<tr>
<th>Communication</th>
<th>Signal Processing</th>
<th>Microwave</th>
<th>Networking</th>
<th>Computer Architecture</th>
<th>Electronic & Photonic</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 725</td>
</tr>
<tr>
<td>ECE 726</td>
</tr>
<tr>
<td>ECE 742</td>
<td>ECE 740</td>
<td>ECE 742</td>
<td>ECE 783</td>
<td>ECE 690</td>
<td>ECE 758</td>
<td>ECE 788</td>
</tr>
<tr>
<td>ECE 744</td>
<td>ECE 743</td>
<td>ECE 630</td>
<td>ECE 681</td>
<td>ECE 758</td>
<td>ECE 657</td>
<td>ECE 666</td>
</tr>
</tbody>
</table>
Why study Power Systems Engineering at NJIT?

What will I learn?

- Power system steady-state analysis of power system networks, particularly real and reactive power flows under normal conditions and current flows under faulty conditions. Symmetrical components and digital solutions are emphasized.
- Computer methods applied to power systems and digital computer techniques proven successful in the solution of power system problems, particularly in the electric utility industry. Emphasis on short-circuit, load flow, and transient stability problems. Matrix sparsity is considered.
- Transient performance of power systems with lumped properties, interruption of arcs, restriking voltage, re-ignition inertia effects, switching of rotational systems, magnetic saturation in stationary networks, harmonic oscillations, saturated systems, transient performance of synchronous machines.
- Protection of power systems
- Theoretical developments and computer methods in determining economic operation within the boundaries of a given steam-electric operating area. Energy accounting control and economic theories for interconnected steam and hydroelectric power systems.

Research Proposal

Doctoral candidates must prepare a written research proposal for approval by their dissertation committee. The proposal must be presented after formation of the committee but within twelve months after passing the qualifying exam. The proposal should show that facilities are available to do the work. Research is expected to investigate or develop a unique contribution to science and technology. Research may be experimental, analytical, applied, or theoretical, provided it satisfies these criteria and is approved by the dissertation committee. The research proposal would normally include title and goal of the proposed dissertation; a detailed discussion of background material, including a literature search; a summary of work accomplished to date; a statement of how the residency requirement will be met; and a proposed time table for completion of research.

Dissertation and Defense

A dissertation should demonstrate original research that contributes to knowledge in the field. The dissertation should result in scholarly publication and must be defended in a publicly-announced oral defense. A typed version of the completed dissertation should be available to the committee at least three (3) weeks before the oral defense is scheduled and an unbound copy of the thesis should be available in the Department Secretary’s office (235 ECEC) three weeks before the defense. Successful defense of the dissertation is determined by vote of the dissertation committee. All members of the committee must be present to hear the defense. In regard to format, the standard reference is the latest edition of the Estrin/Roche manual Guidelines for Scientific and Professional Theses. The Office of Graduate Studies policies on number of copies, deadlines, and submission of dissertation and abstracts are also to be followed. Every member of the dissertation committee must sign the approval page of the final dissertation document. Students cannot be certified by the ECE department for the doctoral degree until the student publishes at least one paper in a peer-reviewed journal deemed of acceptable quality by the dissertation advisor.

Power Systems Engineering

The objective of the certificate in Power Systems Engineering is to provide students with the knowledge to be involved with the technology advancements and future developments in power generation, controls, and management as well as with alternate and new energy resources. This program will prepare engineers to work in the power and energy industry. Academic programs in energy technology and management are needed to prepare the future workforce for the energy and power industry as more than fifty percent of the workforce in the power industry is retiring during this decade. At the same time, developing new, clean, and more efficient energy resources and technologies is of global significance.

Who is suited for this program?

Power Systems Engineering is ideal for preparing future engineers in the power and energy industry. Additionally, it fits students who are interested in technology advancements and future developments in the power generation, control, and management as well as alternate and new resources.

What will I learn?

- Power system steady-state analysis of power system networks, particularly real and reactive power flows under normal conditions and current flows under faulty conditions. Symmetrical components and digital solutions are emphasized.
- Computer methods applied to power systems and digital computer techniques proven successful in the solution of power system problems, particularly in the electric utility industry. Emphasis on short-circuit, load flow, and transient stability problems. Matrix sparsity is considered.
- Transient performance of power systems with lumped properties, interruption of arcs, restriking voltage, re-ignition inertia effects, switching of rotational systems, magnetic saturation in stationary networks, harmonic oscillations, saturated systems, transient performance of synchronous machines.
- Protection of power systems
- Theoretical developments and computer methods in determining economic operation within the boundaries of a given steam-electric operating area. Energy accounting control and economic theories for interconnected steam and hydroelectric power systems.

Why study Power Systems Engineering at NJIT?
Energy resources and technology has become a key thrust area of significant importance at several leading institutions. With the synergy in nanotechnology, solar cells and other related sciences at NJIT, an advanced energy technology initiative was formulated to offer an academic and research program in energy resources, technology management, and alternate energy research.

Academic programs in energy technology and management are much needed to prepare the future workforce for the energy and power industry as more than 50% of the workforce in the power industry is retiring in this decade. At the same time, developing new, clean and more efficient energy resources and technologies is of global significance.

Prerequisites

Applicants are expected to have undergraduate backgrounds in physics, mathematics (through differential equations and vector analysis), electrical networks and devices, electronics, analysis and design methods, transients, electromagnetic fields, and appropriate laboratory work in some of these areas. Completion of a Bachelor’s degree with a overall cumulative Grade Point Average of 2.8 or higher on a 4.0 scale.

Related Degree Programs

All credits for the Power Systems Engineering Certificate relates in its entirety to either MS in Electrical Engineering (http://catalog.njit.edu/graduate/newark-college-engineering/electrical-computer/electrical-ms/) or MS in Power and Energy Systems (http://catalog.njit.edu/graduate/newark-college-engineering/electrical-computer/power-energy-systems-ms/).

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/power-systems-engineering-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 610</td>
<td>Power System Steady-State Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 618</td>
<td>Renewable Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ECE 611</td>
<td>Transients in Power Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 613</td>
<td>Protection of Power Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 618</td>
<td>Renewable Energy Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 698</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical and Industrial Engineering

Mechanical Engineering

Mechanical engineering is concerned with the design, development, manufacture, and operation of a wide variety of energy conversion and machine systems. The research and education facilities of the department are housed in the 60,000-square-foot Mechanical Engineering Building. Major research laboratories include Particle Technology, Energetic Materials, Machine Vision and Motion Analysis, Waterjet Machining, Robotics and Intelligent Manufacturing, Bearing Lubrication, and Plastic Processing and Analysis.

Master of Science in Mechanical Engineering

A program for engineering graduates who want advanced professional preparation and further graduate study in mechanical engineering.

Admission Requirements

Applicants are expected to have an undergraduate degree in mechanical engineering or a related field. General admissions requirements for master’s programs as described in this catalog apply to applicants to the M.S. in Mechanical Engineering. Sufficient preparation in science and mathematics to complete the course of study is also necessary.

Doctor of Philosophy in Mechanical Engineering

This is a program for superior students with master’s degrees in mechanical engineering or allied fields who wish to do advanced research in an area of mechanical engineering. In exceptional circumstances, highly qualified students with bachelor's degrees in mechanical engineering may be accepted directly into the doctoral program.
Admission Requirements
Applicants should have a master's degree from an accredited institution, and have successfully taken courses in applied mathematics and engineering sciences. In addition, applicants must fulfill the admissions requirements for doctoral study as specified in the Admissions section of this catalog. Students who lack an appropriate background will be required to take additional courses before gaining admission to the program. These courses are prescribed by the department on an individual basis and may not be applied as degree credit.

Industrial Engineering
Industrial Engineering (IE) is a field of study intended for professionals who are interested in managing and analyzing complex systems. IEs typically formulate mathematical and/or digital simulation models of these systems with the intention of improving system and economic performance. Unique and in contrast to other traditional disciplines in engineering IEs focus on information driven human decision making and a broad based systems perspective. IEs consider themselves to be virtually any setting where outcomes are influenced by key decisions.

Master of Science in Industrial Engineering
Individuals with a diversity of technical background have completed the MSIE degree. These individuals are attracted by the historically strong role played by IEs in modeling and analysis within traditional production and distribution settings, that now extend to healthcare, transportation, and a wide range of service industries. Program provides advanced training in operations research, supply chain, and process modeling and analysis. All courses are offered primarily in evening and weekend sessions at our Newark campus, and ideal for working professionals. Many courses are also offered online in an E-learning mode.

A program for individuals who seek professional advancement in the industrial engineering field.

Admission Requirements
A B.S. degree in an engineering, information technology, information technology, operations management, science, or related technical discipline. A bridge program is also available for suitable candidates.

Graduate Certificate Program
A 12-credit graduate certificate in Operations Productivity is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.

Doctor of Philosophy in Industrial Engineering
The objectives of the Ph.D. in Industrial Engineering program are to provide the knowledge and develop the skills that students need to become leaders of research in academia, industry and government.

This program is intended for highly qualified students who wish to pursue advanced research in industrial engineering and related areas. The program emphasizes two areas: manufacturing systems and assurance sciences, and human factors and occupational safety.

Admission Requirements
Applicants should have a master's degree in industrial engineering or a related field. In certain circumstances, a qualified student with a bachelor's degree in industrial engineering or related field may be admitted into the program.

Engineering Management
By drawing on the diverse resources available through the university and surrounding industry, the M.S. in Engineering Management program develops engineers and other technically trained individuals for leadership roles in a technologically-based, project-oriented enterprise.

Focus on interdisciplinary course work and research provides students with an advanced background in both the theoretical and practical aspects of managing technical/engineering projects and programs via case studies, role playing, and course work. The engineering management program faculty bring to the classroom a critical blend of practical and academic experience.

Master of Science in Engineering Management
The program is particularly valuable to individuals who have a number of years of experience in industry, government, and service organizations, or those who have been entrepreneurs. It provides these professionals with broad-based knowledge and skills to succeed as organizational managers and project managers, from conceptualization through implementation.

Admission Requirements
Eligibility for admission requires completion of an undergraduate degree in engineering, the sciences or a closely related area. Students are expected to have achieved an undergraduate GPA of at least 2.8 on a 4.0 scale. Students not satisfying the above requirement will be considered for conditional admission on a case-by-case basis. In some cases, a bridge program will be required to qualify for matriculation.
Graduate Certificate Program

A 12-credit graduate certificate in Construction Management, Operations Productivity, Pharmaceutical Management or Project Management is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.

Off-Campus Programs

At extension and corporate sites, NJIT offers sufficient courses to fulfill all degree requirements. NJIT faculty teach all courses. For locations, see Extension Programs in this catalog. The university's distance learning arm, ACCESS/NJIT, offers this program (as well as part of the bridge program described above) to qualified students who have access to the Internet and a VCR. In addition, distance-based, 12-credit graduate certificates in Construction Management, Operations Productivity, Pharmaceutical Management or Project Management, are available as a step toward this degree. See Graduate Certificates in this catalog. For further information about extension programs, ACCESS/NJIT programs, and graduate certificates, call the associate vice president of continuing and distance education, Division of Continuing Professional Education, 1 (800) 624-9850 or (973) 596-3060; email cpe@njit.edu.

Healthcare Systems Management

The MS in Healthcare Systems Management will train and educate graduates in the application of systems analysis and quantitative methods in managing the various components of the healthcare delivery system. The program provides graduates with contemporary knowledge and the needed technical expertise for the efficient design, management and operation of healthcare facilities, including hospitals, nursing facilities, clinics, and pharmacies. This expertise will span the subjects of systems engineering, operations management, and advanced information technologies and will present concepts and tools for both reducing healthcare system costs and increasing the quality of healthcare services. Healthcare Systems are defined as the network of physical facilities, equipment, informational technologies, and patient flow processes that are associated with providing and delivering healthcare services. Graduates would find jobs in hospitals and healthcare organizations, serving in progressively more responsible positions in the quality improvement, decision support, information technology, patient accounting, facilities planning, or operations management departments.

Admission Requirements

A B.S. degree in a technical discipline (e.g., Engineering, Computer Science, Informational Technology, Physics etc.). A bridge program is also available for suitable candidates from other degree majors. Individuals who have been working in a healthcare related organization for two or more years, and are now looking for additional skills to further progress their careers in the healthcare industry would be ideal candidates.

Manufacturing Systems Engineering

The manufacturing engineering discipline addresses problems and methods of manufacturing systems integration. The M.S. in Manufacturing Systems Engineering program emphasizes the interrelationships between manufacturing equipment, processes and controls, and their integration into production factories.

The curriculum is computer and multimedia intensive and includes the use and understanding of new technologies such as robotics, programmable logic controllers, microprocessors and computer-integrated manufacturing and their application in automated production, assembly, automated inspection, and automated packaging. Focus is on computer-aided design and computer-aided manufacturing. Automation laboratories are used that contain many state-of-the-art devices including several industrial robots, CNC millers, CNC lathes, computer vision systems, and a fully automated flexible manufacturing system.

Master of Science in Manufacturing Systems Engineering

This is an interdisciplinary program of advanced study for individuals with backgrounds in engineering, focusing on efficient production in technology-intensive manufacturing industries.

Admission Requirements

Applicants should be graduates of an accredited undergraduate engineering program. Students with degrees in science may also be considered.

Occupational Safety and Health Engineering

The curriculum has been designed in accordance with the National Institute for Occupational Safety and Health (NIOSH), which sponsors the program. Through course work and research, individuals are exposed to all of the principal areas of concern to the entry-level safety professional, including how technology and hazardous materials affect the safety of the workplace.

NJIT's program is just one of a handful offered in the United States and the only master's-level program in New Jersey. NIOSH offers a limited number of stipends and tuition remission grants to qualified students.

Master of Science in Occupational Safety and Health Engineering

This program educates engineers in the specialty of occupational safety and health. Upon graduation, students are able to assume both the technical and managerial responsibilities of safety professionals.
Admission Requirements

An accredited bachelor's degree in an engineering or scientific field is normally required.

Pharmaceutical Systems Management

The MS program in Pharmaceutical Management (MSPhM) is designed to train and educate professionals for careers in the pharmaceutical industry by providing them with skills in the areas of quantitative systems analysis, planning and design of pharmaceutical process operations, and project management and implementation, relative to all technology intensive operations in this highly sophisticated industry. Application areas will include manufacturing operations, systems automation, packing and distribution, quality control and regulatory compliance, process and product validation, and supply chain management. Offered by the Department of Industrial and Management Systems Engineering in collaboration with the Pharmaceutical Engineering program, degree integrates a strong focus on technical oriented operations management with advanced knowledge of pharmaceutical manufacturing, validation, research and development processes.

Admission Requirements

A B.S. degree in an engineering, information technology, science, or related technical discipline. A bridge program is also available for suitable candidates from other majors. Individuals who have been working in the pharmaceutical industry for two or more years, and are now looking for additional skills to further progress their careers would be ideal candidates.

NJIT Faculty

A
Abdel-Malek, Layek, Professor
Abdou, George, Associate Professor

B
Bengu, Golgen, Associate Professor
Bladikas, Athanassios, Associate Professor

C
Cai, Wenbo, Assistant Professor
Caudill, Reggie J, Professor
Chen, Rong-Yaw, Professor Emeritus
Chester, Shawn A., Assistant Professor

D
Das, Sanchoy K., Professor
Droughton, John V., Professor Emeritus

F
Fenster, Saul K., Professor Emeritus
Fischer, Ian S., Professor
Florio, Pasquale J., Associate Professor

H
Harnoy, Avraham, Professor
Hatch, C., Richard, Professor Emeritus

J
Ji, Zhiming, Associate Professor
K
Kirchner, Robert P., Professor Emeritus
Koplik, Bernard, Professor
Kountouras, Harry V., Senior University Lecturer

L
Lee, Eon Soo, Assistant Professor
Linden, Martin J., Professor Emeritus

M
Mani, Balraj Subra, University Lecturer
McDermott, Kevin J., Associate Professor

N
Nadimpalli, Siva P.V., Assistant Professor
Narh, Kwabena A., Professor

R
Rao, I. Joga, Professor
Rosato, Anthony D., Professor

S
Samardzic, Veljko, University Lecturer
Singh, Pushpendra, Professor
Sodhi, Rajpal Singh, Professor
Surjanhata, Herli, Senior University Lecturer

T
Tricamo, Stephen J., Professor

W
Wilson, Charles E., Professor Emeritus
Wolf, Carl, Professor Emeritus

Z
Zhu, Chao, Professor

Programs
- Engineering Management - M.S. (p. 561)
- Healthcare Systems Management - M.S. (p. 564)
- Industrial Engineering - M.S. (p. 565)
- Manufacturing Systems Engineering - M.S. (p. 568)
- Mechanical Engineering - M.S. (p. 570)
- Occupational Safety and Health Engineering - M.S. (p. 573)
- Pharmaceutical Systems Management - M.S. (p. 574)
Programs

- Industrial Engineering - Ph.D. (p. 576)
- Mechanical Engineering - Ph.D. (p. 576)

Programs

- Project Management (p. 578)
- Supply Chain Engineering (p. 579)

Mechanical and Industrial Engineering Courses

IE 501. Fundamentals of Industrial Engineering. 3 credits, 3 contact hours.
Basic concepts of industrial engineering for students who lack an undergraduate degree in the discipline, including: manufacturing processes, work methods and measurement concepts, basics of human factors, quality control, facilities design, production planning, operations research tools, and simulation models.

IE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from the industrial engineering program director and the Division of Career Development Services. Cooperative education internship providing on-the-job reinforcement of academic programs in industrial engineering. Work assignments and projects are developed by the co-op office in consultation with the industrial engineering program director. Work assignments are related to student's major and are evaluated by faculty coordinators in the IE department. Course cannot be applied toward degree credit.

IE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from the industrial engineering program director and the Division of Career Development Services. Course cannot be applied toward degree credit.

IE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: graduate standing and permission from the industrial engineering program director, and the Division of Career Development Services. Course cannot be applied toward degree credit.

IE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

IE 601. Measurement Methods for Performance Analysis of Operations. 3 credits, 3 contact hours.
Prerequisite: undergraduate mathematics for management science, or EM 602. Quantitative study of various analytical methods for designing and evaluating systems employed in the management of complex enterprises such as decision-making, efficiency measurement, and methods for obtaining optimal system performance.

IE 603. Behavioral Science in Engineering Organization. 3 credits, 3 contact hours.
Prerequisite: undergraduate probability and statistics, or EM 503. A study of scientific research on human behavior in organizations. Processes and problems of communication in engineering activities; line-staff and supervisor-subordinate relationships; formal and informal organizations; organization models; and technical and social structure of organizations.

IE 604. Advanced Engineering Statistics. 3 credits, 3 contact hours.
Prerequisite: IE 331 (see undergraduate catalog for description) or equivalent. The foundations of modern quality improvement, scientific basis of quality engineering, probability, statistical inference, statistical experimental design issues such as randomized blocks, factorial design at different levels, application to factorial design, building models, and implementation and critique of Taguchi’s contributions. Statistical software is used in the data analysis.

IE 605. Engineering Reliability. 3 credits, 3 contact hours.
Prerequisite: statistics. Concepts of modern reliability applied to practical industrial problems: statistical concepts, reliability through design, reliability through testing, analysis of reliability data, and the organization and management of a reliability program. Offered alternate years.

IE 606. Maintainability Engineering. 3 credits, 3 contact hours.
Prerequisite: statistics. Factors affecting maintainability design applied to military and industrial problems: statistical concepts; maintainability prediction, allocation, and demonstration; availability, system and costeffectiveness; provisioning; optimal maintenance policies; and management of a maintainability program.

IE 608. Product Liability Control. 3 credits, 3 contact hours.
Product liability and the effect of legal doctrines on minimizing hazards of design and manufacture. Use of actuarial techniques and legal precedents applicable to design, manufacturing, advertising, and marketing problems: warranties, notices, disclaimers, definition of liability, use of expert witnesses, reliability prediction and analysis methods, safety engineering concepts, and design review. A review of government regulations for safety and protection, as well as mandatory and voluntary standards will also be included.

IE 609. Advanced Analytical Engineering Statistics. 3 credits, 3 contact hours.
Prerequisite: IE 604. An extension of the techniques of engineering statistical analysis to industrial applications. Emphasis is placed on the design of experiments and analysis of tests for multivariate level problems.
IE 610. Transportation Economics. 3 credits, 3 contact hours.

IE 614. Safety Engineering Methods. 3 credits, 3 contact hours.
Prerequisites: introductory course in statistics and industrial or construction management. Application of selected safety engineering methods to detect, correct, and prevent unsafe conditions and procedures in future practice. Methods selected are from safety management and programs; loss prevention; fire protection; systems safety; the design of buildings and other facilities; and the design of products, machinery, and equipment. Engineering problems in designing and constructing a hazard-free environment.

IE 615. Industrial Hygiene and Occupational Health. 3 credits, 3 contact hours.
Prerequisites: one year of college physics and one semester of college chemistry or biology. Introduction to industrial hygiene. Recognition, evaluation and control of human exposure to noise, heat, bio-hazards, chemicals, radiation, and improper lighting. Government standards, field measurements, work practices, engineering designs, and the effects of excessive exposure on worker health and productivity.

IE 618. Engineering Cost and Production Economics. 3 credits, 3 contact hours.
Prerequisite: IE 502 or equivalent. Cost management of operational activities. Focuses on capital investment decision making and efficient resource utilization to achieve cost-effective operations. Topics include alternative investment evaluation, budgeting activity based costing, quality costs, life cycle management and relevant behavioral science. These are considered in the context of manufacturing and service industry application.

IE 621. Systems Analysis and Simulation. 3 credits, 3 contact hours.
Prerequisites: IE 331, IE 466 (see undergraduate catalog for descriptions), or equivalent or department approval. The application of well-integrated systems approach, systems and systems engineering in the system life cycle, system design process, mathematical tools and techniques applied to systems analysis, design for operational feasibility, systems engineering management, modeling techniques including simulation, application of discrete simulation techniques to model industrial systems, design of simulation experiments using software, output data analysis.

IE 622. Simulation and Risk Analysis in Operations Management. 3 credits, 3 contact hours.
Prerequisite: IE 331 (see undergraduate catalog for description) or equivalent. Introduction to the concepts, methodologies and applications of simulation in operations management. Foundations of simulation, Monte Carlo approaches, simulation models using spreadsheets, generating probabilistic outcomes using random number generation techniques, applying risk analysis software to spreadsheets for various decisions making. Variety of applications in operations management, finance and marketing. Software to develop models of practical operations management applications, is provided.

IE 623. Linear Programming. 3 credits, 3 contact hours.
Prerequisite: EM 602 or introductory course in operations research. Principles, methodology, and practical applications of linear programming to complex problems in production and marketing, simplex techniques, duality theory, parametric analysis, Wolfe and Dantzig's decomposition methods, ellipsoid method, and Karmakar's method.

IE 624. Heuristic Methods. 3 credits, 3 contact hours.
Prerequisites: EM 503 or equivalent. Techniques and concepts used to develop intelligent decision support systems. Application of rules called heuristics and models of reasoning to solve problems in engineering design and manufacturing. Topics include set theory, fuzzy subset theory, decision theory, logic, inference expert systems and single and multi-fault diagnostics.

IE 641. Operations Analysis. 3 credits, 3 contact hours.
Prerequisites: EM 602 and computer programming experience. Management systems and business behavior using industrial models. Special attention is given to the interaction of individual elements that make up the total system.

IE 642. Network Flows and Applications. 3 credits, 3 contact hours.
Prerequisite: EM 602 or equivalent. Theories, algorithms, computation complexity, and application of networks, shortest path, network flow, and minimum cost flow problems. Models of industrial service systems as network problems.

IE 643. Transportation Finance. 3 credits, 3 contact hours.

IE 644. Application of Stochastic Modeling in Systems Control. 3 credits, 3 contact hours.
Stochastic processes applied to control of various types of systems: Markov chains, queueing theory, storage theory applications to measure performance of flexible manufacturing systems, telecommunication and distributions networks and similar service systems. Knowledge of probability theory and linear algebra is essential.

IE 650. Advanced Topics in Operations Research. 3 credits, 3 contact hours.
Prerequisite: introductory course in operations research or equivalent. Current topics in deterministic models of operations research: linear programming, large scale decomposition, integer programming, dynamic programming, and nonlinear programming. Emphasis on optimization techniques for solving mathematical programming problems.
IE 651. Industrial Simulation. 3 credits, 3 contact hours.
Prerequisite: introductory course in statistics/simulation or instructor's permission. Statistical design and analysis of Monte Carlo simulation experiments from an engineering view. Examples are provided with emphasis on industrial and manufacturing applications of simulation modeling. Markovian processes simulation, random number generation, mathematical programming, heuristics and decision theory.

IE 652. Facilities Location and Plant Layout. 3 credits, 3 contact hours.
Prerequisite: introductory course in operations research or instructor's approval. Basic concepts of facilities location and plant layout. Quantitative and qualitative tools needed in industrial engineering, including single and multiple facilities location problems, site selections and allocation models, use of Duality theory in location and plant layout problem, and computerized layout planning.

IE 653. Facility Maintenance. 3 credits, 3 contact hours.
Prerequisite: EM 501 or equivalent. Intended for those individuals who manage the functioning and maintenance of physical facilities. Emphasis on planning and control of facilities use, maintenance, utility management, managerial control, budgets and costs, personnel administration, legal and safety, flexibility measurement, and design.

IE 655. Concurrent Engineering. 3 credits, 3 contact hours.
IE 659. Supply Chain Engineering. 3 credits, 3 contact hours.
Coordination of product manufacturing and logistic activities across the global supply chain is studied. Focus is on supply chain design, implementation, and control. Topics include transportation and distribution networks, inventory control, demand planning, materials handling and warehousing, supply chain contracts, manufacturing flexibility, product design for responsiveness, and ERP systems. Supply chain analytics concepts and relevant case studies are introduced.

IE 661. Man-Machine Systems. 3 credits, 3 contact hours.
Prerequisite: human factors engineering. Analysis of integrated man-machine systems: physical and psychological effects of systems of deterministic and conditional responses of individuals and groups, and the resulting interaction between individuals, groups, and machine systems; also current research and development pertaining to man-machine systems.

IE 662. Cognitive Engineering. 3 credits, 3 contact hours.
Prerequisite: IE 355 or equivalent. The purpose of this course will be to introduce the application of human factors and cognitive psychology principles to the user interface design of information technology, including computer systems, groupware and communications, handheld devices and Internet applications, and automatic speech recognition interfaces. The course will provide grounding in the engineering design processes used to enhance the usability of products and services, and usability testing methods used by user interface designers. Secondly, major areas and design problems in human-computer interaction and Information Technology will be covered, with real world examples. The course would be appropriate for advanced undergraduates in engineering, computer science, and psychology.

IE 664. Advanced Ergonomics. 3 credits, 3 contact hours.
Prerequisite: IE 355 or equivalent. The course covers important topics for ergonomics, including functional anatomy of the human body, work physiology and body energy expenditure, and biomechanics for people at work. Commonly used analytical tools for ergonomics will be introduced in the course.

IE 665. Applied Industrial Ergonomics. 3 credits, 3 contact hours.
Prerequisites: IE 355 (see undergraduate catalog for description) or IE 699. Introduces the fundamentals and applications of industrial ergonomics for improving equipment, tool, workplace, and job design. Engineers, as well as safety and health professionals, will benefit from the course by understanding the design principles for human operators and current issues in industrial ergonomics, and a variety of evaluating methodologies for the design.

IE 669. Human Design Factors in Engineering. 3 credits, 3 contact hours.
Prerequisite: engineering statistics. Human factors research related to workplace and equipment design and development. Capabilities and limitations of the human sensory-motor system. Design of displays and resulting interaction between individuals, groups, environments and machine systems. Current research in engineering pertaining to the man-machine interface. Not for IE students who have had an undergraduate course in human factors.

IE 670. Industrial Work Physiology. 3 credits, 3 contact hours.
Prerequisite: IE 669 or equivalent. A study of human physiological responses to industrial environmental factors emphasizing knowledge of human anatomy and physiological tolerances: skeletal, muscle, and neuromuscular systems, evaluation of physical work capacity and performance, changes in circulation and respiration during work. Semester project under the instructor's supervision is also required.

IE 672. Industrial Quality Control. 3 credits, 3 contact hours.
Prerequisite: engineering statistics. The management of quality assurance: operational and statistical principles of acceptance sampling and process control; quality problems in production lines, and introduction to total quality management concepts.

IE 673. Total Quality Management. 3 credits, 3 contact hours.
Introduces the concept of total quality management as applicable to industrial systems. Presents methods for product quality improvement. Emphasis is on prevention through quality engineering and design, and goes beyond traditional statistical process quality control. Presentation of recent methods in supplier management, quality assurance, process control, and competitor analysis. Includes Taguchi methods and quality function deployment. Description of ISO 9000 and Baldrige Award.
IE 674. Quality Maintenance and Support Systems. 3 credits, 3 contact hours.
Prerequisites: probability and statistics, IE 331 (see undergraduate catalog for description) or equivalent. Consideration of factors necessary for cost effective maintenance and support of technical operating systems. Topics discussed include service organization and management, spare parts and logistics, quality assurance, ISO9003 training. Examples from automation, computer systems, clinical engineering, power, and transportation will be used to illustrate application areas.

IE 675. Safety in Facility and Product Design. 3 credits, 3 contact hours.
Prerequisite: IE 614 or equivalent. Application of safety principles to minimize the health and safety hazards in the design and manufacture of various products. Practical techniques for, and economic ramifications of, conformance with the many statutes enacted to assure safe workplaces and products.

IE 677. Applied Statistics and Epidemiology for Hazard Analysis. 3 credits, 3 contact hours.
Prerequisite: IE 604 or equivalent. Application of statistical concepts to the field of hazard analysis including: investigation of root causes of accidents, their patterns and trends; rules for systematic data analysis; determination of commonality factors; availability and use of customized computer software.

IE 681. Interdisciplinary Seminar in Occupational Safety and Health. 1 credit, 1 contact hour.
Restriction: OSHE students, or permission of instructor. This is a required course for students who receive the Trainee Scholarship from the Occupational Safety and Health Engineering Program sponsored by the National Institute for Occupational Safety and Health (NIOSH). Other graduate students are also welcome and encouraged to take the interdisciplinary seminar course. Students and residents in the ERC programs will be able to participate in an interdisciplinary course with students in industrial hygiene, occupational medicine and occupational safety.

IE 682. Industrial Safety and Health Evaluation. 3 credits, 3 contact hours.
Restriction: OSHE students, or permission of instructor. This is a required course for students who receive the trainee scholarship from the Occupational Safety and Health Engineering Program sponsored by the National Institute for Occupational Safety and Health (NIOSH). Other graduate students are also welcome and encouraged to take this site visit course. Upon completion of this course, students will be able to plan and conduct a walk-through evaluation of health and safety hazards in a workplace. Students will also understand the role of occupational health and safety disciplines in the recognition and prevention of occupational injury and illness.

IE 685. Systems Safety. 3 credits, 3 contact hours.
Prerequisites: applied probability/statistics and introductory safety. Safety decision making and systems engineering applications to safety, including planning, managing and conducting system safety programs.

IE 686. Intro to Healthcare Systems. 3 credits, 3 contact hours.
This course provides a systems analysis view of healthcare services, combining economic, quality, enterprise data and activity costing perspectives. Operations, processes and activities that characterize the US Healthcare system are introduced. System costs, reimbursement methods and financial aspects in the healthcare. Focus on the application of information technologies and system engineering tools to effectively create and deliver value in the care process. Analytical tools for identifying opportunities for systems efficiency and effectiveness.

IE 687. Healthcare Enterprise Systems. 3 credits, 3 contact hours.
Prerequisite: IE 686. Provide a thorough understanding of the role of Healthcare Enterprise Systems in healthcare organizations. A detailed study of electronic health records, computerized physician order entry, and meaningful use standards. Design and implementation of enterprise level healthcare information systems. advanced decision support tools, and process mapping methods for optimal delivery of cost effective care. Analytical and quantitative methods that can be used to evaluate healthcare business processes, determine data requirements, and plan operating procedures.

IE 688. Healthcare Sys Perf Modeling. 3 credits, 3 contact hours.
Prerequisite: IE 686. Presents advanced techniques and methods for modeling and evaluating the performance of healthcare systems, including operations research, and productivity analysis, and statistical analysis methods. Introduces the performance dynamics of healthcare systems, identifies key decision variables and formulates their effect on systems performance. Develop and optimize healthcare staffing models. Application of operations research methods to a wide range of healthcare scheduling, facility design and patient flow problems.

IE 699. Special Topics in Industrial Engineering. 3 credits, 3 contact hours.
Restriction: approval from the industrial engineering graduate advisor. Special course given when interest in a subject area develops. Advanced notice of topics will be given before registration.

IE 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering. A written report must be submitted to the project advisor. The student cannot register in IE 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

IE 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in IE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.
IE 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (IE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

IE 704. Sequencing and Scheduling. 3 credits, 3 contact hours.
Prerequisite: IE 650 or equivalent. Advanced sequencing and scheduling for job shops, flow lines, and other general manufacturing and production systems are discussed in this course. Both deterministic and stochastic scheduling models are covered in detail. Heuristics and worst case analysis for unsolvable hard scheduling problems (NP-C problem) are introduced.

IE 705. Mathematical Programming in Management Science. 3 credits, 3 contact hours.
Prerequisites: IE 623 and IE 650. An advanced study of various mathematical programming techniques such as linear and non-linear, parametric, integer, stochastic and dynamic programming. Readings and discussions emphasize mathematical advances and applications in operations research.

IE 706. A Queueing Approach to Performance Analysis. 3 credits, 3 contact hours.
Prerequisite: IE 644 or equivalent. Newly developed techniques in the area of queueing networks that play a critical role in studying several aspects of discrete event stochastic systems such as FMS, computer-aided communication systems, transportation systems and service systems.

IE 725. Independent Research. 3 credits, 3 contact hours.
Prerequisite: approval from the industrial engineering program director. Program of study prescribed and approved by student’s advisor. This special course covers areas in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course.

IE 726. Independent Research II. 3 credits, 3 contact hours.

IE 753. Airport Design and Planning. 3 credits, 3 contact hours.
Prerequisite or corequisite: TRAN 610 or EM 693. Planning of individual airports and statewide airport systems. Functional decision of air and landside facilities. Orientation, number and length of runways. Concepts of airport capacity. Passenger and freight terminal facility requirements. Airport access systems. FAA operating requirements. Financial, safety and security issues. Same as CE 753 and TRAN 753.

IE 754. Port Design and Planning. 3 credits, 3 contact hours.
Prerequisite: TRAN 610 or EM 693. Functional design of the water and landsides for general cargo, liquid and dry bulk, and container operations. Yard and storage systems. Port capacity in an intermodal network. Economic, regulatory, and environmental issues. Same as CE 754 and TRAN 754.

IE 760. Quantitative Methods in Human Factors. 3 credits, 3 contact hours.
Prerequisite: IE 661. More advanced human factors engineering concepts analyzed quantitatively: systems modeling, control theory, human error, and decision making. Discussion of human factors, research design and data analysis. Operator/computer interaction is also emphasized.

IE 761. Advanced Studies in Human Factors. 3 credits, 3 contact hours.
Prerequisite: one year of graduate work in human factors or the equivalent. The course integrates various areas of graduate studies in human factors such as: work physiology, occupational safety, environment and human-machine systems. Detailed discussion of selected current papers covering theoretical review, experimental design, results, applications, and future research. Completion of semester project under instructor’s guidance is mandatory.

IE 762. Psychophysical Methods in Human Factors. 3 credits, 3 contact hours.
Prerequisite: one year of graduate work in human factors or instructor's approval. This course considers various classical and modern psychophysical methods, signal detection theory, information theory, and human information processing applicable to advanced human factors/occupational safety research measurement and normative modeling.

IE 790. Doctoral Dissertation. 0 credits, 0 contact hours.
IE 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
IE 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
IE 790C. Doc Dissertation & Res. 6 credits, 3 contact hours.
IE 790D. Doc Dissertation & Res. 9 credits, 3 contact hours.
IE 790E. Doc Dissertation & Res. 12 credits, 3 contact hours.
IE 790F. Doct Dissertation & Res. 15 credits, 0 contact hours.
IE 790G. Doctoral Dissertation. 18 credits, 0 contact hours.

IE 791. Graduate Seminar. 0 credits, 0 contact hours.
A seminar in which faculty or others present summaries of advanced topics suitable for research. Discussion of research procedures, thesis organization, and content. Students engaged in research will present their own research for discussion and criticism.

IE 792B. Pre Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: IE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in industrial engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.
ME 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Cooperative education internship providing on-the-job reinforcement of academic programs in mechanical engineering. Work assignments and projects are developed by the co-op office in consultation with the mechanical engineering department. Work assignments are related to student's major and are evaluated by faculty coordinators in mechanical engineering. Course cannot be used for mechanical engineering degree credit.

ME 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

ME 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

ME 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ME 607. Advanced Thermodynamics. 3 credits, 3 contact hours.
Prerequisites: Undergraduate thermodynamics. Basic laws of thermodynamics are applied to various thermodynamic systems. Topics include: availability, stability requirements, equation of state, property relations, properties of homogeneous mixtures, optimization applied to power generation and refrigeration cycles, and thermodynamic design of system components.

ME 608. Non-Equilibrium Thermodynamics. 3 credits, 3 contact hours.
Prerequisites: Undergraduate thermodynamics and heat transfer, and ME 616. (May be taken concurrently.) Principles and mathematical techniques of non-equilibrium thermodynamics applied to mechanical engineering problems. Topics include field theory, energy and entropy balances, variational principles, and applications to fluid flow, heat exchangers and combustion.

ME 609. Dynamics of Compressible Fluids. 3 credits, 3 contact hours.
Prerequisites: Undergraduate fluid mechanics, and ME 616. (May be taken concurrently.) An introduction to the hydrodynamics of ideal fluids; two-dimensional potential flow and stream functions; conformal mapping; and differential equations of viscous flow. Boundary layer theory and dimensional analysis are introduced.

ME 610. Gas Dynamics. 3 credits, 3 contact hours.
Prerequisite: ME 616. (May be taken concurrently.) Physical phenomena of gas dynamics and mathematical methods and techniques needed for analysis. Dynamic and thermodynamic relations for common flow situations are described through vector calculus. The nonlinearity of resulting equations and solutions such as numerical analysis, linearization or small perturbation theory, transformation of variables, and successive approximations are discussed. The method of characteristics is reviewed in detail for shock flows.

ME 611. Dynamics of Incompressible Fluids. 3 credits, 3 contact hours.
Prerequisites: Undergraduate fluid mechanics and ME 616. (May be taken concurrently.) An introduction to the hydrodynamics of ideal fluids; two-dimensional potential flow and stream functions; conformal mapping; and differential equations of viscous flow. Boundary layer theory and dimensional analysis are introduced.

ME 612. Continuum Mechanics. 3 credits, 3 contact hours.
Prerequisites: Undergraduate courses in mechanics, fluid mechanics, solid mechanics, and mathematics (linear algebra, differential equations, and vector calculus) or approval of the instructor. Fundamentals of the mechanics of continuous media. Specific topics include vector and tensor analysis; mechanics associated with finite deformation; the stress tensor; and the conservation laws of mass, linear momentum, angular momentum, and energy. Constitutive equations for linear and non-linear elastic solids and for incompressible Newtonian fluids are discussed. The role of material invariance under superimposed rigid body motion and material symmetry in the formulation of appropriate constitutive equations are emphasized.

ME 613. Advanced Mechanical Vibrations. 3 credits, 3 contact hours.
Prerequisites: Undergraduate differential equations and system dynamics. One-, Two- and Multiple degree of freedom systems, Lagrange's equation of motion, Runge-Kutta computation, Finite Element Method and classical methods for normal mode analysis, matrix notation and iteration procedure, and Fourier series representation for the solution of vibration problems.

ME 614. Matrix Methods in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: Undergraduate differential equations. Applications of matrix algebra and matrix calculus to engineering analysis; matrix methods in solid and fluid mechanics; vibration, elasticity, viscous fluids, and heat transfer. Matrix theory is used to show the basic unity in engineering analysis.
ME 618. Selected Topics in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisite: departmental approval. Given when interest develops. Topics may include analysis and/or design of energy or mechanical systems of current interest to mechanical engineers.

ME 619. Nano-scale Characterization of Materials. 3 credits, 3 contact hours.
The course presents the basics of nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy, near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.

ME 620. Mechanics of Materials. 3 credits, 3 contact hours.
Prerequisites: Undergraduate differential equations and mechanics of materials or linear elasticity. Governing equations and other balance laws; stress and strain distributions in solids subjected to various loading conditions; posing and solving boundary value problems for isotropic linear elastic solids; instabilities and other failure modes of linear elastic solids; and numerical techniques to solve the governing equations.

ME 621. Advanced Mechanics of Material. 3 credits, 3 contact hours.
Prerequisites: ME 620. ME 614 is strongly recommended Governing equations and other balance laws for the mechanics of solids; large deformation kinematics and non-linear material behavior; advanced constitutive models for solids; fundamentals of fracture mechanics; numerical techniques for the solution of non-linear solid mechanics problems.

ME 622. Finite Element Methods in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and strength of materials. Using variational formulation and Ritz approximation, element equations for bar, beam, potential flow, heat transfer, torsion of a solid bar and plane elasticity problems are derived and solved with computer programs.

ME 624. Microlevel Modeling in Particle Technology. 3 credits, 3 contact hours.
Presents methodologies for analyzing the macroscopic properties of particulate systems in terms of the underlying microlevel processes. Significant components are the mathematical modeling of particulate systems at the microlevel, analytical and numerical methods for predicting macroscopic properties from microlevel models, and comparison of theoretical predictions with experimental results. Demonstrates the importance of the interaction of these three components in the scientific process. The first part concerns the flow of dry particles where any interstitial fluid can be ignored. The second part considers the flow of particles suspended in an interstitial fluid. Also includes a class project involving development of simulations. Same as CHE 625.

ME 625. Introduction to Robotics. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, kinematics and demonstrated competence in computer programming and ME 616. (May be taken concurrently.) Introduction to robotics, and computer-controlled programmable robotic manipulators; robot geometries; kinematics of manipulators; differential motion; work space planning and trajectory control; dynamics; robot sensing, and robot programming.

ME 626. Fatigue Fracture of Solids. 3 credits, 3 contact hours.
A comprehensive introduction to the linear elastic fracture mechanics covering the basics of linear elasticity, crack-tip stress, displacement, and strain fields; energetics of fracture; and fracture toughness testing. This will be followed by a brief introduction to plasticity and elastic-plastic fracture parameters such as J-integral. The state-of-the-art in fracture mechanics, such as cohesive zone models and fracture of emerging materials (e.g., battery materials), will be discussed along with the mechanisms of fracture and toughening in various materials. The course will include assignments and a group project where students undertake critical review of a peer reviewed journal paper on a fracture topic (approved by instructor).

ME 628. Machine Vision Principles and Applications. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and demonstrated competence in computer programming. Fundamentals of machine vision as applied to inspection, recognition, and guidance in mechanical and manufacturing processes. Emphasis on real-time machine vision algorithms for machine parts inspection and identification. Topics include lighting and optics, camera selection and calibration, image segmentation, edge detection, feature extraction, and pattern classification.

ME 630. Analytical Methods in Machine Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, machine design, and ME 616. (May be taken concurrently.) Theory and analytical methods used in machine design. Comparisons are made between approximate and exact engineering methods for evaluation of the range of applicability of solutions. Topics include advanced analysis of threaded members; keyed, splined, and shrink fits when subjected to torque; preloaded bearings; surging, presetting and buckling of coiled springs; and accurate analysis of impact stresses and stresses beyond the yield point.

ME 631. Bearings and Bearing Lubrication. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, machine design and ME 616. (May be taken concurrently.) The theoretical and physical aspects of lubrication: hydrostatic and hydrodynamic problems. Reynolds's differential equation for pressure distribution applied to slider bearing and journal bearing problems with and without end leakage.

ME 632. Mechanical Engineering Measurements. 3 credits, 3 contact hours.
This course offers extensive mechanical engineering lab experience, including measurement fundamentals, hands-on experiments, uncertainty analysis, technique comparison, and professional engineering reports. It also focuses on the fundamental principles behind each methodology and relevant applications. The topics cover measurement in major mechanical engineering areas including thermodynamics, thermofluids, and control. Specialized experiments include fluidization, CAD/CAM, and NC machining. Comparisons of experimental results against theoretical or computational results are also required.
ME 633. Dynamics of Machinery. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and matrix analysis. Consideration of kinematics, constraints and Jacobians, linear and angular momentum and potential energy and conservative forces of mechanical systems. Application of principle of virtual work, D'Alembert's principle, method of virtual power and Lagrange's equation to systems of particles and systems of rigid bodies.

ME 635. Computer-Aided Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate linear algebra (matrices operation) and differential equations. Adaptation of computer for solving engineering design problems; design morphology; simulation and modeling; algorithms; problem-oriented languages; use of available software; computer graphics, and automated design.

ME 636. Mechanism Design: Analysis and Synthesis. 3 credits, 3 contact hours.
Prerequisites: undergraduate kinematics, dynamics and demonstrated competence in computer programming and ME 616. (May be taken concurrently.) Kinematic principles combined with computer-assisted methods for designing mechanisms; complex polar notation; and dynamic and kinetostatic analysis of mechanisms. Kinematic synthesis of planar mechanisms; graphical Burmester theory for plane linkage synthesis; and planar linkage synthesis for function and path generation.

ME 637. Kinematics of Spatial Mechanisms. 3 credits, 3 contact hours.
Prerequisites: undergraduate kinematics, dynamics, knowledge of matrices and ME 616. (May be taken concurrently.) Advanced techniques for the dual-number coordinate-transformation matrix modeling to perform the displacement, velocity, static and dynamic force analysis of spatial mechanisms. Applications considered will include shaft couplings, skew four-bars, wobble plates, generalized slider-cranck and robotic manipulators.

ME 638. Computer-Aided Machining. 3 credits, 3 contact hours.
Prerequisites: demonstrated competence in computer programming, ME 305, ME 616 and ME 635 or equivalent. Introduction of computer applications to understand integrated computer-aided machining process. Included in the course are the fundamentals of motion control and NC/CNC/DNC machining, part programming and post-processors, and advances in CAM. Student projects are carried out using appropriate manufacturing software.

ME 641. Refrigeration and Air Conditioning. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, fluid mechanics and thermodynamics. Refrigeration and air conditioning cycles; comfort analysis, psychrometric chart analysis, heat and mass transfer steady and transient processes, heating and cooling design loads, energy loads and standards requirements.

ME 643. Combustion. 3 credits, 3 contact hours.
Prerequisites: Undergraduate thermodynamics & fluid mechanics. Chemical & physical process of combustion: ideal combustion, actual combustion, mass balance, energy of reaction, maximum adiabatic combustion temperature, chemical equilibrium, heating values of fuels, combustion in furnaces, internal combustion engines & other heat engines, with emphasis on the analysis & control of the products of combustion in light of environmental considerations.

ME 644. Building Environmental Control Principles. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, fluid mechanics, heat transfer and differential equations. Control systems for buildings including control of temperature, moisture and air quality. Optimization of systems for control of building energy use. Modern microprocessor-based control systems, including direct digital control, proportional and integral controllers, predictive control, adaptive control, optimum start controllers and optimal control.

ME 653. Control of Electro-Mechanical Networks. 3 credits, 3 contact hours.
Prerequisites: undergraduate electrical circuits and mechanical vibrations or equivalent. Electro-mechanical systems; control loops; use of mechanical networks in dynamic systems; and stability and response to various inputs in electro-mechanical networks.

ME 655. Introduction to Modern Control Methods. 3 credits, 3 contact hours.
Prerequisites: undergraduate system dynamics and automatic controls. Introduction to modern control methods applied to mechanical and manufacturing systems. Topics include state variable feedback, observer theory, nonlinear control, optimal control, and adaptive control for both continuous and discrete systems.

ME 660. Noise Control. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and physics. Engineering methods for reducing noise pollution; reduction of intensity at the source; limitation of transmission paths and absorption; application to structures, machinery, ground transportation, aircraft, and noise measurement.

ME 670. Introduction to Biomechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, statics, and dynamics. Introduction to biomechanical engineering of physiological systems; fluid flow, structural, motion, transport, and material aspects; energy balance of the body, and the overall interaction of the body with the environment.

ME 671. Biomechanics of Human Structure and Motion. 3 credits, 3 contact hours.
Prerequisites: undergraduate statics, kinematics, and dynamics. Principles of engineering mechanics and materials science applied to human structural and kinematic systems and to the design of prosthetic devices. Topics include anatomy; human force systems; human motion; bioengineering materials; and design of implants, supports, braces, and replacements limbs.

ME 675. Mechanics of Fiber Composites. 3 credits, 3 contact hours.
Prerequisites: ME 315 (see undergraduate catalog for course description) and demonstrated competence in computer programming. Introduces various design problems using fiber composites. Analysis of general fiber composite laminate and short fiber composites, fracture mechanics, fatigue, creep and viscoelasticity, thermal stresses, special layups and associated optimization problems.
ME 676. Applied Plasticity. 3 credits, 3 contact hours.
Prerequisite: ME 620 or equivalent. Fundamentals of plasticity applied to mechanical and manufacturing engineering problems. Topics include elastic-plastic analysis for beams, rings and plates. Plastic instability and slip-line fields are considered.

ME 678. Engineering Design of Plastic Products. 3 credits, 3 contact hours.
Prerequisite: Knowledge of Pro/Engineer (or IDEAS). Structure and properties of plastics including stress-strain behavior and the effect of fillers and reinforcements. Designing for impact, flexure, shear, friction, puncture, creep and fatigue. Case studies of structural, electrical, and optical applications.

ME 679. Polymer Processing Techniques. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in fluid dynamics and heat transfer. Techniques for processing of plastics: extrusion, injection molding, compression molding, thermoforming, casting.

ME 680. Polymer Processing Equipment. 3 credits, 3 contact hours.
Prerequisites: CHE 645 or equivalent and undergraduate heat transfer. Application of heat transfer, fluid mechanics, and thermodynamics to the design and control of polymer processing equipment. Detailed consideration of extrusion, collandering, rotational molding, stamping, and injection molding.

ME 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. A written report must be submitted to the project advisor. The student cannot register in ME 700B more than once and the incomplete (I) grade is not allowed. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ME 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ME 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.

ME 701C. Master’s Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ME 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ME 710. Conduction Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: ME 610 and ME 616 or equivalent. Heat transfer by conduction: differential and integral forms of the energy equation for isotropic and anisotropic material. Analytical and numerical studies of transient and steady one-, two-, and three-dimensional heat transfer problems for a variety of boundary conditions including phase change. In addition, variational and boundary element methods are applied to heat conduction problems.

ME 711. Convection Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: ME 610 and ME 616 or equivalent. Development of convective heat transfer theory: currently available methods, analytical and numerical, for predicting heat rates in forced, natural, and mixed convection in laminar and turbulent flow regimes are thoroughly studied. Studied techniques are applied to the thermal design of complex systems.

ME 712. Mechanics of Viscous Fluids. 3 credits, 3 contact hours.
Prerequisites: ME 611 and ME 616. (May be taken concurrently.) Properties and behavior of real fluids in laminar and turbulent motion. Review of tensor analysis; current mathematical and empirical laws and methods; flows in ducts; exact solutions of Navier-Stokes equations; boundary layers over surfaces and flow past bodies.

ME 713. Non-Newtonian Fluid Dynamics. 3 credits, 3 contact hours.

ME 714. Principles of Particulate Multiphase Flows. 3 credits, 3 contact hours.
Prerequisite: Courses in fluid mechanics or approval of the instructor. This course provides an introduction to the fundamental principles of mass, momentum and heat transfer in particulate multiphase flows. Theories and governing equations for distinctive responses and motions of each phase and the dynamic interactions among phases are formulated. Typical industrial applications will be illustrated.

ME 717. Selected Topics in Mechanical Engineering I. 3 credits, 3 contact hours.
Prerequisite: department approval. Given when interest develops. Topics may include advanced mechanisms, aerodynamics, analysis of ME systems, design optimization, and case studies in design.

ME 718. ST.: 3 credits, 3 contact hours.
ME 721. Thermal Stresses. 3 credits, 3 contact hours.
Prerequisites: vector analysis or ME 616 or equivalent and theory of elasticity or ME 785. Thermoelasticity; reduction of thermoelastic problems to constant temperature equivalents; fundamentals of heat transfer; and elastic and inelastic stress analysis.
ME 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

ME 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for ME 726 if they have taken ME 725 in a prior semester.

ME 727. Independent Study III. 3 credits, 3 contact hours.
Prerequisites: written permission from department chairperson plus prerequisite courses prescribed by a supervising faculty member. Areas of study in which one or more students may be interested but which is not of sufficiently broad interest to warrant a regular course offering. A maximum of two independent studies courses may be applied to a degree.

ME 735. Advanced Topics in Robotics. 3 credits, 3 contact hours.
Prerequisite: ME 625. Introduction to advanced topics and techniques in robotics. Subjects covered include differential kinematics, calibration and accuracy, trajectory control, and compliant motion control as well as an in-depth treatment of topics discussed in ME 625.

ME 736. Advanced Mechanism Design. 3 credits, 3 contact hours.
Prerequisites: ME 636 and ME 616. Advanced methods for the synthesis of mechanisms. Topics include synthesis of planar mechanisms for three, four and five positions, multiloop linkages, change of branch and order problems, and optimal synthesis of mechanisms. Synthesis of linkages for special types of motion including straight line motion, cusp points on coupler curves and adjustable mechanisms.

ME 737. Computer Aided Engineering. 3 credits, 3 contact hours.
Prerequisites: ME 635. This course covers advanced CAD and CAE tools for visual computing simulation and analysis. Topics include modeling, assembly, CAD data exchange by exporting and importing various CAD model formats, computer simulation and analysis of structure, thermal, fluid and animation of the results of analysis. Multi-physics analyses such as thermal-structure, electric-thermal-structure in MEMS and fluid-structure interactions are studied. The laboratory component involves use of most current commercial CAD/CAE software packages.

ME 752. Design of Plates and Shells. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. A study of plates and shells. Mechanical engineering design solutions for typical loading and boundary conditions through analytical and numerical methods. Plate and shell interfaces and vibration are also considered.

ME 754. Pressure Vessel Design. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. Theories in designing pressure vessels; analysis of circular plates; cylindrical and spherical shells; pressure vessel heads; pipe bends; and attachments. Consideration is also given to pressure vessel materials in fatigue and creep designs.

ME 755. Adaptive Control Systems. 3 credits, 3 contact hours.

ME 756. Theory of Deformable Solids in Mechanical Engineering I. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. Measure of strain; strain tensor; stress tensor; equilibrium equations; constitutive relations; compatibility conditions; conditions for and formulation of three-dimensional problems; and the relationship of engineering theories for beams, plates, and shells to the equations of elasticity.

ME 757. Theory of Deformable Solids in Mechanical Engineering II. 3 credits, 3 contact hours.
Prerequisite: ME 756. Solutions for problems formulated in ME 756 eigenfunction solutions; operational methods; complex variables theory; three-dimensional problems; contact problems; wave propagation; and non-linear problems.

ME 790. Doc Dissertation & Res. 0 credits, 0 contact hours.
Required of all students working toward the Doctor of Philosophy in Mechanical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached and for 3 credits each semester thereafter.

ME 790A. Doc Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: ME 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in ME 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).
ME 790B. Doc Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: ME 791. Since the ME 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ME 790C. Doct Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: ME 791. Since the ME 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

ME 790D. Doct Dissertation & Res. 9 credits, 3 contact hours.

ME 790E. Doct Dissertation & Res. 12 credits, 3 contact hours.

ME 791. Mechanical Engineering Colloquium. 0 credits, 1 contact hour.
Prerequisites: graduate standing and major in mechanical engineering. National and international experts in mechanical engineering discuss their recent research. Required of all students enrolled in mechanical engineering graduate degree programs. Students must register in this course for at least two semesters and attend at least four lectures in each semester. All doctoral students and students with assistantships must register in this course each semester and attend regularly.

ME 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: ME 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ME 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

ME 792D. Pre Doctoral Research. 9 credits, 3 contact hours.

ME 794. Graduate Seminar and Professional Presentations. 0 credits, 0 contact hours.
Regular attendance required of all students in the Mechanical Engineering PhD program. Each PhD student is required to make a 15 minute presentation on a topic related to the student's research with an additional 10 minutes to address audience questions. The seminar participants evaluate each speaker.

M.S. in Engineering Management

Degree Requirements
Students who lack appropriate academic preparation may be required to take bridge courses in the areas of statistics, cost analysis and engineering economics.

The program requires 30 credits, 18 of which are taken in a required core. A purpose of the core is to provide knowledge in the functional areas that are the cornerstones of the discipline: organization and people management, cost management, and systems management. The remaining 12 credits are elective courses, which may be within an area of specialization to meet the individual's specific professional and personal objectives. A 3-credit project (IE 700) or a 6-credit thesis (IE 701) are optional electives. In some cases, students may select courses to enhance their technical competency. In other cases, individuals may select courses to prepare for a change in responsibilities or job function. At least half of the elective courses must be selected from those having an IE or EM prefix.

M.S. in Engineering Management (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
</tbody>
</table>
Electives
Select four of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Engineering Managers</td>
<td>3</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
<td>3</td>
</tr>
<tr>
<td>IE 651</td>
<td>Industrial Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td>3</td>
</tr>
<tr>
<td>EM 641</td>
<td>Engineering Procurement and Materials Management</td>
<td>3</td>
</tr>
<tr>
<td>EM 674</td>
<td>Benchmarking and Quality Function Deployment</td>
<td>3</td>
</tr>
<tr>
<td>IE 605</td>
<td>Engineering Reliability</td>
<td>3</td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
<td>3</td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td>3</td>
</tr>
<tr>
<td>IE 653</td>
<td>Facility Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>MNE 602</td>
<td>Flexible and Computer Integrated Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MNE 655</td>
<td>Concurrent Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 655</td>
<td>Management Aspects of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
<td>3</td>
</tr>
<tr>
<td>EM 635</td>
<td>Management of Engineering Research and Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 30

1 School of Management courses with a FIN, MRKT, MIS, HRM or MGMT prefix may be taken as electives

M.S. in Engineering Management (Master's project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives
Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Engineering Managers</td>
<td>3</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
<td>3</td>
</tr>
<tr>
<td>IE 651</td>
<td>Industrial Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td>3</td>
</tr>
<tr>
<td>EM 641</td>
<td>Engineering Procurement and Materials Management</td>
<td>3</td>
</tr>
<tr>
<td>EM 674</td>
<td>Benchmarking and Quality Function Deployment</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>IE 605</td>
<td>Engineering Reliability</td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
<tr>
<td>IE 653</td>
<td>Facility Maintenance</td>
<td></td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td></td>
</tr>
<tr>
<td>MNE 602</td>
<td>Flexible and Computer Integrated Manufacturing</td>
<td></td>
</tr>
<tr>
<td>MNE 655</td>
<td>Concurrent Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 655</td>
<td>Management Aspects of Information Systems</td>
<td></td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
<td></td>
</tr>
<tr>
<td>EM 635</td>
<td>Management of Engineering Research and Development</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 30

1. School of Management courses with a FIN, MRKT, MIS, HRM or MGMT prefix may be taken as electives

M.S. in Engineering Management (Master’s thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Thesis

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 701B</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>701B</td>
<td>and Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>or EM 701C</td>
<td>Master's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Electives 1

Select two of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Engineering Managers</td>
<td></td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td></td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
<td></td>
</tr>
<tr>
<td>IE 651</td>
<td>Industrial Simulation</td>
<td></td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td></td>
</tr>
<tr>
<td>EM 641</td>
<td>Engineering Procurement and Materials Management</td>
<td></td>
</tr>
<tr>
<td>EM 674</td>
<td>Benchmarking and Quality Function Deployment</td>
<td></td>
</tr>
<tr>
<td>IE 605</td>
<td>Engineering Reliability</td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
<td></td>
</tr>
<tr>
<td>EM 632</td>
<td>Legal Aspects in Construction</td>
<td></td>
</tr>
<tr>
<td>IE 653</td>
<td>Facility Maintenance</td>
<td></td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td></td>
</tr>
<tr>
<td>MNE 602</td>
<td>Flexible and Computer Integrated Manufacturing</td>
<td></td>
</tr>
<tr>
<td>MNE 655</td>
<td>Concurrent Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 655</td>
<td>Management Aspects of Information Systems</td>
<td></td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Healthcare Systems Management

Degree Requirements

A minimum of 30 credits beyond a baccalaureate degree is required. A master's thesis or independent research is optional.

M.S. in Healthcare Systems Management (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td></td>
</tr>
<tr>
<td>IE 682</td>
<td>Industrial Safety and Health Evaluation</td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td></td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 30

M.S. in Healthcare Systems Management (independent research)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Independent Research</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IE 725</td>
<td>Independent Research</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td></td>
</tr>
<tr>
<td>IE 682</td>
<td>Industrial Safety and Health Evaluation</td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Healthcare Systems Management (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 701B</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>& 701B</td>
<td>and Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>or IE 701C</td>
<td>Master's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select two of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>IE 682</td>
<td>Industrial Safety and Health Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
</tbody>
</table>

M.S. in Industrial Engineering

Degree Requirements

Students who do not have a bachelor of science degree in industrial engineering may be admitted and required to complete the bridge program. Bridge courses do not count toward degree requirements.

A minimum of 30 credits beyond a baccalaureate degree is required. A master's thesis or independent research is optional. Students select an area of specialization and individually design their programs in consultation with the graduate advisor. The MS degree students opting for the project or thesis option must make an arrangement with a faculty member for supervision and obtain the departmental approval in order to receive permits to register for the proper section. Students opting for a project must register for the M.S. project (IE 700B) for 3 credits. Students opting for a thesis must register for the M.S. thesis (IE 701B) or the combination of M.S. project (IE 700B) and thesis (IE 701B) for 6 credits and successfully defend the thesis before graduation. For the project-thesis combination, they must receive a satisfactory (S) grade in 700B before 701B MS Thesis registration in the immediate following semester with the same advisor (the MS thesis topic should be continuation of the work done in 700B). Thesis option is required of all students who receive departmental or research-based awards.

Seminar: In addition to the minimum 30 degree credits required, all students who receive departmental or research-based awards must enroll each semester in IE 791 Graduate Seminar.

M.S. in Industrial Engineering (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 502</td>
<td>Engineering Cost Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
</tbody>
</table>
M.S. in Industrial Engineering

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Areas of Specialization

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
</tr>
</tbody>
</table>

Operations Research

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 704</td>
<td>Sequencing and Scheduling</td>
<td></td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td></td>
</tr>
</tbody>
</table>

Supply Chain & Logistics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
</tr>
</tbody>
</table>

Service Systems Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 651</td>
<td>Industrial Simulation</td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
</tr>
</tbody>
</table>

Total Credits

9

M.S. in Industrial Engineering (project option)

Bridge Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 502</td>
<td>Engineering Cost Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>IE 501</td>
<td>Fundamentals of Industrial Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Project Course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 700B</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Areas of Specialization

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
</tr>
</tbody>
</table>

1 Students may choose to specialize in any one of the following areas. Completion of all three courses in a specialization will qualify the student for a specialization certificate to be issued by the department. This will be awarded in conjunction with successful completion of the MS degree.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 502</td>
<td>Engineering Cost Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>IE 501</td>
<td>Fundamentals of Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 700B & IE 701B</td>
<td>Master's Project and Master's Thesis</td>
<td>3</td>
</tr>
<tr>
<td>IE 701B & 701B or IE 701C</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>Areas of Specialization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select three of the following: ^1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Quality Systems Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td></td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
<td></td>
</tr>
<tr>
<td>Operations Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 704</td>
<td>Sequencing and Scheduling</td>
<td></td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td></td>
</tr>
<tr>
<td>CS 636</td>
<td>Data Analytics with R Program</td>
<td></td>
</tr>
<tr>
<td>Supply Chain & Logistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td></td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>Service Systems Engineering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Manufacturing Systems Engineering

The MS program in Manufacturing Systems Engineering is designed to train and educate professionals for successful careers by providing them with skills in the areas of supply chain modeling and analysis, automation and computerized process control, planning and design of industrial process operations, advanced economic analysis and project management and implementation.

Degree Requirements

Students with a B.S. degree in an engineering, information technology, operations management or related technical degree may apply for admission. Other students may be admitted and required to complete the bridge program. Bridge courses do not count toward degree requirements. Bridge courses range between 3 to 9 credits and are selected by the advisor when the student is admitted.

A minimum of 30 credits beyond a baccalaureate degree is required. Students select an area of specialization and individually design their programs in consultation with the graduate advisor. A master’s project/Thesis is optional and faculty advisor approval must be obtained by students before they are permitted to register for Master’s Project/Thesis IE 700/701.

M.S. in Manufacturing Systems Engineering (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td></td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td></td>
</tr>
<tr>
<td>MNE 602</td>
<td>Flexible and Computer Integrated Manufacturing</td>
<td></td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
<td></td>
</tr>
</tbody>
</table>

Areas of Specialization

Select one of the following. Students may choose to specialize in any one of the following areas for 9 credits. Completion of all three courses in a specialization will qualify the student for a specialization certificate to be issued by the department. This will be awarded in conjunction with successful completion of the MS degree.

<table>
<thead>
<tr>
<th>Quality Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 672 Industrial Quality Control</td>
</tr>
<tr>
<td>IE 673 Total Quality Management</td>
</tr>
<tr>
<td>IE 618 Engineering Cost and Production Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturing Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 604 Advanced Engineering Statistics</td>
</tr>
<tr>
<td>IE 621 Systems Analysis and Simulation</td>
</tr>
<tr>
<td>EM 602 Management Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 635 Computer-Aided Design</td>
</tr>
<tr>
<td>ME 625 Introduction to Robotics</td>
</tr>
<tr>
<td>IE 621 Systems Analysis and Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply Chain Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 640 Distribution Logistics</td>
</tr>
<tr>
<td>IE 618 Engineering Cost and Production Economics</td>
</tr>
<tr>
<td>IS 665 Data Analytics for Info System (Electives)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select three of the following courses. A total of 9 elective credits are required, these should be selected from the list below. Electives may also be taken outside the listed courses if they match program objectives, these electives will require department approval.</td>
</tr>
<tr>
<td>IE 604 Advanced Engineering Statistics</td>
</tr>
<tr>
<td>IE 621 Systems Analysis and Simulation</td>
</tr>
</tbody>
</table>
M.S. in Manufacturing Systems Engineering (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td></td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td></td>
</tr>
<tr>
<td>MNE 602</td>
<td>Flexible and Computer Integrated Manufacturing</td>
<td></td>
</tr>
<tr>
<td>MNE 654</td>
<td>Design for Manufacturability</td>
<td></td>
</tr>
<tr>
<td>IE 701C</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>Areas of Specialization</td>
<td>Students may choose to specialize in any one of the following areas for 9 credits. Completion of all three courses in a specialization will qualify the student for a specialization certificate to be issued by the department. This will be awarded in conjunction with successful completion of the MS degree.</td>
<td>9</td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td></td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Analytics</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td></td>
</tr>
<tr>
<td>Process Automation</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ME 635</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>ME 625</td>
<td>Introduction to Robotics</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>Supply Chain Operations</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td></td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td></td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>Select one of the following courses A total of 3 elective credits are required, these should be selected from the list below. Electives may also be taken outside the listed courses if they match program objectives, these electives will require department approval.</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td></td>
</tr>
<tr>
<td>IE 655</td>
<td>Concurrent Engineering</td>
<td></td>
</tr>
<tr>
<td>IE 672</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td></td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td></td>
</tr>
<tr>
<td>ME 635</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>ME 625</td>
<td>Introduction to Robotics</td>
<td></td>
</tr>
</tbody>
</table>
M.S. in Mechanical Engineering

Degree Requirements

Students who lack appropriate undergraduate preparation may be admitted and are asked to make up deficiencies by taking a program of bridge courses that is designed in consultation with the graduate advisor. These courses are taken in addition to the degree requirements and may include undergraduate courses.

The Master of Science in Mechanical Engineering program offers three areas of specialization.

1. **CAD/CAM, Mechanisms & Control** - computer aided engineering, mechanisms, biomechanical & medical devices, robotics and controls.

The student consults the graduate advisor to plan and develop an individualized and cohesive sequence of courses that meet program requirements of at least 30 degree credits. The MS degree students opting for the project or thesis option must make an arrangement with a faculty member for supervision and obtain the departmental approval in order to receive permits to register for the proper section. Students opting for a project must register for the M.S. project (ME 700) for 3 credits. Students opting for a thesis must register for the M.S. thesis (ME 701) or the combination of M.S. project (ME 700) and thesis (ME 701) for 6 credits and successfully defend the thesis before graduation. Thesis option is required of all students who receive departmental or research-based awards.

Seminar: In addition to the minimum 30 degree credits required, every student must take a minimum of two semesters of ME 791 Mechanical Engineering Colloquium. Students who receive departmental or research-based awards must enroll every semester in ME 791 Mechanical Engineering Colloquium.

M.S. in Mechanical Engineering (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 616</td>
<td>Matrix Methods in Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 651</td>
<td>Methods of Applied Mathematics I</td>
<td></td>
</tr>
<tr>
<td>Select at least three of the following or more: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 610</td>
<td>Applied Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 611</td>
<td>Dynamics of Incompressible Fluids</td>
<td></td>
</tr>
<tr>
<td>ME 614</td>
<td>Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 620</td>
<td>Mechanics of Materials</td>
<td></td>
</tr>
<tr>
<td>ME 632</td>
<td>Mechanical Engineering Measurements</td>
<td></td>
</tr>
<tr>
<td>ME 635</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>Elective ME Graduate Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select three or more of the following: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 607</td>
<td>Advanced Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>ME 618</td>
<td>Selected Topics in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 621</td>
<td>Advanced Mechanics of Material</td>
<td></td>
</tr>
<tr>
<td>ME 622</td>
<td>Finite Element Methods in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 624</td>
<td>Microlevel Modeling in Particle Technology</td>
<td></td>
</tr>
<tr>
<td>ME 625</td>
<td>Introduction to Robotics</td>
<td></td>
</tr>
<tr>
<td>ME 630</td>
<td>Analytical Methods in Machine Design</td>
<td></td>
</tr>
<tr>
<td>ME 636</td>
<td>Mechanism Design: Analysis and Synthesis</td>
<td></td>
</tr>
<tr>
<td>ME 637</td>
<td>Kinematics of Spatial Mechanisms</td>
<td></td>
</tr>
<tr>
<td>ME 655</td>
<td>Introduction to Modern Control Methods</td>
<td></td>
</tr>
<tr>
<td>ME 670</td>
<td>Introduction to Biomechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 678</td>
<td>Engineering Design of Plastic Products</td>
<td></td>
</tr>
<tr>
<td>ME 679</td>
<td>Polymer Processing Techniques</td>
<td></td>
</tr>
<tr>
<td>ME 712</td>
<td>Mechanics of Viscous Fluids</td>
<td></td>
</tr>
<tr>
<td>ME 713</td>
<td>Non-Newtonian Fluid Dynamics</td>
<td></td>
</tr>
</tbody>
</table>
2022-2023 Graduate Catalog

Course List

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 714</td>
<td>Principles of Particulate Multiphase Flows</td>
</tr>
<tr>
<td>ME 717</td>
<td>Selected Topics in Mechanical Engineering I</td>
</tr>
<tr>
<td>ME 718</td>
<td>ST: (Selected Topics in Mechanical Engineering II)</td>
</tr>
<tr>
<td>ME 735</td>
<td>Advanced Topics in Robotics</td>
</tr>
<tr>
<td>ME 736</td>
<td>Advanced Mechanism Design</td>
</tr>
<tr>
<td>ME 738</td>
<td>Computer Aided Engineering</td>
</tr>
</tbody>
</table>

Optional General Elective Courses
Graduate courses from other departments or programs 9 credits or less 9

Seminar
ME 791 Mechanical Engineering Colloquium

Total Credits
30

1. If more than 9 credits are taken from this list, then the extra will be counted as credits in Elective ME Graduate Courses.
2. Required for two semesters.

M.S. in Mechanical Engineering (Master's project)

Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 616</td>
<td>Matrix Methods in Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 651</td>
<td>Methods of Applied Mathematics I</td>
<td></td>
</tr>
</tbody>
</table>
Select at least three of the following or more: 1 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 610</td>
<td>Applied Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 611</td>
<td>Dynamics of Incompressible Fluids</td>
<td></td>
</tr>
<tr>
<td>ME 614</td>
<td>Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 620</td>
<td>Mechanics of Materials</td>
<td></td>
</tr>
<tr>
<td>ME 632</td>
<td>Mechanical Engineering Measurements</td>
<td></td>
</tr>
<tr>
<td>ME 635</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
</tbody>
</table>

Project
ME 700B Master's Project 3

Elective ME Graduate Courses

Select two or more of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 607</td>
<td>Advanced Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>ME 618</td>
<td>Selected Topics in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 621</td>
<td>Advanced Mechanics of Material</td>
<td></td>
</tr>
<tr>
<td>ME 622</td>
<td>Finite Element Methods in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 624</td>
<td>Microlevel Modeling in Particle Technology</td>
<td></td>
</tr>
<tr>
<td>ME 625</td>
<td>Introduction to Robotics</td>
<td></td>
</tr>
<tr>
<td>ME 630</td>
<td>Analytical Methods in Machine Design</td>
<td></td>
</tr>
<tr>
<td>ME 636</td>
<td>Mechanism Design: Analysis and Synthesis</td>
<td></td>
</tr>
<tr>
<td>ME 637</td>
<td>Kinematics of Spatial Mechanisms</td>
<td></td>
</tr>
<tr>
<td>ME 655</td>
<td>Introduction to Modern Control Methods</td>
<td></td>
</tr>
<tr>
<td>ME 670</td>
<td>Introduction to Biomechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 678</td>
<td>Engineering Design of Plastic Products</td>
<td></td>
</tr>
<tr>
<td>ME 679</td>
<td>Polymer Processing Techniques</td>
<td></td>
</tr>
<tr>
<td>ME 712</td>
<td>Mechanics of Viscous Fluids</td>
<td></td>
</tr>
<tr>
<td>ME 713</td>
<td>Non-Newtonian Fluid Dynamics</td>
<td></td>
</tr>
<tr>
<td>ME 714</td>
<td>Principles of Particulate Multiphase Flows</td>
<td></td>
</tr>
<tr>
<td>ME 717</td>
<td>Selected Topics in Mechanical Engineering I</td>
<td></td>
</tr>
<tr>
<td>ME 718</td>
<td>ST: (Selected Topics in Mechanical Engineering II)</td>
<td></td>
</tr>
<tr>
<td>ME 735</td>
<td>Advanced Topics in Robotics</td>
<td></td>
</tr>
<tr>
<td>ME 736</td>
<td>Advanced Mechanism Design</td>
<td></td>
</tr>
<tr>
<td>ME 738</td>
<td>Computer Aided Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Optional General Elective Courses
Graduate courses from other departments or programs 9 credits or less 9

Seminar
ME 791 Mechanical Engineering Colloquium 2 0

Total Credits 30

1 If more than 9 credits are taken from this list, then the extra will be counted as credits in Elective ME Graduate Courses.
2 Required for two semesters.

M.S. in Mechanical Engineering (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 616</td>
<td>Matrix Methods in Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 651</td>
<td>Methods of Applied Mathematics I</td>
<td></td>
</tr>
<tr>
<td>Select at least three of the following or more: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 610</td>
<td>Applied Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 611</td>
<td>Dynamics of Incompressible Fluids</td>
<td></td>
</tr>
<tr>
<td>ME 614</td>
<td>Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 620</td>
<td>Mechanics of Materials</td>
<td></td>
</tr>
<tr>
<td>ME 632</td>
<td>Mechanical Engineering Measurements</td>
<td></td>
</tr>
<tr>
<td>ME 635</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>Thesis 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 700B & ME 701B Master's Project and Master's Thesis 3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>or ME 701B & 701B Master's Thesis and Master's Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or ME 701C Master's Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective ME Graduate Courses</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one or more of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 607</td>
<td>Advanced Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>ME 618</td>
<td>Selected Topics in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 621</td>
<td>Advanced Mechanics of Material</td>
<td></td>
</tr>
<tr>
<td>ME 622</td>
<td>Finite Element Methods in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 624</td>
<td>Microlevel Modeling in Particle Technology</td>
<td></td>
</tr>
<tr>
<td>ME 625</td>
<td>Introduction to Robotics</td>
<td></td>
</tr>
<tr>
<td>ME 630</td>
<td>Analytical Methods in Machine Design</td>
<td></td>
</tr>
<tr>
<td>ME 636</td>
<td>Mechanism Design: Analysis and Synthesis</td>
<td></td>
</tr>
<tr>
<td>ME 637</td>
<td>Kinematics of Spatial Mechanisms</td>
<td></td>
</tr>
<tr>
<td>ME 655</td>
<td>Introduction to Modern Control Methods</td>
<td></td>
</tr>
<tr>
<td>ME 670</td>
<td>Introduction to Biomechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 678</td>
<td>Engineering Design of Plastic Products</td>
<td></td>
</tr>
<tr>
<td>ME 679</td>
<td>Polymer Processing Techniques</td>
<td></td>
</tr>
<tr>
<td>ME 712</td>
<td>Mechanics of Viscous Fluids</td>
<td></td>
</tr>
<tr>
<td>ME 713</td>
<td>Non-Newtonian Fluid Dynamics</td>
<td></td>
</tr>
<tr>
<td>ME 714</td>
<td>Principles of Particulate Multiphase Flows</td>
<td></td>
</tr>
<tr>
<td>ME 717</td>
<td>Selected Topics in Mechanical Engineering I</td>
<td></td>
</tr>
<tr>
<td>ME 718</td>
<td>ST: (Selected Topics in Mechanical Engineering II)</td>
<td></td>
</tr>
<tr>
<td>ME 735</td>
<td>Advanced Topics in Robotics</td>
<td></td>
</tr>
<tr>
<td>ME 736</td>
<td>Advanced Mechanism Design</td>
<td></td>
</tr>
<tr>
<td>ME 738</td>
<td>Computer Aided Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Optional General Elective Courses
Graduate courses from other departments or programs 9 credits or less 9
M.S. in Occupational Safety and Health Engineering

Degree Requirements

A minimum of 36 credits is required. Students who lack an appropriate background may be admitted and required to make up deficiencies by taking a program of bridge courses that is designed in consultation with graduate advisors. These courses are taken in addition to the degree requirements and may include undergraduate courses.

Seminar: In addition to the minimum 36 degree credits required, all students who receive departmental or research-based awards must enroll each semester in IE 791 Graduate Seminar.

M.S. in Occupational Safety and Health (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 633</td>
<td>Legal Aspects of Health and Safety</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 614</td>
<td>Safety Engineering Methods</td>
<td>3</td>
</tr>
<tr>
<td>IE 615</td>
<td>Industrial Hygiene and Occupational Health</td>
<td>3</td>
</tr>
<tr>
<td>IE 665</td>
<td>Applied Industrial Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>IE 685</td>
<td>Systems Safety</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses
Select six of the following: 18

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 670</td>
<td>Introduction to Biomechanical Engineering</td>
</tr>
<tr>
<td>BME 671</td>
<td>Biomechanics of Human Structure and Motion</td>
</tr>
<tr>
<td>EVSC 603</td>
<td>Hazardous Waste Operations and Emergency Response</td>
</tr>
<tr>
<td>EVSC 614</td>
<td>Quantitative Environmental Risk Assessment</td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
</tr>
<tr>
<td>IE 608</td>
<td>Product Liability Control</td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
</tr>
<tr>
<td>IE 662</td>
<td>Cognitive Engineering</td>
</tr>
<tr>
<td>IE 664</td>
<td>Advanced Ergonomics</td>
</tr>
<tr>
<td>IE 669</td>
<td>Human Design Factors in Engineering</td>
</tr>
<tr>
<td>IE 675</td>
<td>Safety in Facility and Product Design</td>
</tr>
<tr>
<td>IE 681</td>
<td>Interdisciplinary Seminar in Occupational Safety and Health</td>
</tr>
<tr>
<td>IE 682</td>
<td>Industrial Safety and Health Evaluation</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>IE 700B</td>
<td>Master's Project (Remove IE 700 from the list)</td>
</tr>
<tr>
<td>IE 725</td>
<td>Independent Research</td>
</tr>
<tr>
<td>ME 660</td>
<td>Noise Control</td>
</tr>
</tbody>
</table>
M.S. in Occupational Safety and Health (Master’s thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 633</td>
<td>Legal Aspects of Health and Safety</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 614</td>
<td>Safety Engineering Methods</td>
<td>3</td>
</tr>
<tr>
<td>IE 615</td>
<td>Industrial Hygiene and Occupational Health</td>
<td>3</td>
</tr>
<tr>
<td>IE 665</td>
<td>Applied Industrial Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>IE 685</td>
<td>Systems Safety</td>
<td>3</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 701C</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 701B</td>
<td>Master's Thesis</td>
<td>3</td>
</tr>
<tr>
<td>IE 701B</td>
<td>Master's Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select four of the following:</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>BME 670</td>
<td>Introduction to Biomechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>BME 671</td>
<td>Biomechanics of Human Structure and Motion</td>
<td></td>
</tr>
<tr>
<td>EVSC 603</td>
<td>Hazardous Waste Operations and Emergency Response</td>
<td></td>
</tr>
<tr>
<td>EVSC 614</td>
<td>Quantitative Environmental Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>EVSC 616</td>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>IE 608</td>
<td>Product Liability Control</td>
<td></td>
</tr>
<tr>
<td>IE 661</td>
<td>Man-Machine Systems</td>
<td></td>
</tr>
<tr>
<td>IE 662</td>
<td>Cognitive Engineering</td>
<td></td>
</tr>
<tr>
<td>IE 664</td>
<td>Advanced Ergonomics</td>
<td></td>
</tr>
<tr>
<td>IE 669</td>
<td>Human Design Factors in Engineering</td>
<td></td>
</tr>
<tr>
<td>IE 675</td>
<td>Safety in Facility and Product Design</td>
<td></td>
</tr>
<tr>
<td>IE 681</td>
<td>Interdisciplinary Seminar in Occupational Safety and Health</td>
<td></td>
</tr>
<tr>
<td>IE 682</td>
<td>Industrial Safety and Health Evaluation</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>IE 725</td>
<td>Independent Research</td>
<td></td>
</tr>
<tr>
<td>ME 660</td>
<td>Noise Control</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

1 Required for NIOSH; trainees; optional for all others.

M.S. in Pharmaceutical Systems Management

Degree Requirements

A minimum of 30 credits beyond a B.S. degree is required. A thesis or independent research is optional.

M.S. in Pharmaceutical Systems Management (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td></td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select four of the following:</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 635</td>
<td>Management of Engineering Research and Development</td>
<td>3</td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 605</td>
<td>Pharmaceutical Packaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 602</td>
<td>Pharmaceutical Facility Design</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

M.S. in Pharmaceutical Systems Management (independent research)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
<tr>
<td>Independent Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHEN 725</td>
<td>Independent Study</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

Select three of the following: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Engineering Managers</td>
<td></td>
</tr>
<tr>
<td>EM 635</td>
<td>Management of Engineering Research and Development</td>
<td></td>
</tr>
<tr>
<td>IE 699</td>
<td>Special Topics in Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td></td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td></td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td></td>
</tr>
<tr>
<td>MNE 601</td>
<td>Computerized Manufacturing Systems</td>
<td></td>
</tr>
<tr>
<td>PHEN 605</td>
<td>Pharmaceutical Packaging Technology</td>
<td></td>
</tr>
<tr>
<td>PHEN 602</td>
<td>Pharmaceutical Facility Design</td>
<td></td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

M.S. in Pharmaceutical Systems Management (Master's thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 673</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHEN 701B & 701B & 701C</td>
<td>Master's Thesis and Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM 634</td>
<td>Legal, Ethical and Intellectual Property Issues for Engineering Managers</td>
<td></td>
</tr>
</tbody>
</table>
Ph.D. in Industrial Engineering

The objectives of the Ph.D. in Industrial Engineering program are to provide the knowledge and develop the skills that students need to become leaders of research in academia, industry and government. The program is for superior students with a master's or bachelor's degrees in industrial engineering or a closely related field. This program is intended for highly qualified students who wish to pursue advanced research in industrial engineering and related areas. The program emphasizes two areas: supply chain and manufacturing systems, and operations research applications. Students can be admitted with an appropriate BS or MS degree.

Degree Requirements

Ph.D. students with a recognized Master’s degree or equivalent are required to take four 700-level 3-credit courses (12 credits). Ph.D. students with a recognized Baccalaureate degree are required to take eight 600-level or 700-level 3-credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700-level 3-credit courses (12 credits), for a total of twelve 3-credit courses (36 credits).

The department approves specific degree requirements and dissertation topics on an individual basis. Students must attain a minimum overall GPA of 3.0. Students must conduct independent original research in a specific area of industrial engineering. Key milestones for a Ph.D. students are: (i) Complete 12 credits of courses work beyond the Masters or 36 credits beyond the Bachelors, including at least 12 credits at the 700 level, (ii) Pass the Qualifying Exam (iii) Select a dissertation advisor and defend the research proposal and (iv) submit and pass the Ph.D. dissertation exam. For dissertation credit registration requirements please see http://www5.njit.edu/graduatestudies/content/new-phd-credit-requirements/.

Program deadlines for full#time students: The required coursework for the Ph.D. program and the (major part of the) QE must be completed successfully by the end of the second year in the program. The dissertation proposal must be defended successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre#doctoral research course, whichever occurs earlier. The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

Qualifying Examination

All student are expected to pass a written qualifying exam. The exam is organized into two parts each of four hours duration (A) Mathematics, Probability and Statistics and (B) Industrial Engineering Topics. Part B will focus on seven different industrial engineering topics (i) Human Factors (ii) Operations Research (iii) Supply Chain and Production Planning (iv) Simulation Modeling (v) Reliability and Quality Control (vi) Engineering Economy and (vii) Manufacturing Processes. The test is administered 1-2 times a year, and a pass/fail grade is assigned to each section. A student can appear for the exam a maximum of 2 times.

Dissertation Proposal Examination

Doctoral students must prepare a written research proposal and make an oral presentation for approval by their dissertation committee. The proposal must be presented after formation of the committee but within one year after passing the qualifying examination. Research is expected to investigate or develop a unique contribution to science and technology.

Dissertation Defense

When the novel and independent dissertation research conducted by a doctoral student produces sufficient and significant results, the student, in consultation with his/her dissertation committee, will prepare for the completion of the dissertation. An oral defense of the dissertation with the dissertation committee is required after submission of the final document to the department for approval. Signatures of all members of the dissertation committee must be received for final approval to be granted.

Ph.D. in Mechanical Engineering

The program is for superior students with master's degrees in mechanical engineering, or closely related fields, who wish to do advanced research in an area of mechanical engineering. It provides students with
the skills necessary for careers in basic and applied research, as well as the intellectual foundation to provide leadership in academia and industry. In exceptional circumstances, highly qualified students with bachelor’s degrees in mechanical engineering may be accepted directly into the doctoral program.

Degree Requirements

Coursework registration requirements: Ph.D. students with a recognized Master’s degree or equivalent are required to take four 700#level 3#credit courses (12 credits). Ph.D. students with a recognized Baccalaureate degree are required to take eight 600#level or 700#level 3#credit courses (24 credits) of coursework beyond the Baccalaureate degree as well as four additional 700#level 3#credit courses (12 credits), for a total of twelve 3#credit courses (36 credits). Master’s project (course 700), Master’s thesis (course 701), or more than two independent study courses (courses 725 and 726) cannot be used to satisfy these coursework requirements. A Ph.D. student may substitute a 600#level course for a 700#level course only after the academic advisor appeals on behalf of the student to the Office of Graduate Studies and receives approval. The program or the student’s dissertation committee may ask the student to take additional courses above the aforementioned minimum requirements.

Dissertation registration requirements: Ph.D. students who pass the Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (792B) per semester until they defend successfully the dissertation proposal. Specific dissertation topics are approved by the department on an individual basis. Ph.D. students who defend the dissertation proposal successfully must then register for the 1#credit dissertation course (790A) each semester until they complete all degree requirements. Students may take courses simultaneously with the 790 or 792 course as per Ph.D. program guidelines or dissertation committee recommendation.

Program deadlines for full-time students: The required coursework for the Ph.D. program and the (major part of the) QE must be completed successfully by the end of the second year in the program. The dissertation proposal must be defended successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier. The dissertation must be defended successfully by the end of the sixth year in the Ph.D. program.

Qualifying Examination

Before becoming a doctoral candidate, a student must demonstrate his/her ability to integrate the knowledge acquired studies in the Qualifying Examination. The examination will evaluate the students’ knowledge in selected areas of mechanical engineering, as well his/her research potential which will be

based on the student’s formal research prospectus submitted in written form. After receiving the research prospectus, the department will form a committee of 3 or more members to conduct an oral examination.

The formal research prospectus should contain the following information:

- **Abstract:** A summary of the research reported in the prospectus
- **Background and Significance:** (a) Demonstrate knowledge of breadth of literature underlying the reported research; (b) Identify the unsolved problems and their significance; and (c) Show the planned approach to address the problems.
- **Research Work and Preliminary Results:** (a) Show the theoretical development and/or the experimental design of the approach used in the research; and (b) Show the results obtained.
- **Discussions and Conclusions:** Discussion of the results, which may include a comparison with the expected results, if applicable, and potential problems.
- **Future Work:** Identify the problems that needs to be addressed if the reported research is to be continued.
- **References:** List of the publications cited in the background literature survey and other related reference materials.

The maximum length of formal research prospectus is 15 pages single-spaced, excluding references. Additional pages may be used as appendix only if necessary.

Dissertation Proposal Examination

After passing the qualifying examination, Doctoral students, under the guidance of their faculty advisors, must conduct preliminary research in a specific topic and prepare a written research proposal. The dissertation topic should represent original research and reflect a student’s ability to critically understand the significance of a problem. The proposal must provide approaches for developing potential solutions to the problem. Doctoral students must make an oral presentation of the dissertation topic for approval by their dissertation committees. The dissertation proposal should follow the format required for the final dissertation document.

Dissertation Defense

When the novel and independent dissertation research conducted by a doctoral student produces sufficient and significant results, the student, in consultation with his/her dissertation committee, will prepare for the completion of the dissertation. An oral defense of the dissertation is required after
submission of the final document to the department for approval. Signatures of all members of the dissertation committee must be received for final approval to be granted.

Project Management

What will I learn?

- **Project Control** focuses on the methodology that can be employed to plan project implementation and control progress.
- **Cost Estimating for Capital Projects** examines internal and external influences on the economic practices of business; classical and current theories of economic behavior; contemporary analytical techniques; behavior of costs, prices, and profits; demand analysis, competition and monopoly; capital expenditure planning; profit theories and business cycles; and econometric models of market strategies, competitive action, and demand behavior.
- **Project Management** focuses on technical-oriented projects, however the principles discussed are applicable to the management of any project. Topics include time, cost considerations, cash flow forecasting, financial and performance control, documentation.
- **Construction Management** is comprised of a study of an individual firm in relation to the entire construction industry. Topics include contractor organization and management, legal aspects of construction, and financial planning.
- **Legal Aspects in Environmental Engineering** discusses the control of air, water, and solid waste pollution by federal, state, and local government statutes and international law.
- **Legal Aspects in Construction** is an introduction to the legal factors affecting construction activities: contract responsibilities of contractors, engineers, and owners; subcontracts and third-party liability; construction law and code compliance; and insurance and bonds.
- **Legal, Ethical and Intellectual Property Issues for Engineering Managers** is an introduction to various environmental, product liability, health and safety, and intellectual property, legal, as well as ethical, issues facing engineering managers. Current New Jersey and federal laws and pending legal actions in these fields.

For more information about the online graduate certificate in Construction Management click [here](https://www.njit.edu/academics/degree/certificate-construction-management-online/) AND For more information about the online graduate certificate in Project Management click [here](https://www.njit.edu/academics/degree/certificate-project-management-online/)

Why study Project Management at NJIT?

Project Management can be studied fully online or on our NJIT Newark campus. You'll have access to the same outstanding facilities and professors as full-time NJIT students, plus the flexibility you need to juggle all the aspects of your life.

Prerequisites

Eligibility for admission requires completion of an undergraduate degree in engineering, the sciences or a closely related area.

Related Degree Programs

All credits for Project Management relates in its entirety to NJIT MS in Engineering Management (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/engineering-management-ms/).

Gainful Employment Disclosure

Click [here](http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/project-management-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program

NJIT recognizes the industry need for highly skilled individuals to plan project implementation and control progress, along with the ability to estimate, budget, and control capital investments. Project Management courses are taught by instructors with experience in the field and PMP certification. Many students find that this program enhances their work performance and marketability.

Who is suited for this program?

This certificate program is intended for individuals seeking to enhance their project management skills and relates to Engineering Management.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 637</td>
<td>Project Control</td>
<td>3</td>
</tr>
<tr>
<td>EM 691</td>
<td>Cost Estimating for Capital Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select one of the following: 3
Supply Chain Engineering

The fundamental knowledge of the industrial engineering and engineering management profession encourages a systems viewpoint that permits us to reduce costs while at the same time maintain or further increase operational performance. The confluence of information technology and systems engineering has made the roles of industrial engineering and engineering management relevant in a wide range of industries. The supply chain contributes a very substantial portion to total product cost. Managing it requires the optimization of the entire system and its various components, that include among others, transportation, inventory, warehousing, materials handling, and customer service.

The graduate certificate in Supply Chain Engineering program at NJIT is designed to distribute this type of knowledge.

What will I learn?

- **Supply Chain Engineering** - Coordination of product manufacturing and logistic activities across the global supply chain is studied. Focus is on supply chain design, implementation, and control. Topics include transportation and distribution networks, inventory control, demand planning, materials handling and warehousing, supply chain contracts, manufacturing flexibility, product design for responsiveness, and ERP systems. Supply chain analytics concepts and relevant case studies are introduced.

- **Distribution Logistics** - Distribution logistics emphasizing systems engineering techniques used to optimize corporate profit and customer service: transportation modes; inventory policies; warehousing and order processing; and the best logistics gross margin.

- **Management Science** - Linear programming: formulation, methodology, and application; the transportation problem; the assignment problem; Markov chains and their applications in decision making; queueing systems; deterministic and stochastic inventory models.

- **Project Management** - Introduction to concepts of project management and techniques for planning and controlling of resources to accomplish specific project goals. While the focus is on technically oriented projects, the principles discussed are applicable to the management of any project. Topics include time, cost considerations, cash flow forecasting, financial and performance control, documentation.

- **Advanced Engineering Statistics** - The foundations of modern quality improvement, scientific basis of quality engineering, probability, statistical inference, statistical experimental design issues such as randomized blocks, factorial design at different levels, application to factorial design, building models, and implementation and critique of Taguchi's contributions. Statistical software is used in the data analysis.

- **Engineering Cost and Production Economics** - Cost management of operational activities. Focuses on capital investment decision making and efficient resource utilization to achieve cost-effective operations. Topics include alternative investment evaluation, budgeting activity based costing, quality costs, life cycle management and relevant behavioral science. These are considered in the context of manufacturing and service industry application.

Why study Supply Chain Engineering at NJIT?

The NJIT supply chain initiative will help enable you to build flexible manufacturing solutions for use within small to medium-sized companies. You will help develop a methodology for evaluating the quality manufacturability of new designs from an assembly perspective. This program is related to all manufacturing industries and all transportation/distribution related service industries. Potential job titles include:

- Supply Chain Engineer
- Logistics Planner
- Transportation Analyst
- Terminal Manager
- Purchasing Agent
- Dispatch Coordinator
- Customer Service Agent
- Distribution Analyst
- Warehouse Supervisor

Prerequisites
Students who do not have a bachelor of science degree in industrial engineering may be admitted and required to complete the bridge program, especially in the areas of statistics, cost analysis and engineering economics. Bridge courses do not count toward degree requirements. A minimum of 30 credits beyond a baccalaureate degree is required.

Related Degree Programs

The graduate certificate in Supply Chain Engineering relates directly to the NJIT MS in Industrial Engineering (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/industrial-ms/), MS in Engineering Management (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/engineering-management-ms/), and MS in Manufacturing Systems Engineering (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/manufacturing-systems-ms/)

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 659</td>
<td>Supply Chain Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>IE 604</td>
<td>Advanced Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 618</td>
<td>Engineering Cost and Production Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

Interdisciplinary Program in Engineering Science

The M.S. in Engineering Science allows students to study areas not covered by traditional engineering or science discipline graduate programs. For those already in the work force, the program provides the opportunity to develop expertise relevant to their work.

Master of Science in Engineering Science

This is a very flexible program that permits advanced study from numerous disciplines in engineering and the sciences.

Admission Requirements

Applicants are expected to have an accredited undergraduate degree in science or engineering. Candidates with other appropriate backgrounds may be considered.

- Engineering Science - M.S. (p. 581)

Interdisciplinary Program in Engineering Science Courses

ESC 601. Fundamentals of Geomatics Engineering. 3 credits, 3 contact hours.
Prerequisites: Fundamental knowledge of calculus, MATH 111 or MATH 138 or equivalent. Restrictions: Graduate Standing or Approval from the Course Instructor. Covers basic knowledge of spatial reference systems and geodetic coordinates. Examines the first fundamental form and theory of distortion in map projection with application to conformal mapping within state plane coordinate systems. Introduction of the geopotential model and computational methods for geodetic positioning, physical and geometric heights, and gravity anomalies to quantify crustal movement and change detection. Examines geomatics engineering methodologies for sustainable development and risk mitigation through case studies.

ESC 603. Artificial Intelligence for Geospatial Decisions. 3 credits, 3 contact hours.
Prerequisites: Fundamental knowledge of statistics MATH 105 or equivalent and computer programming CS 106 or equivalent. Restrictions: Graduate Standing or Approval from the Course Instructor. Statistical learning theory with a focus on artificial intelligence (AI) for geospatial data. Two perspectives through machine learning include supervised and unsupervised learning of geospatial patterns. Course outcomes include knowledge and skills necessary to investigate patterns in geospatial data to support decision-making within the context of engineering and geoscience disciplines.

ESC 701B. Master’s Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in engineering science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ESC 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Contact of Research) course.
ESC 705. Advances in Engineering Education Research. 3 credits, 3 contact hours.
For PhD students in an engineering program. For master’s students, approval from Instructor/Course Coordinator (to confirm completion of core courses in the program). This course prepares students to apply theoretical work and research methodologies from the field of education to improve teaching of engineering students. Students will be able to conduct assessment and translate research findings into classroom and instructional methods. Topics include learning theories and conceptual frameworks, research design, qualitative and quantitative data collection and analysis, assessment and accreditation in engineering, student-centered instructional design and development of teaching statements.

M.S. in Engineering Science

Degree Requirements
To ensure academic success in their graduate studies, students may be required to take additional undergraduate or graduate courses before beginning graduate curricula. This program of bridge courses will be individually-designed in consultation with the student’s graduate advisor. Such courses are not counted toward degree requirements. Students interested in pursuing a focus in engineering education can do so through the Master’s Thesis or Master’s Project option.

A minimum of 30 credits is required. A thesis or project may be included.

Seminar: In addition to the minimum 30 degree credits, all students who receive departmental or research-based awards must enroll each semester in a graduate seminar. The seminar is selected in consultation with the graduate advisor.

M.S. in Engineering Science (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two 600-level math courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>One 600-level physics, chemistry, or biology course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two 600-level engineering courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electives 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select five courses in consultation with graduate advisor</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

1 The elective credits must form a meaningful and coherent program integrated with the specialization in science or engineering.

M.S. in Engineering Science (Master’s project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two 600-level math courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>One 600-level physics, chemistry, or biology course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two 600-level engineering courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master’s project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select four courses in consultation with graduate advisor</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

1 The elective credits must form a meaningful and coherent program integrated with the specialization in science or engineering.

M.S. in Engineering Science (Master’s thesis)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two 600-level math courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>One 600-level physics, chemistry, or biology course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two 600-level engineering courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master’s thesis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electives 1</td>
<td></td>
</tr>
</tbody>
</table>
Select three courses in consultation with graduate advisor

Total Credits: 30

1 The elective credits must form a meaningful and coherent program integrated with the specialization in science or engineering.

M.S. in Engineering Science (Master's project, Engineering Education Focus)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 660</td>
<td>College Teaching</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>ESC 705</td>
<td>Advances in Engineering Education Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Two 600-level engineering courses

Project

Master's Project

Electives 1

Select three courses in consultation with graduate advisor

Total Credits: 30

1 The elective credits must form a meaningful and coherent program integrated with the specialization in science or engineering.

M.S. in Engineering Science (Master's Thesis, Engineering Education Focus)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 660</td>
<td>College Teaching</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>ESC 705</td>
<td>Advances in Engineering Education Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Two 600-level engineering courses

Thesis

Master's Thesis

Electives 1

Select two courses in consultation with graduate advisor

Total Credits: 30

1 The elective credits must form a meaningful and coherent program integrated with the specialization in science or engineering.

Martin Tuchman School of Management

Martin Tuchman School of Management (MTSM) is one of NJIT’s six schools and colleges, serving as the university’s business school. MTSM has 35 faculty and over 800 students. The mission of the Tuchman School is to educate and prepare our graduates for life-long success as management professionals, corporate leaders and academic scholars in the dynamic, technology-driven world of global business.

Embedded within New Jersey’s technological university, the Tuchman School integrates fundamental business principles with technical knowledge and critical-thinking skills and leverages strengths across the university from engineering and computing to architecture and social science. Many of our graduate programs are STEM-designated; and all of our academic programs provide hands-on learning experiences with advanced business and management cloud-based solutions.

NJIT’s Martin Tuchman School of Management is a top business school as evidenced by its accreditation from AACSB, The Association to Advance Collegiate Schools of Business. AACSB accreditation represents the highest standard of achievement for business schools worldwide. All of our undergraduate and graduate degrees are accredited.
Programs

- Business Data Science - Ph.D. (p. 610)

Programs

- Finance for Managers (http://catalog.njit.edu/archive/2022-2023/graduate/management/management/finance-for-managers-cert/)
- Marketing (http://catalog.njit.edu/archive/2022-2023/graduate/management/management/marketing-cert/)

ACCT 615. Management Accounting. 3 credits, 3 contact hours.
This course builds upon traditional undergraduate level managerial accounting concepts, e.g. break-even analysis, alternate choice decisions, profit planning, and transfer pricing and develops executive skills necessary to conduct strategic cost analyses. Furthermore, it explores strategic decision making pertaining to value chain and activity-based management. Emphasis is placed upon utilizing managerial accounting data in executive planning and control.

ACCT 640. Big Data Analytics for Accounting. 3 credits, 3 contact hours.
Prerequisites: ACCT 615. This course is intended to provide students with an understanding of data analytic thinking and terminology as well as hands-on experience with data analytics tools and techniques. Students should leave this course with the skills necessary to translate accounting and business problems into actionable proposals that they can competently present to managers and data scientists.

BDS 725. Independent Study I. 3 credits, 3 contact hours.
Restriction: graduate standing and school consent. This is a self guided independent course where the student works closely with a faculty member to study selected topics in business data science.

BDS 726. Independent Study II. 3 credits, 3 contact hours.
Prerequisite: BDS 725. Restriction: graduate standing and school consent. This is a self guided independent course where the student works closely with a faculty member to study selected topics in business data science.

BDS 790A. Doctoral Dissertation & Res. 1 credit, 1 contact hour.
Ph.D. students who defend their dissertation proposal successfully must register for this (790A) course each semester until they complete all degree requirements. Research and writing instruction in the area of business data science are carried out under the supervision of a designated graduate faculty member. The completed written dissertation should be a substantial contribution to the knowledge of the topic under consideration and should be of sufficient merit to warrant publication in a leading scientific or technical journal.

BDS 791. Doctoral Seminar. 0 credits, 0 contact hours.

BDS 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Ph.D. students who pass their Qualifying Examination (QE) must then register for 3 credits of pre-doctoral research (792B) per semester until they successfully defend their dissertation proposal. Research and writing in the area of business data science is carried out under the supervision of a designated graduate faculty member to prepare the student for a dissertation proposal.

ECON 610. Managerial Economics. 3 credits, 3 contact hours.
Managerial Economics covers the role of economic theory in management analysis and decisions. The study of demand, cost, and supply theories from a business viewpoint are also covered. This course is about economic principles and their relevance to business decision-making. The course examines the interaction of information, economic incentives and market competition and how these interact to determine prices, products available, profits, and patterns of trade and organization.

ENTR 725. Independent Study. 3 credits, 3 contact hours.
This is a self guided independent course where the student works closely with a faculty member to study selected topics in entrepreneurship.

FIN 516. Principles of Financial Management. 3 credits, 3 contact hours.
Fundamentals of financial management divided into two segments: investment and corporation finance.
FIN 600. Corporate Finance I. 3 credits, 3 contact hours.
This course introduces concepts and analytical tools to identify and solve Financial Management problems. After introducing the corporation, the course focuses on how firms invest in real assets (capital budgeting) and how they raise money to pay for assets (financing). Practical problems in valuing bonds, stocks and other investments will be based on the time value of money. The trade-off between risk and return will be introduced with the Capital Asset Pricing Model.

FIN 610. Global Macro Economics. 3 credits, 3 contact hours.
This is an introductory graduate course for entering masters students. This course introduces various concepts relating to macroeconomics and the financial system from both a theoretical and institutional perspective. Thus fiscal and monetary policy and actions are covered but taught using a macroeconomic model that helps identify how particular actions affect economies as well as specific financial institutions.

FIN 611. Intro to Topics in Fin Tech. 3 credits, 3 contact hours.
Prerequisites: Students must have taken an introductory programming course prior to enrolling in FIN 611 that concentrated on learning at least one of Python, Java, MATLAB, C/C++, or R. The financial services industry is presently undergoing dramatic changes as recent technological advances have enabled the automation of former workflows. This course will survey current trends in the Financial Technology (FinTech) industry. Students will have the opportunity to develop their own software related to FinTech ideas discussed during this course.

FIN 616. Data Driven Financial Modeling. 3 credits, 3 contact hours.
Prerequisite: FIN 600. Financial modeling is of critical importance to asset allocation, pricing, trading strategy development, and risk management. By introducing basic and current financial modeling techniques, this course equips students with new analytic and modeling tools (e.g., spreadsheet modeling) to tackle rapidly changing and dynamic financial markets. In particular, this course delivers modeling frameworks such as regression analysis, forecasting, Monte-Carlo simulation and optimization. In addition, it illustrates how to apply these frameworks in financial contexts such as portfolio management, term structure estimation, capital budgeting, risk measurement, risk analysis in discounted cash flow models, and the pricing of European, American, exotic, and real options.

FIN 618. Public and Private Financing of Urban Areas. 3 credits, 3 contact hours.
Ties government’s budget, tax policy, allocation of resources between public and private sectors, with the structure, development, and growth needs of urban metropolitan areas. Focuses on problems of poverty, transportation, land-use, economic base, relation between central cities and suburban areas, and alternative engineering and economic solutions. Same as MIP 618 and Tran 604.

FIN 620. Adv Financial Data Analytics. 3 credits, 3 contact hours.
Prerequisites: FIN 616 or instructor’s approval, and familiarity with at least one programming language (for example, C, Java, Python, R or MATLAB). The financial services industry contains numerous data driven applications. For example, large financial institutions utilize Python in tandem with other established technologies to build, enhance, and maintain portions of their core IT and modeling systems. There are also many hedge fund and asset management firms that make heavy use of Python programming when it comes to efficient financial application and data analytics development. Establishing a quantitative view and mastering analytical approaches are critical nowadays for students and professionals in the finance industry. This course will provide essential skills in financial data analytics.

FIN 624. Corporate Finance II. 3 credits, 3 contact hours.
Prerequisite: FIN 600. The trade-off between risk and return will be examined in the context of historical analysis, portfolio optimization, the Capital Asset Pricing Model and other alternative models. The course will begin with a discussion of the Modigliani and Miller results and introduce bankruptcy, taxes, information asymmetries and other market imperfections. Financial options, put-call parity and option pricing will be introduced.

FIN 626. Financial Investment Institutions. 3 credits, 3 contact hours.
Prerequisite: FIN 600. This course introduces the role of banking institutions and investment banks in the domestic and international money market and capital environment to financial managers. It covers financial instruments and services of financial intermediaries that are crucial to business management. Further topics of discussion range from the financial services and facilities of regional banks to money-center banking institutions. Alternatives of project financing, lending requirements and regulations, project financing, and the role of intermediaries in local and international transactions. In addition we will focus on the private placement procedures of a variety of securities in the capital market and the unique role undertaken by the investment banking firms. Finally, we provide insights about the public offering process for existing venture capitalized firms.

FIN 627. International Finance. 3 credits, 3 contact hours.
Prerequisite: FIN 600. Examines financing of exports and imports, managing multicurrency working capital, international aspects of capital budgeting, cost of capital and their relationship with political, economic, and financial risk. Explores financial innovations and their impact on the firm’s financial strategy and performance of overall productivity. Discusses the tax consequences and principal-subsidiary relationship of the multinational enterprise. Introduces international money and capital markets, instruments, derivatives, and institutions.

FIN 634. Mergers, Acquisitions, and Restructuring. 3 credits, 3 contact hours.
Prerequisite: FIN 600. Focuses on identifying and evaluating potential and international companies for mergers and acquisitions as well as structuring of deals. The financial, social and managerial implications of these changes in corporate ownership will be examined. Topics are: financing M&As, deal structuring, tax implications, valuation, broker/finder agreements, merger negotiations, and post-merger integration.

FIN 641. Derivatives Markets. 3 credits, 3 contact hours.
Prerequisite: FIN 600. This course introduces students to futures, options, and other derivative securities. Topics include option valuation models, principles of forward and futures pricing, structure of markets for derivative securities, and strategies for hedging and speculation.
FIN 642. Derivatives and Structured Finance. 3 credits, 3 contact hours.
Prerequisite: FIN 641. This is a second course in financial derivatives. It continues the study of derivatives from FIN 641 (Derivatives Markets), covering additional types of options and underlying assets. The second part of the course is devoted to structured finance, including securities backed by mortgages and other types of assets.

FIN 643. Term Structure of Interest Rates. 3 credits, 3 contact hours.
Prerequisites: FIN 642, MATH 605. This course provides the student with a basic understanding of models of the term-structure of interest rates and the pricing of derivatives on bonds and other interest-rate-based securities. Topics covered include arbitrage-free pricing principles, continuous-time interest-rate models, no-arbitrage term structure models, multifactor models, forward measure approach, market models and model calibration.

FIN 644. Credit Risk Modeling. 3 credits, 3 contact hours.
Prerequisites: FIN 643, MATH 605. This course covers types of credit risk, measurement of credit risk, and methods for changing exposure to credit risk using credit derivatives. Current models for pricing credit derivatives will be analyzed and applied.

FIN 650. Investment Analysis and Portfolio Theory. 3 credits, 3 contact hours.
Prerequisite: FIN 600. This is a course on the theory and practice of investment and portfolio theory. We will study several quantitative techniques for portfolio construction. Mathematical and statistical analysis will be used during this examination. Theories of asset pricing based on the relationship between risk and return will be included. We will also discuss criteria for selecting specific securities in different asset classes, such as, stocks, bonds, and derivatives.

FIN 655. Financial Innovations and Market Failures. 3 credits, 3 contact hours.
Prerequisite: FIN 600. This reading intensive course introduces concepts and problems from derivative markets, entrepreneurial finance, and financial market failures (including financial bubbles). The course focuses on valuation of futures and options (including real options), strategy and incentives for new finance, and information asymmetry and market failures, especially financial market bubbles.

FIN 700. Seminar in Theory and Research in Financial Management. 3 credits, 3 contact hours.
Prerequisites: FIN 624 or FIN 626. Only open to those students who do not do a thesis. The theory and applied tools of financial management. Presented in seminar format with several students working as a team to analyze and resolve an issue in financial management.

FIN 701. Thesis in Financial Management. 3 credits, 3 contact hours.
Prerequisites: FIN 624 or FIN 626; waived with approval of the assistant dean for graduate programs. Examines: What is research? Why do research? What are the objectives of research? What are the factors that affect research? How do research findings help decision-making? The course will cover the process of doing research, the development of research questions, the design of experiments, the collection of data, the analysis of data, and the presentation of research findings.

FIN 725. Independent Study. 3 credits, 3 contact hours.
This is a self-guided independent course where the student works closely with a faculty member to study selected topics in finance.

FIN 780. Theory and Practice of Financial Research. 3 credits, 3 contact hours.
Prerequisites: Approval from PhD program director. Students enrolling in this course should be familiar with basic finance concepts such as time value of money, present value discounting, and fundamental econometric analysis tools such as ordinary least squares linear regression. This course provides an in-depth review of current topics in the empirical asset pricing literature. In addition, this course will survey core asset pricing ideas including market efficiency and the capital asset pricing model. However, it will also explore novel applications of machine learning and data science techniques to portfolio and asset management. This course will also explore the failure of classical equilibrium models to explain asset prices and new developments in cross-sectional asset pricing which improve such issues. The course will also provide potential explanations for the existence and persistence of pricing anomalies in the stock market.

HRM 601. Organizational Behavior. 3 credits, 3 contact hours.
Analysis of key organizational components; individual perception; learning ability; conflict resolution models; group processes in decision making; motivation; problem diagnosis, and the organization as the mechanism for joining into a coherent productive system. Organizational assessment for innovation, leadership styles, and environmental interaction.

HRM 606. Human Resource Management. 3 credits, 3 contact hours.
Management of human resources in business, industry, and government; developing personnel programs including wage and job classification, training, employee and labor relations, accident prevention. Particular attention is directed to cases and roles involving both line and staff managers.

HRM 610. Seminar on Leadership Skills. 3 credits, 3 contact hours.
Leadership theory and research is used to provide a foundation for developing leadership skills in work organizations. This course covers all aspects of leadership properties and processes. Concepts and theory are reinforced with case studies and experiential learning exercises. Topics include charismatic leadership, forming and realizing a vision, motivating and socializing followers, conflict resolution, negotiation, power and authority, and values and ethics.

HRM 630. Managing Technological and Organizational Change. 3 credits, 3 contact hours.
Managing planned and unplanned change in organizations. The change process is studied in relation to technology-driven changes in the workplace and to other environmental factors. Focuses on planned and unplanned systemic change, such as downsizing, re-engineering, mergers, and acquisitions.

HRM 640. Cultures in Organization. 3 credits, 3 contact hours.
Prerequisite: HRM 601. Cultures and subcultures in organizations are studied from an ethnographic perspective. Managerial and professional cultures are studied as are engineering and R&D cultures. Organizational cultures are also studied in detail using case studies, with an emphasis on understanding culture as a control mechanism in modern organizations.
HRM 685. Cross Cultural Management Studies. 3 credits, 3 contact hours.
Provides insight into the institutional fabric and social and communication behavior of other cultures to better understand problems arising from cultural aspects of managing and doing business in various countries. Focus will be with the manager acting in various cultural environments, not restricted to the traditional human resource function at corporate headquarters. Cultural differences and technologies are also examined.

MGMT 501. Management Foundations. 3 credits, 3 contact hours.
This course provides foundation knowledge for MSM and MBA students whose undergraduate coursework does not include coursework in accounting and finance. It therefore, serves as a pre-qualifier for the MSM and MBA programs.

MGMT 590. Coop Work Experience I. 1 credit, 1 contact hour.

MGMT 591. Coop Work Experience II. 1 credit, 1 contact hour.

MGMT 592. Coop Work Experience III. 1 credit, 1 contact hour.

MGMT 593. Coop Work Experience IV. 0 credits, 0 contact hours.
Prerequisites: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

MGMT 610. Foundations of Management in Organizations. 3 credits, 3 contact hours.
Presented during the residence week for the Executive Program. Includes management accounting, managerial economics, statistics, operations research, marketing, MIS, and finance.

MGMT 620. Management of Technology. 3 credits, 3 contact hours.
This course explores technology as a main component of an organizational entity. The generation, development, and implementation of technology are outlined. The influence of technology on global competitiveness is also discussed.

MGMT 625. Distribution Logistics. 3 credits, 3 contact hours.
This course examines distribution logistics emphasizing techniques used to optimize corporate profit and customer service; transportation modes; inventory policies; warehousing and order processing; and the best logistics gross margin.

MGMT 630. Decision Analysis. 3 credits, 3 contact hours.
Introduction to the methodology of decision analysis using computer based techniques and systems analysis. Introduces concepts of modeling, probability, and choice. Addresses the philosophy and detailed methods involved in decision analysis. Methods are applied to address routine and special business decisions.

MGMT 635. Data Mining and Analysis. 3 credits, 3 contact hours.
This course provides an introduction to data mining with an emphasis on large scale databases as a source of knowledge generation and competitive advantage. Specific topics include: framing research questions; data modeling; inferential data mining techniques; and evaluation and deployment of data mining systems.

MGMT 640. New Venture Management. 3 credits, 3 contact hours.
This course is for the student who is considering starting or managing a new business. The course combines classroom instruction in business management and a term project involving the analysis of a business case study. The course is designed to build upon and integrate the student’s previously acquired business knowledge and skills into an understanding of how to start and run a new business.

MGMT 641. Global Project Management. 3 credits, 3 contact hours.
The course reviews key elements of project management frameworks with a particular focus on global projects, which include people from various organizations working in different countries across the world, both face-to-face and virtually. Such projects vary in complexity based on the number of organizations, locations, cultures, languages and time-zones involved. It discusses people, technology and processes relevant to managing global projects and virtual teamwork.

MGMT 645. New Venture Finance. 3 credits, 3 contact hours.
This course is designed to provide students with an understanding of the problems and opportunities posed by financing and growing a technology-based business. Students will study financial conditions of the new businesses and examine the effect of growth upon cash flow while exploring optimal sources of capital.

MGMT 648. Distribution Channel Management. 3 credits, 3 contact hours.
Prerequisite: MRKT 330 Utilizing a strategic perspective, this course augments the understanding of how a firm can effectively manage the distribution system or network of alliances among agents, wholesalers, distributors and retailers to attain a sustainable competitive advantage. This course focuses on developing and implementing strategies for planning, organizing and controlling the various external institutions, agencies as well as in-house units that ultimately deliver products and services to consumer and business-to-business markets. In addition to electronic channels, the topics studied in the distribution process include channel strategy, channel design, channel management, as well as the selection, motivation, and performance assessment of resellers.

MGMT 649. Convention, Creativity and Innovation. 3 credits, 3 contact hours.
This course explores the role of creativity and disruptive thinking in relation to the development of new products, processes, technologies and industries. It begins with a focus on the behavioral aspects of creativity and disruptive thinking and includes exercises and tools to challenge conventional thinking. Disruption is then studied through a strategic lens with an emphasis on understanding the conditions under which radical change is appropriate and when it is not.
MGMT 650. Knowledge Management. 3 credits, 3 contact hours.
Students will learn the principles of the knowledge management process. At the end of the course, students will have a comprehensive framework for designing and implementing a successful knowledge management effort and be able to assist in the development of knowledge.

MGMT 654. Management Consulting. 3 credits, 3 contact hours.
Management Consulting is a course that examines the business of management consulting beginning with the use of management consultants and the basic economics of their business. It then builds on this initial foundation to explore in depth the development of strategic consulting that spans a wide range of topics, businesses and functional organization issues in both a domestic and international economic and institutional context.

MGMT 655. Global Competitiveness. 3 credits, 3 contact hours.
Improves knowledge of the issues involved in international business operations and their management. Develops skills in selecting key issues and familiarization with emerging methods for organizing and managing international operations. Emphasis will be on companies with technological, product, production, or design focus.

MGMT 656. Public Policy and Business. 3 credits, 3 contact hours.
This course explores the relationship between business and government with a focus on regulatory policies and public/private partnerships. Areas of focus include economic, legal, and ethical claims on corporate managers; the extent of regulation of a particular industry, individual rights of the employee and various corporate interests, corporate responsibility to consumers, society, conservation of natural resources and the environment, and global intellectual property rights.

MGMT 660. Managing Supply and Value Chains. 3 credits, 3 contact hours.
This course is focused on the flow of products, information and revenue across supply and value chains in organizations. Special emphasis is placed on emerging e-business models and their effects on supply and value chains, and customer relationship management. The course also includes a survey of relevant information technologies.

MGMT 670. International Business. 3 credits, 3 contact hours.
Covers the scope and the essential characteristics of international business in the world economy; MNEs as economic, political, and social institutions; national and international control; functional management and operations; country evaluation; and regional market analysis.

MGMT 680. Entrepreneurial Strategy. 3 credits, 3 contact hours.
For the student who is considering starting and/or managing a new business. Integrates knowledge of the different aspects of business that have been learned as separate subjects. Provides an understanding of the decisions that guide the overall operations of an entrepreneurial business organization and how it interacts with its markets, competitors, and suppliers. Combines classroom instruction in business strategy along with case analysis of small firms. Should be taken in the last semester of the program, unless prior arrangement has been made with the instructor or the graduate advisor. Taken in the final semester only.

MGMT 682. Business Research Methods I. 3 credits, 3 contact hours.
A comprehensive introduction to business research methods covering the fundamental concepts of problem definition and the research process including quantitative and qualitative research, survey research, observation methods and experimental research methods. The course also covers data analytics, including advanced descriptive and predictive analysis models, involving inferential statistics, regression and correlation analyses and non-parametric methods. The course emphasizes problem solving using advanced quantitative software tools such as SPSS, Minitab, SAS, Matlab, Python and R. Students will be required to work on business research case studies and projects involving the collection and/or treatment of large data sets, as well as to develop research constructs and hypotheses and to write and present reports documenting research findings and recommendations.

MGMT 685. Operations Research and Decision Making. 3 credits, 3 contact hours.
Introduces the concepts of objective functions and constraints, concepts of value and utilities, optimization algorithms, networks, and game theory. Covers models of linear programming, inventory systems, multi-criteria decision-making, project management, and transportation planning. Topics discussed from probabilistic and deterministic approaches.

MGMT 686. Corporate Governance. 3 credits, 3 contact hours.
Provides inter-disciplinary perspectives on the rights, responsibilities and roles of the corporation in society. Focuses on the relationships among owners, managers, and other stakeholders. Analyzes corporate control mechanisms including ownership concentration, executive compensation, boards of directors, and the market for corporate control. Includes changes in political/legal/regulatory institutional environments over time, and develops a comparative international framework.

MGMT 688. Information Technology, Business and the Law. 3 credits, 3 contact hours.
Includes historical and constitutional foundations, crimes, and torts in cyberspace, virtual property (patents online, copyrights in digital information, trade secrets in cyberspace, and cybermarks), electronic commerce contracting, electronic commerce, electronic money and the law, and information technology and online infringement of rights of intellectual property.

MGMT 691. Legal and Ethical Issues in a Digital World. 3 credits, 3 contact hours.
Explores the legal and ethical responsibilities of managers. Analyzes the extent to which shareholders should be allowed to exercise their legitimate economic, legal, and ethical claims on corporate managers; the extent of regulation of a particular industry, individual rights of the employee and various corporate interests, corporate responsibility to consumers, society, conservation of natural resources and the environment, and global intellectual property rights.
MGMT 692. Strategic Management. 3 credits, 3 contact hours.
Prerequisites: Completion of 18 credits in the MBA curriculum including ACCT 615, FIN 600, HRM 601 and MRKT 620. This course focuses on the Strategic Integration of the different functional areas in management providing a top management perspective to the role of chief executive in an organization. An integral part of this course is to understand the roles of both competitive environment and the organization’s experience in developing corporate strategy to gain competitive advantage. We also emphasize ethical issues related to corporate strategies.

MGMT 699. ST in Management. 3 credits, 3 contact hours.

MGMT 710. Forecasting Methods for Business Decisions. 3 credits, 3 contact hours.
Covers the application of forecasting techniques to various phases of business and management decision making. Topics include forecasting with cyclical and seasonal series; Box-Jenkins modeling; regression modeling; use of stochastic models; and the linkage of management forecasts to macro forecasts. Actual models in use will be reviewed and evaluated.

MGMT 725. Independent Study. 3 credits, 3 contact hours.
This is a self guided independent course where the student works closely with a faculty member to study selected topics in management.

MGMT 726. Independent Study II. 3 credits, 3 contact hours.

MGMT 735. Deep Learning in Business. 3 credits, 3 contact hours.
Prerequisites: FIN 620 or instructor's approval or advanced graduate standing. This course provides an in-depth study of data mining and machine learning, with a focus on business applications. As the business market becomes increasingly complicated and depends on data, analysts and fund managers must make better and faster decisions using available data. Data mining and machine learning make use of powerful tools and techniques to unlock the value inherent in available market data and routinely help managers uncover hidden patterns and correlations in data and gain insights to improve the decision-making in the market. The course is practice-oriented and develops the required skills to apply machine learning in the stock market and other business areas. Students will better understand the techniques for data mining and machine learning as well as gain hands-on knowledge of the contemporary analysis tools of data mining and machine learning. The course will enable students to better understand the major concepts, approaches, and techniques for data mining and machine learning. The included learning material provides adequate technical depth for students to know how data-driven technologies work. Coverage includes data mining and machine learning processes, methods, and techniques; the role and management of data; tools and metrics; and integration with Big Data.

MGMT 740. Innovation & Entrepreneurship. 3 credits, 3 contact hours.
Prerequisites: MGMT 640 (or equivalent) or permission of instructor. This course is designed to introduce the Ph.D. students to the extensive literature in innovation and entrepreneurship. The course builds on the early works by economists and sociologists, and progresses towards the most recent research. By discussing the early works and latest research, the course explores extant knowledge in Innovation and Entrepreneurship, the boundary conditions of the theories in Innovation and Entrepreneurship, and the possible avenues for future research.

MGMT 782. Business Research Methods II. 3 credits, 3 contact hours.

MIS 620. E-Commerce Technologies. 3 credits, 3 contact hours.
Intended to develop a basic understanding of the Internet and its underlying technologies as a foundation for e-commerce with an introduction to e-commerce applications. Addresses the technology for MIS managers to effectively manage the launching of e-commerce infrastructures. Covers data communication and networking, EDI, intranets and extranets, bandwidth and security issues.

MIS 625. Management Strategies for E-Commerce. 3 credits, 3 contact hours.
Prepares students for effective management of internet-based businesses and electronic commerce and oversight of global business activities in an increasingly competitive environment. Introduces Internet concepts and infrastructure. Examines current and proposed Internet services forming the basis of Internet commerce. Covers corporate intranets and extranets and their applications to corporate computing, seamless e-commerce, and other emerging services such as VPN. Issues are discussed, with special emphasis on security.

MIS 645. Information Systems Principles. 3 credits, 3 contact hours.
The management of information processing resources, including: role of information processing, estimates of personnel resources and budgets, integration of corporate and MIS plans, organizational alternatives for MIS departments and support staffs, management of computer operations, equipment and general software acquisitions, intermediate and long-range MIS plans, integration of personal computers, minicomputers, and mainframes, and security and controls.

MIS 648. Decision Support Systems for Managers. 3 credits, 3 contact hours.
Prerequisite: MIS 645. Covers the use of decision support systems to support management decision making in a real world environment. Topics include: establishing and measuring decision support systems success criteria, software tools, model management, elements of artificial intelligence, and statistics. Justification, design, and use of decision support systems.

MIS 680. Management Science. 3 credits, 3 contact hours.
Introduction to the methodology of decision making applying the techniques of operations research and system analysis to managerial problems. Introduction to the concept of objective functions and constraints, concepts of value and utilities, optimization algorithms, networks and game theories. Elementary mathematical model linear production systems, inventory systems, multi-criteria decision making, project management and transportation planning. Topics will be discussed from the deterministic as well as stochastic points of view.
MRKT 620. Global Marketing Management. 3 credits, 3 contact hours.
Designed to help prepare students to become effective managers overseeing global market activities in an increasingly competitive environment. It will examine the impact of global economic, financial, cultural, political, and legal factors on the development of marketing programs and on the marketing/R&D and marketing/manufacturing interfaces.

MRKT 630. Models Of Consumer Behavior. 3 credits, 3 contact hours.
Provides students with a framework, the buyer decision process model, to analyze how and why products and services are selected and purchased. Impact of consumer decisions on the marketing strategies of organizations is emphasized. Focus on quality management of the marketing function to determine customer needs; provide the appropriate products, prices, distribution systems, and promotion messages; and measure customer satisfaction after purchase and use.

MRKT 631. Marketing Research. 3 credits, 3 contact hours.
Provides a research and managerial perspective on advanced marketing research methods and analytical techniques. Topics include problem formulation, research design, data collection and analysis, managerial report writing. Students will acquire experience by developing and executing their own marketing research project using sophisticated computerized analytical techniques.

MRKT 632. Marketing Strategy for Technology-Based Organizations. 3 credits, 3 contact hours.
Prerequisite: MRKT 620. As technology continuously transforms products and business models and provides new competitive advantages that firms can capitalize on, this course introduces the marketing challenges of firms in the hyper-competitive environment. It provides students with an overview of marketing strategies: pricing, product, promotion, and place. Ethical issues are discussed as well as other course concepts using case analysis, videos, class discussion, and term projects.

MRKT 636. Design and Development of High Technology Products. 3 credits, 3 contact hours.
Focus on analysis of needs of buyers and consumers for specific product characteristics and the development of appropriate products to satisfy such needs. The process of identifying new product opportunities, screening new product concepts, product testing and test marketing, product positioning, and development of the marketing strategy and implementation plans.

MRKT 637. Marketing Communications and Promotions. 3 credits, 3 contact hours.
Communications, sales promotion, and public relations are examined from the perspective of the manager. Topics include advertising and promotion research, media selection, creative production of electronic and print materials, and the budgeting and control of their use. Field research will be stressed as part of the course project requirement.

MRKT 638. Sales Management for Technical Professionals. 3 credits, 3 contact hours.
Focuses on the promotion and sales of products in the business-to-organization market. All elements of the marketing communications mix are covered according to their importance in that market: selling, sales promotion, trade advertising, and publicity. The latest techniques are reviewed and discussed using case histories and student projects. Issues of global competitiveness, high technology products, and the role of total quality management in marketing communications are emphasized.

MRKT 642. International Marketing Management. 3 credits, 3 contact hours.
Focus on multinational enterprise in the global market, emphasizing special managerial skills required to adapt sound marketing practices to foreign cultural, political, economic and financial environments. Foreign opportunities and marketing strategies are examined. Students prepare a marketing plan for entry into an international market after conducting appropriate research.

MRKT 645. Digital Marketing Strategy. 3 credits, 3 contact hours.
Introduction to the use of the Internet and electronic commerce in the development of marketing strategy. Examines the characteristics of electronic markets, the use of Internet for data collection and market research, the Internet as a communication and distribution medium, and the development of Internet-based marketing strategies.

MRKT 655. Sales Process and Analytics. 3 credits, 3 contact hours.
The course focuses on the dynamic field of sales management, and specifically the field of Business-to-Business (B2B) sales. During this course, students will see the most distinctive characteristics of the B2B environment, in contrast with the Business-to-Consumer (B2C) one (typically the focus of marketing degrees and certificates). Particularly, students will learn the importance of relationship sales within B2B. The course also covers the different types of selling, emphasizing the most relevant types in B2B selling, such as value and solution selling.
MRKT 725. Independent Study. 3 credits, 3 contact hours.
This is a self guided independent course where the student works closely with a faculty member to study selected topics in marketing.

MRKT 753. Marketing Science. 3 credits, 3 contact hours.
Prerequisite: MRKT 631. Emphasizes the quantitative model building approach to complex problems of marketing decision making. Utilizes principles of quantitative decision making to understand large amounts of data to lead to improvements in marketing effectiveness. Such areas of marketing as buyer behavior, pricing, promotion, advertising, sales force management, and new product planning will be analyzed.

MRKT 766. Seminar in Marketing Analytics. 3 credits, 3 contact hours.
Requires a background in graduate level business and computer programming, or permission of the Ph.D. in Business Data Science program director. This is a seminar course designed to introduce PhD students to the most relevant literature in Marketing Analytics. The series of seminars covers a wide variety of quantitative metrics and models to improve marketing decision making in both offline and online settings. Through discussions of the existing literature, the course will challenge students to review the advanced topics in the literature at the cross section of marketing (including but not limited to marketing science, consumer behaviors on social networks, digital marketing and data science) to foster critical thinking among doctoral students, and to explore new avenues for research in Marketing Analytics.

Management

Master of Business Administration in Management of Technology
NJIT’s MBA in the Management of Technology is designed to prepare a new generation of technology savvy business leaders. The curriculum integrates fundamental business knowledge with applications of technology to business to prepare students to think strategically about business and technology. The program is built upon four themes that are transforming business:

1. the transition to a knowledge based economy;
2. the emergence of the digital firm;
3. the globalization of business; and
4. innovation as the primary source of competitive advantage.

Concentration areas are offered in Management Information Systems, Marketing, and Finance.

Admission Requirements
Applicants to the MBA must submit complete transcripts of all undergraduate work and scores on the Graduate Management Admissions Test (GMAT). The GMAT is required of all applicants except those holding master’s or doctoral degrees from an accredited U.S. university. Up to nine credits of graduate work may be transferred from another school, provided that they are not counted towards a terminal degree at that school.

MBA Pre-Qualifying Requirements: Students are expected to demonstrate competency in the area of accounting, finance, quantitative methods, information systems and economics. Depending on the applicant’s undergraduate degree program, all or part of the pre-qualifier requirements can be met with prior undergraduate course work. Applicants who do not meet pre-qualifying requirements will be required to complete a bridge course.

Master of Science in Management
The Master of Science in Management is designed to allow students to build specialized knowledge in one of four concentration areas: Management Information Systems, Organization Management, Management of Technology, and Finance. Specialized knowledge is augmented with a 15 credit management core that provides the general knowledge needed to manage technical and specialized units.

Admission Requirements
Applicants to the MSM must submit complete transcripts of all undergraduate work and scores on the Graduate Management Admissions Test (GMAT). The GMAT is required of all applicants except those holding master’s or doctoral degrees from an accredited U.S. university. Up to nine credits of graduate work may be transferred from another school, provided that they are not counted towards a terminal degree at that school.

MSM Pre-Qualifying Requirements: Students are expected to demonstrate competency in the area of accounting, finance, quantitative methods, information systems and economics. Depending on the applicant’s undergraduate degree program, all or part of the pre-qualifier requirements can be met with prior undergraduate course work. Applicants who do not meet pre-qualifying requirements will be required to complete a bridge course.

NJIT Faculty
A
Anandarajan, Asokan, Professor

B
Bandera, Cesar, Associate Professor
Bonitsis, Theologos H., Associate Professor

C
Casal, Jose C., Senior University Lecturer
Caudill, Reggie, Professor Emeritus
Cavaleiro, Marta Sofia Pimentel, Senior University Lecturer
Chakrabarti, Alok K., Distinguished Professor Emeritus
Chang, Ai Chih, Assistant Professor
Chen, Yi, Professor
Chou, Porchiung B., Senior University Lecturer
Cordero, Rene, Associate Professor Emeritus

E
Egbelu, Pius J., Distinguished Professor
Ehrlich, Michael A., Associate Professor

F
Fjermestad, Jerry L, Professor
Fox, Wayne, Senior University Lecturer
Fresneda Fernandez, Jorge, Assistant Professor

G
Gopalakrishnan, Shanthi, Professor

K
Kudyba, Stephan P., Associate Professor

L
Lawrence, Kenneth, D., Professor

M
Mehta, Rajiv, Professor
Micale, Joseph, Assistant Professor

R
Rotter, Naomi G., Professor Emeritus
Roy, Raja, Assistant Professor
Rudna, Olena, Senior University Lecturer

S
Schachter, Hindy L., Professor
Shi, Junmin, Associate Professor
Somers, Mark, Professor
Sylla, Cheickna, Professor
T
Tamke, William, Senior University Lecturer
Tao, Xinyuan, Assistant Professor
Taylor, Ming, Assistant Professor
Thomas, Ellen J., Associate Professor
Tukel, Oya, Professor

U
Uddin, Ajim, Assistant Professor

W
Wang, Jinghua, Assistant Professor

Y
Yu, Dantong, Associate Professor

Z
Zhang, Haisu, Associate Professor
Zhang, Xi, University Lecturer

Programs

- Management - M.S. (p. 606)
- Management of Technology - M.B.A. (p. 600)

Business Data Science - Ph.D. (p. 610)

Programs

- Business Analytics (p. 595)
- Finance for Managers (p. 596)
- IT Sales & Analytics (p. 599)
- Management Essentials (p. 602)
- Management of Technology (p. 604)
- Innovation and Entrepreneurship (p. 598)
- Management of Technology (p. 604)
- Management Information Systems (p. 603)
- Marketing (p. 605)
- Mini-nba (p. 608)

NJIT Courses

MGMT 501. Management Foundations. 3 credits, 3 contact hours.
This course provides foundation knowledge for MSM and MBA students whose undergraduate coursework does not include coursework in accounting and finance. It therefore, serves as a pre-qualifier for the MSM and MBA programs.

MGMT 590. Coop Work Experience I. 1 credit, 1 contact hour.

MGMT 591. Coop Work Experience II. 1 credit, 1 contact hour.

MGMT 592. Coop Work Experience III. 1 credit, 1 contact hour.

MGMT 593. Coop Work Experience IV. 0 credits, 0 contact hours.
Prerequisites: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.
MGMT 610. Foundations of Management in Organizations. 3 credits, 3 contact hours.
Presented during the residence week for the Executive Program. Includes management accounting, managerial economics, statistics, operations research, marketing, MIS, and finance.

MGMT 620. Management of Technology. 3 credits, 3 contact hours.
This course explores technology as a main component of an organizational entity. The generation, development, and implementation of technology are outlined. The influence of technology on global competitiveness is also discussed.

MGMT 625. Distribution Logistics. 3 credits, 3 contact hours.
This course examines distribution logistics emphasizing techniques used to optimize corporate profit and customer service; transportation modes; inventory policies; warehousing and order processing; and the best logistics gross margin.

MGMT 630. Decision Analysis. 3 credits, 3 contact hours.
Introduction to the methodology of decision analysis using computer based techniques and systems analysis. Introduces concepts of modeling, probability, and choice. Addresses the philosophy and detailed methods involved in decision analysis. Methods are applied to address routine and special business decisions.

MGMT 635. Data Mining and Analysis. 3 credits, 3 contact hours.
This course provides an introduction to data mining with an emphasis on large scale databases as a source of knowledge generation and competitive advantage. Specific topics include: framing research questions; data modeling; inferential data mining techniques; and evaluation and deployment of data mining systems.

MGMT 640. New Venture Management. 3 credits, 3 contact hours.
This course is for the student who is considering starting or managing a new business. The course combines classroom instruction in business management and a term project involving the analysis of a business case study. The course is designed to build upon and integrate the student’s previously acquired business knowledge and skills into an understanding of how to start and run a new business.

MGMT 641. Global Project Management. 3 credits, 3 contact hours.
The course reviews key elements of project management frameworks with a particular focus on global projects, which include people from various organizations working in different countries across the world, both face-to-face and virtually. Such projects vary in complexity based on the number of organizations, locations, cultures, languages and time-zones involved. It discusses people, technology and processes relevant to managing global projects and virtual teamwork.

MGMT 645. New Venture Finance. 3 credits, 3 contact hours.
This course is designed to provide students with an understanding of the problems and opportunities posed by financing and growing a technology-based business. Students will study financial conditions of the new businesses and examine the effect of growth upon cash flow while exploring optimal sources of capital.

MGMT 648. Distribution Channel Management. 3 credits, 3 contact hours.
Prerequisite: MRKT 330 Utilizing a strategic perspective, this course augments the understanding of how a firm can effectively manage the distribution system or network of alliances among agents, wholesalers, distributors and retailers to attain a sustainable competitive advantage. This course focuses on developing and implementing strategies for planning, organizing and controlling the various external institutions, agencies as well as in-house units that ultimately deliver products and services to consumer and business-to-business markets. In addition to electronic channels, the topics studied in the distribution process include channel strategy, channel design, channel management, as well as the selection, motivation, and performance assessment of resellers.

MGMT 649. Convention, Creativity and Innovation. 3 credits, 3 contact hours.
This course explores the role of creativity and disruptive thinking in relation to the development of new products, processes, technologies and industries. It begins with a focus on the behavioral aspects of creativity and disruptive thinking and includes exercises and tools to challenge conventional thinking. Disruption is then studied through a strategic lens with an emphasis on understanding the conditions under which radical change is appropriate and when it is not.

MGMT 650. Knowledge Management. 3 credits, 3 contact hours.
Students will learn the principles of the knowledge management process. At the end of the course, students will have a comprehensive framework for designing and implementing a successful knowledge management effort and be able to assist in the development of knowledge.

MGMT 654. Management Consulting. 3 credits, 3 contact hours.
Management Consulting is a course that examines the business of management consulting beginning with the use of management consultants and the basic economics of their business. It then builds on this initial foundation to explore in depth the development of strategic consulting that spans a wide range of topics, businesses and functional organization issues in both a domestic and international economic and institutional context.

MGMT 655. Global Competitiveness. 3 credits, 3 contact hours.
Improves knowledge of the issues involved in international business operations and their management. Develops skills in selecting key issues and familiarization with emerging methods for organizing and managing international operations. Emphasis will be on companies with technological, product, production, or design focus.
MGMT 656. Public Policy and Business. 3 credits, 3 contact hours.
This course explores the relationship between business and government with a focus on regulatory policies and public/private partnerships. Areas of focus include sustainability and environmental regulations, trade policies and their influence on international commerce, public policy concerning the Internet and emerging digital technologies, patent rights, and opportunities for public/private partnerships with regard to fostering economic development.

MGMT 660. Managing Supply and Value Chains. 3 credits, 3 contact hours.
This course is focused on the flow of products, information and revenue across supply and value chains in organizations. Special emphasis is placed on emerging e-business models and their effects on supply and value chains, and customer relationship management. The course also includes a survey of relevant information technologies.

MGMT 670. International Business. 3 credits, 3 contact hours.
Covers the scope and the essential characteristics of international business in the world economy; MNEs as economic, political, and social institutions; national and international control; functional management and operations; country evaluation; and regional market analysis.

MGMT 680. Entrepreneurial Strategy. 3 credits, 3 contact hours.
For the student who is considering starting and/or managing a new business. Integrates knowledge of the different aspects of business that have been learned as separate subjects. Provides an understanding of the decisions that guide the overall operations of an entrepreneurial business organization and how it interacts with its markets, competitors, and suppliers. Combines classroom instruction in business strategy along with case analysis of small firms. Should be taken in the last semester of the program, unless prior arrangement has been made with the instructor or the graduate advisor. Taken in the final semester only.

MGMT 682. Business Research Methods I. 3 credits, 3 contact hours.
A comprehensive introduction to business research methods covering the fundamental concepts of problem definition and the research process including quantitative and qualitative research, survey research, observation methods and experimental research methods. The course also covers data analytics, including advanced descriptive and predictive analysis models, involving inferential statistics, regression and correlation analyses and non-parametric methods. The course emphasizes problem solving using advanced quantitative software tools such as SPSS, Minitab, SAS, Matlab, Python and R. Students will be required to work on business research case studies and projects involving the collection and/or treatment of large data sets, as well as to develop research constructs and hypotheses and to write and present reports documenting research findings and recommendations.

MGMT 685. Operations Research and Decision Making. 3 credits, 3 contact hours.
Introduces the concepts of objective functions and constraints, concepts of value and utilities, optimization algorithms, networks, and game theory. Covers models of linear programming, inventory systems, multi-criteria decision-making, project management, and transportation planning. Topics discussed from probabilistic and deterministic approaches.

MGMT 686. Corporate Governance. 3 credits, 3 contact hours.
Presents inter-disciplinary perspectives on the rights, responsibilities and roles of the corporation in society. Focuses on the relationships among owners, managers, and other stakeholders. Analyzes corporate control mechanisms including ownership concentration, executive compensation, boards of directors, and the market for corporate control. Includes changes in political/legal/regulatory institutional environments over time, and develops a comparative international framework.

MGMT 688. Information Technology, Business and the Law. 3 credits, 3 contact hours.
Includes historical and constitutional foundations, crimes, and torts in cyberspace, virtual property (patents online, copyrights in digital information, trade secrets in cyberspace, and cybermarks), electronic commerce contracting, electronic commerce, electronic money and the law, and information technology and online infringement of rights of intellectual property.

MGMT 691. Legal and Ethical Issues in a Digital World. 3 credits, 3 contact hours.
Explores the legal and ethical responsibilities of managers. Analyzes the extent to which shareholders should be allowed to exercise their legitimate economic, legal, and ethical claims on corporate managers; the extent of regulation of a particular industry, individual rights of the employee and various corporate interests, corporate responsibility to consumers, society, conservation of natural resources and the environment, and global intellectual property rights.

MGMT 692. Strategic Management. 3 credits, 3 contact hours.
Prerequisites: Completion of 18 credits in the MBA curriculum including ACCT 615, FIN 600, HRM 601 and MRKT 620. This course focuses on the Strategic Integration of the different functional areas in management providing a top management perspective to the role of chief executive in an organization. An integral part of this course is to understand the roles of both competitive environment and the organization’s experience in developing corporate strategy to gain competitive advantage. We also emphasize ethical issues related to corporate strategies.

MGMT 699. ST in Management. 3 credits, 3 contact hours.
MGMT 710. Forecasting Methods for Business Decisions. 3 credits, 3 contact hours.
Covers the application of forecasting techniques to various phases of business and management decision making. Topics include forecasting with cyclical and seasonal series; Box-Jenkins modeling; regression modeling; use of stochastic models; and the linkage of management forecasts to macro forecasts. Actual models in use will be reviewed and evaluated.

MGMT 725. Independent Study. 3 credits, 3 contact hours.
This is a self guided independent course where the student works closely with a faculty member to study selected topics in management.
MGMT 726. Independent Study II. 3 credits, 3 contact hours.

MGMT 735. Deep Learning in Business. 3 credits, 3 contact hours.
Prerequisites: FIN 620 or instructor’s approval or advanced graduate standing. This course provides an in-depth study of data mining and machine learning, with a focus on business applications. As the business market becomes increasingly complicated and depends on data, analysts and fund managers must make better and faster decisions using available data. Data mining and machine learning make use of powerful tools and techniques to unlock the value inherent in available market data and routinely help managers uncover hidden patterns and correlations in data and gain insights to improve the decision-making in the market. The course is practice-oriented and develops the required skills to apply machine learning in the stock market and other business areas. Students will better understand the techniques for data mining and machine learning as well as gain hands-on knowledge of the contemporary analysis tools of data mining and machine learning. The course will enable students to better understand the major concepts, approaches, and techniques for data mining and machine learning. The included learning material provides adequate technical depth for students to know how data-driven technologies work. Coverage includes data mining and machine learning processes, methods, and techniques; the role and management of data; tools and metrics; and integration with Big Data.

MGMT 740. Innovation & Entrepreneurship. 3 credits, 3 contact hours.
Prerequisites: MGMT 640 (or equivalent) or permission of instructor. This course is designed to introduce the Ph.D. students to the extensive literature in innovation and entrepreneurship. The course builds on the early works by economists and sociologists, and progresses towards the most recent research. By discussing the early works and latest research, the course explores extant knowledge in Innovation and Entrepreneurship, the boundary conditions of the theories in Innovation and Entrepreneurship, and the possible avenues for future research.

MGMT 782. Business Research Methods II. 3 credits, 3 contact hours.

Business Analytics

From the NJIT Martin Tuchman School of Management, the Graduate Certificate in Business Analytics will enable business-oriented students to strengthen their data analytics skills. A business analyst is a key function of any business planning to develop itself using performance and data insights. By combining statistics and computing, a business analyst will be able to build models to drive decision making.

Who would be suited to take this program?

Students aspiring to strengthen their analytical competencies with regards to computer-based investigative modelling in the business world.

What will I learn?

- **Information Systems Principles** – The management of information processing resources, including: role of information processing, estimates of personnel resources and budgets, integration of corporate and MIS plans, organizational alternatives for MIS departments and support staffs, management of computer operations, equipment and general software acquisitions, intermediate and long-range MIS plans, integration of personal computers, minicomputers, and mainframes, and security and controls.

- **Decision Support Systems for Managers** - Decision support systems to support management decision making in a real world environment. Establishing and measuring decision support systems success criteria, software tools, model management, elements of artificial intelligence, and statistics. Justification, design, and use of decision support systems.

- **Decision Analysis** - Introduction to the methodology of decision analysis using computer based techniques and systems analysis. Introduces concepts of modeling, probability, and choice. Addresses the philosophy and detailed methods involved in decision analysis. Methods are applied to address routine and special business decisions.

- **Data Mining and Analysis** - Introduction to data mining with an emphasis on large scale databases as a source of knowledge generation and competitive advantage. Specific topics include: framing research questions; data modeling; inferential data mining techniques; and evaluation and deployment of data mining systems.

- **Data Driven Financial Modeling** – Financial modeling driven by financial data is of critical importance to asset allocation, pricing, trading strategies, and risk management. By introducing basic and current financial modeling techniques, this course equips students with new analytic and modeling tools (e.g., spreadsheet modeling) to tackle rapidly changing and dynamic financial markets. In particular, this course delivers modeling frameworks such as regression analysis, forecasting, Monte-Carlo simulation and optimization; and it illustrates how to apply these frameworks in financial contexts such as portfolio management, term-structure estimation, capital budgeting, risk measurement, risk analysis in discounted cash flow models, and pricing of European, American, exotic, and real options.

- **Managing Supply and Value Chains** – the flow of products, information and revenue across supply and value chains in organizations. Special emphasis is placed on emerging e-business models and their effects on supply and value chains, and customer relationship management.
- **Global Project Management** - Key elements of project management frameworks with a particular focus on global projects, which include people from various organizations working in different countries across the world, both face-to-face and virtually. Such projects vary in complexity based on the number of organizations, locations, cultures, languages and time-zones involved.

Why study Business Analytics at NJIT?

NJIT's Martin Tuchman School of Management is highly unique among the country's polytechnic universities with its technological flare among business savvy experts. Due to this, for example, IBM has hosted accredited instruction at the school's premises in Data Science Workshops at the NJIT MTSM since 2017 to this day. The MTSM MS in Management is a STEM-eligible Master's degree program, a vital nod in today's age of businesses driven by technology and analytics. In addition, NJIT's MS in Data Science from the Ying Wu College of Computing has become one of the most popular programs at the school, into which a student may transition into by starting in this program.

Into what industries might holders of this program find employment?

- Business Analytics
- Management
- Data Analytics
- Business Consultant

Prerequisites

Applicants should have a bachelor's degree from an accredited institution with some undergraduate background in a related field, such as business or MIS. Depending on the electives chosen, higher levels of math or computing may be warranted.

Related Degree Programs

All courses in this program are related to the NJIT MS in Management or MBA, and partially toward the MS in Data Science.

Faculty Advisors: Zhipeng (Alan) Yan and Dantong Yu

What are the Required and Elective Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
<tr>
<td>IS 677</td>
<td>Information System Principles</td>
<td>3</td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MATH 661</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>FIN 616</td>
<td>Data Driven Financial Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 660</td>
<td>Managing Supply and Value Chains</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 641</td>
<td>Global Project Management</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Finance for Managers

The courses use shared business cases and a shared knowledge base that are accessible throughout the certificate program. The common cases and knowledge base allow students to review material from courses that they have completed and provide an integrated perspective to business problems. Credential relates in its entirety to either NJIT MBA or NJIT MS in Management.

Who would be suited to take this program?

This 12 credit graduate certificate was created to offer managers and professionals core business knowledge in the areas of corporate and international finance. It is designed to provide the skill and tools needed to analyze business models and to apply core business concepts to tactical and strategic problems. This includes advanced skills and tools to analyze business conditions and tactically solve problems and Finance and Management Accounting.

What will I learn?
• Management accounting builds on traditional concepts of managerial accounting (break-even analysis, alternate choice decisions, profit planning, and transfer pricing) and develops the skills that an executive needs in strategic cost analysis.

• Financial and economic environment discusses issues related to interest rates, extraordinary rates of inflation, fiscal and monetary policy, and regulatory policy are integrated with market structure, cost and production technology, pricing policy, cash flow, risk-return opportunities, capital budgeting techniques, and decision making in companies.

• Financial management of assets, liabilities and equity in a domestic framework. Includes: goals of the firm, time value of money, financial statement analysis, financial ratio analysis, financial planning and forecasting, capital budgeting, cost of capital, capital structure, dividend policy, working capital management, mergers and acquisitions, and pricing of options.

• International finance examines financing of exports and imports, managing multi-currency working capital, international aspects of capital budgeting, cost of capital and their relationship with political, economic, and financial risk. Explores financial innovations and their impact on the firm's financial strategy and performance of overall productivity. Discusses the tax consequences and principal-subsidiary relationship of the multinational enterprise. Introduces international money and capital markets, instruments, derivatives, and institutions.

• Mergers, acquisitions, and restructuring focuses on identifying and evaluating potential and international companies for mergers and acquisitions as well as structuring of deals. The financial, social and managerial implications of these changes in corporate ownership will be examined. Topics are: financing M&As, deal structuring, tax implications, valuation, broker/finder agreements, merger negotiations, and post-merger integration.

Why study Finance for Managers at NJIT?

The graduate certificate’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It is possible to earn this certificate entirely through online courses, so you can more easily fit it into your busy life. And whether you take courses online or on campus you’ll learn from NJIT’s distinguished professors and instructors from the School of Management.

Prerequisites

Completion of a Bachelor’s degree with a overall cumulative Grade Point Average of 2.8 or higher on a 4.0 scale.

Related Degree Programs

All credits for this certificate apply to the NJIT MBA (http://catalog.njit.edu/graduate/management/management/technology-mba/)

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/finance-managers-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>FIN 624</td>
<td>Corporate Finance II</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 627</td>
<td>International Finance</td>
</tr>
<tr>
<td>FIN 634</td>
<td>Mergers, Acquisitions, and Restructuring</td>
</tr>
</tbody>
</table>

FINANCIAL TECHNOLOGY

(12 credits)

FinTech (Financial Technology) is at the intersection of technology and financial services. FinTech has recently helped the finance industry make big strides by taking advantage of evolving technologies. Offered by the Martin Tuchman School of Management, the Graduate Certificate in Financial Technology is suitable for students interested in corporate finance logistics who want to acquire knowledge for building technical applications to enhance or create innovative processes in finance.

Who would be suited to take this program?

There are primarily two types of people that would benefit the most from this program: technology-oriented managers who want to understand the underpinnings of applications in the finance industry and application developers who want to embrace the financial world.

Required course:
Innovation and Enterprenurship

Select 4 from the following:

HRM 630: Managing Technological and Organizational Change - Managing planned and unplanned change in organizations. The change process is studied in relation to technology-driven changes in the workplace and to other environmental factors. Focuses on planned and unplanned systemic change, such as downsizing, re-engineering, mergers, and acquisitions.

MGMT 620: Management of Technology - Technology as a main component of an organizational entity. Generation, development, and implementation of technology are outlined. Influence of technology on global competitiveness is also discussed.

MGMT 640: New Venture Management - Classroom instruction in business management and a term project involving the analysis of a business case. The course is designed to build upon and integrate the student's previously acquired business knowledge and skills into an understanding of how to start and run a new business.

MGMT 645: New Venture Finance - Understanding of the problems and opportunities posed by the financing of a new and growing technology-based business. Students will study the financial conditions of new businesses and examine the effect of growth upon cash flow while exploring optimal sources of capital.

MGMT 691: Legal and Ethical Issues - Explores the legal and ethical responsibilities of managers. Analyzes extent to which shareholders should be allowed to exercise their legitimate economic, legal, and ethical claims on corporate managers; extent of regulation of a particular industry, individual
rights of the employee and various corporate interests, and corporate responsibility to consumers, society, and conservation of natural resources and the environment.

MRKT 631: Marketing Research - Research and managerial perspective on advanced marketing research methods and analytical techniques. Topics include problem formulation, research design, data collection and analysis, managerial report writing. Students will acquire experience by developing and executing their own marketing research project using sophisticated computerized analytical techniques.

MRKT 636: Design and Development of Technology Products - Focus on analysis of needs of buyers and consumers for specific product characteristics and the development of appropriate products to satisfy such needs. The process of identifying new product opportunities, screening new product concepts, product testing and test marketing, product positioning, and development of the marketing strategy and implementation plans.

MRKT 645: Digital Marketing Strategy - Introduction to the use of the Internet and electronic commerce in the development of marketing strategy. Examines the characteristics of electronic markets, the use of Internet for data collection and market research, the Internet as a communication and distribution medium, and the development of Internet-based marketing strategies.

IT Sales & Analytics

IT Sales & Analytics Certificate

The graduate certificate in IT Sales & Analytics will help to prepare students with technology backgrounds into careers with effective sales and management roles within technology companies. The sequence of courses in this certificate best represents the skills needed to be effective in a modern IT sales environment.

Who would be suited to take this program?

Students and professionals interested in learning about the sales process, analyzing data, and bringing value to organizations through information technology.

What are the prerequisites?

Applicants should have a bachelor's degree from an accredited institution.

NJIT's standard admission requirements apply to this graduate certificate.

What will I learn?

This certificate will prepare students with the following skill sets:

- Sales Process
- Legal, ethical, regulatory, and compliance
- Sales Analytics: Having a fundamental understanding of how to develop and interpret data is critical to the sales process
- Sales Management
- IT Service Management: Understanding of the IT service cycle and articulating the value of a product to an organization
- Business to Business Sales

Why IT Sales & Analytics?

Focused on connecting consumers with innovative tech products, IT sales is all about identifying the customers who can benefit from a particular solution and showing them how that solution can meet their needs. Encompassing hardware (computers, servers, networking devices), software (operating systems), and services (applications, big data, and cloud computing) technology sales can vary greatly depending on the particular company you work for and the type of sales you do. Strong technical knowledge of the product and industry is important to identify the customer base that would benefit.

Today’s market has high demand for technology products. With SaaS (software-as-a-service) products becoming widespread in the industry the need for high quality salespeople with STEM backgrounds has risen. This skill set includes not just the ability to sell a product, but also the ability to articulate the value of the product in the context of an organization. This requires fundamental understanding of organizations life cycle, culture, capacity, and industry to show how a product can provide that value.

The world of IT sales is ever-expanding one that is well suited for those with the technical aptitude are willing to work in a rapidly changing world and who are financially motivated. The technology industry has risen in prominence in recent years, with sectors like FinTech, EdTech, and others raising the profile of tech businesses and creating a new demand for tech roles.

This has been prominent across the tech market, particularly in tech sales, where a rising number of products and increased competition has meant a greater need for highly skilled salespeople to get products in front of the right people at the right time.
Into what industries might holders of this program find employment?

Students who complete the certificate would be suited to find employment in various roles in the field of sales. Sample job titles include:

- Technical Sales Manager
- Account Manager
- Direct technology salesperson
- Technical Sales Engineer
- National Technical Sales Director

Related Degree Programs

Credits from this graduate certificate can be applied toward the Master of Business Administration program.

COURSE DESCRIPTIONS

IS 678: IT Service Management

This course introduces IT service management, a set of specialized organizational capabilities for enabling value for customers in the form of IT services. ITIL, a globally recognized framework of best practices for IT service management is covered in some detail, along with other approaches for IT service management. The course presents ITIL key concepts, the ITIL service value system, the service value chain, the four dimensions of service management, ITIL guiding principles and ITIL management practices. ITIL is presented in the context of a specific organizational services domain.

MGMT 691: Legal and Ethical Issues

Explores the legal and ethical responsibilities of managers. Analyzes extent to which shareholders should be allowed to exercise their legitimate economic, legal, and ethical claims on corporate managers; extent of regulation of a particular industry, individual rights of the employee and various corporate interests, and corporate responsibility to consumers, society, and conservation of natural resources and the environment.

MRKT 638: Sales Management for Technical Professionals

Focuses on the promotion and sales of products in the business-to-organization market. All elements of the marketing communications mix are covered according to their importance in that market: selling, sales promotion, trade advertising, and publicity. The latest techniques are reviewed and discussed using case histories and student projects. Issues of global competitiveness, high technology products, and the role of total quality management in marketing communications are emphasized.

MRKT 655: Sales Process and Analytics

The course focuses on the dynamic field of sales management, and specifically the field of Business-to-Business (B2B) sales. Traditional sales processes tend to either spread effort evenly among all potential sales or misplace the sale effort on deals that will not probably close. As a consequence, salespeople do not focus enough effort on the most promising sales. Opportunity Management techniques are intendent to prevent this by tracking salesforce effort, help focusing on the most promising sales, and adjusting resources accordingly.

What are the Required Courses?

- MGMT 691- Legal and Ethical Issues
- IS 678- IT Service Management
- MRKT 638- Professional Sales and Sales Management
- MRKT 655- Sales Process and Analytics (Recently approved course)

M.B.A. in Management of Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 610</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645 or IS 677</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Global Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 692</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>or MGMT 680</td>
<td>Entrepreneurial Strategy</td>
<td></td>
</tr>
</tbody>
</table>

Module II Elective Core Courses

Select three of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>or MGMT 641</td>
<td>Global Project Management</td>
<td></td>
</tr>
<tr>
<td>HRM 630</td>
<td>Managing Technological and Organizational Change</td>
<td></td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td></td>
</tr>
<tr>
<td>MGMT 640</td>
<td>New Venture Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 654</td>
<td>Management Consulting</td>
<td></td>
</tr>
<tr>
<td>MGMT 670</td>
<td>International Business</td>
<td></td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td></td>
</tr>
</tbody>
</table>

Module III Concentration Courses

Select four courses in one concentration:

- **MIS Concentration Courses**
 - MGMT 630 Decision Analysis
 - MGMT 650 Knowledge Management
 - MGMT 635 Data Mining and Analysis
 - MIS 648 Decision Support Systems for Managers
 - IS 601 Web Systems Development
 - IS 631 Enterprise Database Management
 - IS 663 System Analysis and Design
 - IS 665 Data Analytics for Info System
 - IS 678 IT Service Management
 - IS 684 Business Process Innovation
 - IS 688 Web Mining

- **Finance Concentration Courses**
 - FIN 611 Intro to Topics in Fin Tech
 - FIN 624 Corporate Finance II
 - FIN 626 Financial Investment Institutions
 - FIN 627 International Finance
 - FIN 634 Mergers, Acquisitions, and Restructuring
 - FIN 641 Derivatives Markets
 - FIN 642 Derivatives and Structured Finance
 - FIN 650 Investment Analysis and Portfolio Theory

- **Marketing Concentration Courses**
 - MRKT 631 Marketing Research
 - MRKT 632 Marketing Strategy for Technology-Based Organizations
 - MRKT 636 Design and Development of High Technology Products
 - MRKT 638 Sales Management for Technical Professionals
 - MRKT 645 Digital Marketing Strategy
 - MNE 655 Concurrent Engineering
 - IE 659 Supply Chain Engineering
 - IS 664 Customer Discovery

- **Innovation and Entrepreneurship Concentration Courses**
 - MGMT 620 Management of Technology
 - MGMT 640 New Venture Management
 - MGMT 645 New Venture Finance
 - MGMT 680 Entrepreneurial Strategy
Management Essentials

What will I learn?

- Management Accounting builds on traditional concepts of managerial accounting (break-even analysis, alternate choice decisions, profit planning, and transfer pricing) and develops the skills that an executive needs in strategic cost analysis.
- Corporate Finance introduces concepts and analytical tools to identify and solve financial management problems. This course focuses on how companies invest in real assets and how they raise the money to pay for those assets. The course also examines pricing theory and capital structure.
- Competing in Global Markets examines the impact of global economic, financial, cultural, political, and legal factors on the development of marketing programs and on the marketing/R&D and marketing/manufacturing interfaces.
- Information Systems Principles incorporates the management of information processing resources, including: role of information processing, estimates of personnel resources and budgets, integration of corporate and MIS plans, organizational alternatives for MIS departments and support staffs, management of computer operations, equipment and general software acquisitions, intermediate and long-range MIS plans, integration of personal computers, minicomputers, and mainframes, and security and controls.

Why study Management Essentials at NJIT?

The graduate certificate's directed focus allows you to dig deep into this specific topic, and immediately apply your knowledge. It is possible to earn this certificate entirely through online courses, so you can more easily fit it into your busy life. And whether you take courses online or on campus you'll learn from NJIT's distinguished professors and instructors from the Martin Tuchman School of Management.

Prerequisites

Completion of a Bachelor's degree with an overall cumulative Grade Point Average of 2.8 or higher on a 4.0 scale. GRE or GMAT; minimum score of 500 or equivalent GRE score. Applicants with a minimum GPA of 2.8 from a U.S.-based research institution and candidates with a Master's or Ph.D. degrees from a U.S. or Canada-based accredited program may qualify for a GMAT or GRE waiver.

Related Degree Programs

Gainful Employment Disclosure

Click here (http://www.njit.edu/graduatestudies/sites/graduatestudies/files/gainfulemployment/management-essentials-cert-gainful-employment.html) for the Gainful Employment Disclosure for this program.

This four course module uses shared business cases and a shared knowledge base that are accessible throughout the certificate program, allowing students to review material from courses that they have completed and providing an integrated perspective to business solutions. Course delivery and
material include online lectures accessible over the Internet, threaded discussions, online chat in real time and case analyses as each course has the same user interface, all courses have the same look and feel allowing students to move seamlessly from course to course.

Who is suited for this program?

This 12 credit graduate certificate was created to offer managers and professionals core business knowledge in the areas of finance, marketing, accounting, and management information systems. It is designed to provide the skill and tools needed to analyze business models and to apply core business concepts to tactical and strategic problems. This includes advanced skills and tools to analyze business conditions and tactically solve problems.

What are the Required Courses?

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Competing in Global Markets</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Management Information Systems

Management Information Systems

Into which MS degree will this Graduate Certificate convert?
MBA

In what industries might a holder of this Graduate Certificate find employment?
Information Technology

In what job titles might a holder of this Certificate fit?
Director of IT, CIO, Technology Manager

Is this certificate fully available online (all courses)?
No

Description of certificate program

The courses in the MIS certificate are focused on the strategic value of information in business. They sharpen the strategic focus of the MBA degree by highlighting the role of information management in gaining competitive advantage through improved business process management and enhanced business intelligence systems. Professionals who wish to take a leadership role in the management of information in organizations. MIS managers play a critical role in planning, building and maintaining the information systems that enable the global, networked organization.

Courses in the certificate. Select 4 from the following:

IT 601: Web Systems Development - Open source web development through an intensive hands-on project, applying real-world problem-solving skills to meeting information systems requirements. Students will learn Web development principles, as well as professionally relevant skills including industry standards, conventions, and procedures within large-scale programming projects. Also covered are the communication tools, technologies, and practices that individuals use to coordinate and collaborate within the open source software development community.

IS 631: Enterprise Database Management - Understanding of the issues as well as hands-on experience in managing database systems as an essential organizational resource. Students will obtain a conceptual foundation of database design and explore the implications for organizational database usage. Students also will gain experience with enterprise database management systems, such as Oracle. This course introduces the design and management of enterprise-wide database systems. Topics include: (1) data modeling and database design; (2) database implementation with SQL; (3) database access standards for enterprise database systems; (4) multidimensional databases, online analytic processing (OLAP) and data warehousing, customer relationship management (CRM); and (5) web-based enterprise database systems.

IS 663 Systems Analysis & Design - This course develops the skills necessary to analyze, design and manage the development of effective enterprise-scale information systems solutions incorporating contemporary methods and effective organizational and global project management practices. It focuses on technical business systems analysis and design techniques, and covers key software engineering principles, methods and frameworks, including process models, agile and lean principles, project and risk management, estimation, requirements elicitation and analysis, modeling, system and software architecture, design patterns, and quality systems. Students will actively participate in discussions, review selected
articles, participate in team exercises and collaborate on projects involving analysis and prototyping of applications addressing real-world problems and integrating current and emerging technologies.

IS 665: Data Analytics for Info Systems - A graduate level introduction to data analysis, probability and statistics from an information systems perspective, including many of the techniques that are most relevant to the profession of Data Scientist for business, data and web analytics, as well as current data sets. We will learn and conduct Python, MATLAB and R based manipulation of data. Course topics include the rudiments of probability and random variables, estimation, special distribution and sampling, Markov processes, hypothesis testing, graphics and visualization.

IS 678: IT Service Management - Introduction to IT service management, a set of specialized organizational capabilities for enabling value for customers in the form of IT services. ITIL, a globally recognized framework of best practices for IT service management is covered in some detail, along with other approaches for IT service management. The course presents ITIL key concepts, the ITIL service value system, the service value chain, the four dimensions of service management, ITIL guiding principles and ITIL management practices. ITIL is presented in the context of a specific organizational services domain.

IS 684: Business Process Innovation - A balanced approach to business process innovation (BPI) that includes both incremental improvement and re-engineering. It specifically examines the concept of a service-oriented architecture (SOA) and the use of web services as a way to enable scalable and adaptive business processes. Students will learn how to develop process maps using the Business Process Modeling Notation (BPMN) and design process improvements to achieve efficiency, effectiveness, compliance and agility objectives. The focus of the course is on ways in which information technology can be used to manage, transform and improve business processes.

MIS 648: Decision Support Systems for Managers - Covers the use of decision support systems to support management decision making in a real world environment. Topics include: establishing and measuring decision support systems success criteria, software tools, model management, elements of artificial intelligence, and statistics. Justification, design, and use of decision support systems.

MGMT 630: Decision Analysis - Introduction to the methodology of decision analysis using computer-based techniques and systems analysis. Introduces concepts of modeling, probability, and choice. Addresses the philosophy and detailed methods involved in decision analysis. Methods are applied to address routine and special business decisions.

MGMT 630: Decision Analysis - Introduction to the methodology of decision analysis using computer-based techniques and systems analysis. Introduces concepts of modeling, probability, and choice. Addresses the philosophy and detailed methods involved in decision analysis. Methods are applied to address routine and special business decisions.

MGMT 635: Data Mining and Analysis - This course provides an introduction to data mining with an emphasis on large scale databases as a source of knowledge generation and competitive advantage. Specific topics include: framing research questions; data modeling; inferential data mining techniques; and evaluation and deployment of data mining systems.

EM 636: Global Project Management - Introduction to concepts of project management and techniques for planning and controlling of resources to accomplish specific project goals. While the focus is on technically oriented projects, the principles discussed are applicable to the management of any project. Topics include time, cost considerations, cash flow forecasting, financial and performance control, documentation.

MGMT 650: Knowledge Management - Students will learn the principles of the knowledge management process. At the end of the course, students will have a comprehensive framework for designing and implementing a successful knowledge management effort and be able to assist in the development of knowledge.

IS 688: Web Mining - Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents and usage logs. It has direct applications in e-commerce, Web analytics, information retrieval/filtering, personalization, and recommender systems. Employees knowledgeable about Web mining techniques and their applications are highly sought by major Web companies such as Google, Amazon, Yahoo, MSN and others who need to understand user behavior and utilize discovered patterns from terabytes of user profile data to design more intelligent applications. The primary focus of this course is on Web usage mining and its applications to business intelligence and biomedical domains. We learn techniques from machine learning, data mining, text mining, and databases to extract useful knowledge from the Web and other unstructured/sestructured, hypertextual, distributed information repositories.

These courses are already part of the MBA program concentration for MIS.

Management of Technology

Management of Technology

With the use of technology on a constant rise, NJIT recognizes the demand for highly trained individuals to manage the influence of technology in organizations and the global market place.

Who is suited for this program?

The Management of Technology Graduate Certificate provides students with the skills and tools needed to manage organizational change, both planned and unplanned, associated with existing and emerging technologies. Two core courses, Management of Technology and Organizational Behavior, provide students with the background for integrating fundamental business knowledge with applications of technology. The focus is on the generation,
development and implementation of technology as well as the influences of technology on global competitiveness. Students select two electives that are consistent with their learning and career goals.

What will I learn?

• Technology as a main component of an organizational entity. Generation, development, and implementation of technology are outlined. Influence of technology on global competitiveness is also discussed.
• Managing Technological and Organizational Change which Focuses on planned and unplanned systemic change, such as downsizing, reengineering, mergers, and acquisitions.
• Knowledge Management where students will have a comprehensive framework for designing and implementing a successful knowledge management effort and be able to assist in the development of knowledge.
• Information Systems Principles which discusses the role of information processing, estimates of personnel resources and budgets, integration of corporate and MIS plans, organizational alternatives for MIS departments and support staffs, management of computer operations, equipment and general software acquisitions, intermediate and long range MIS plans, integration of personal computers, minicomputers, and mainframes, and security and controls.
• Decision Support Systems which covers the use of decision support systems to support management decision making in a real world environment.
• E-Commerce Technologies which develops a basic understanding of the Internet and its underlying technologies as a foundation for ecommerce with an introduction to ecommerce applications.
• Management Strategies for ECommerce which prepares students for effective management of internet-based businesses and electronic commerce and oversight of global business activities in an increasingly competitive environment.

Why study Management of Technology at NJIT?
The graduate certificate’s narrow focus allows you to dig deep into this specific topic, and start applying your knowledge sooner. It is possible to earn this certificate entirely through online courses, so you can more easily fit it into your busy life. And whether you take courses online or on campus you’ll learn from NJIT’s distinguished professors and instructors from the Martin Tuchman School of Management.

Prerequisites
Completion of a Bachelor’s degree with an overall cumulative Grade Point Average of 2.8 or higher on a 4.0 scale.

Related Degree Programs
All credits for the Management of Technology Certificate relates in its entirety to either NJIT MBA, NJIT MS in Management, or the MS in Business and Information Systems. The MS in Management can be completed entirely online in limited formats, and the Management of Technology graduate certificate program is a great way to jump start into the program.

Take Note
Check the course descriptions for more information. Some courses have prerequisites and must be taken in order.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td>3</td>
</tr>
<tr>
<td>EM 636</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td></td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td></td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td></td>
</tr>
</tbody>
</table>

Marketing

Marketing

Into which MS degree will this Graduate Certificate convert?
MBA

In what industries might a holder of this Graduate Certificate find employment?
Sales and marketing roles

In what job titles might a holder of this Certificate fit?
Sales Manager, Account Manager, Sales Lead, Chief Sales Officer

is this certificate fully available online (all courses)?

Yes

Description of certificate program

The marketing certificate prepares students to understand a world where technology is changing how products are developed, how customers are won and retained, and how companies interact with customers. Traditional marketing concepts are reinterpreted in light of sweeping technological changes in markets and media. Students are also able to focus on the development and marketing of high technology products.

(This curriculum is already a concentration for the MBA program. We would like to make this concentration into a certificate to allow students to earn a credential while also earning their degree (in addition to students just pursuing a MBA degree))

Course Listing. Select 4 from the following:

IE 659: Supply Chain Engineering - Coordination of product manufacturing and logistic activities across the global supply chain is studied. Focus is on supply chain design, implementation, and control. Topics include transportation and distribution networks, inventory control, demand planning, materials handling and warehousing, supply chain contracts, manufacturing flexibility, product design for responsiveness, and ERP systems and supply chain analytics

IS 664: Customer Discovery - Learning the process of directly engaging with customers to explore potential new markets. Such evidence-based entrepreneurship guides the potential for new product ideas early in the development process. Similarly, high-tech innovators in new media, web, software apps, social networking, wearable computing, and mobile devices need to determine early on if their proposed solutions address real user needs.

MNE 655: Concurrent Engineering - Concurrent/simultaneous engineering methods and tools such as system analysis, system modelling and system integration, market oriented, integrated design for manufacturing, assembly, quality and maintenance, product design analysis, integrated product design and manufacturing innovation methods, QFD (Quality Function Deployment) ? applied to concurrent engineering, FMEA (Failure Mode and Effect Analysis), POKA-YOKE, KANZEI, waste reduction, quality circles, rapid prototyping of designed objects and various other advanced processing methods.

MRKT 631: Marketing Research - research and managerial perspective on advanced marketing research methods and analytical techniques. Topics include problem formulation, research design, data collection and analysis, managerial report writing. Students will acquire experience by developing and executing their own marketing research project using sophisticated computerized analytical techniques.

MRKT 632: Strategic Marketing Management - an overview of marketing strategies: pricing, product, promotion, and place. Ethical issues are discussed as well as other course concepts using case analysis, videos, class discussion, and term projects.

MRKT 636: Design and Development of Technology Products - Focus on analysis of needs of buyers and consumers for specific product characteristics and the development of appropriate products to satisfy such needs. The process of identifying new product opportunities, screening new product concepts, product testing and test marketing, product positioning, and development of the marketing strategy and implementation plans.

MRKT 638: Sales Management for Technical Professionals - Focuses on the promotion and sales of products in the business-to-organization market. All elements of the marketing communications mix are covered according to their importance in that market: selling, sales promotion, trade advertising, and publicity. The latest techniques are reviewed and discussed using case histories and student projects. Issues of global competitiveness, high technology products, and the role of total quality management in marketing communications are emphasized.

MRKT 645: Digital Marketing Strategy - Introduction to the use of the Internet and electronic commerce in the development of marketing strategy. Examines the characteristics of electronic markets, the use of Internet for data collection and market research, the Internet as a communication and distribution medium, and development of Internet-based marketing strategies.

Master of Science in Management (MSM)

The MSM curriculum puts it all together and prepares managers who know how to use technology to meet strategic objectives; who have business smarts; and who can meet the growing demand for technology savvy leadership

Curriculum Structure & Content

The MSM curriculum is divided into two modules: the business core and concentration area. The business core comprises one-half (15 credits) of the degree requirements with the remaining 15 credits focusing on the concentration’s management knowledge component.
The Business Core: The business core provides the fundamental business knowledge needed to evaluate business models and to assume managerial positions. Coursework includes key functional areas in business: accounting, finance, marketing, information systems, leadership and organizational behavior.

Management Concentration Area: Each student selects a management area with a technical focus for in-depth study. Concentration courses are designed to complement the concepts offered in the 15 credit business core. Current concentration areas include: Business Analytics, Global Project Management, and Web Systems and Media, and Financial Technology (FinTech).

The MSM program blends technical expertise with fundamental management knowledge.

Concentration Areas:
- Business Analytics
- Global Project Management
- Web Systems and Media
- Financial Technology (FinTech)

MS in Management Curriculum

The Master of Science in Management is a 30 credit program that prepares graduates for managerial roles in organizations. Its emphasis is on melding business fundamentals and technical knowledge within specific areas of concentration including Business Analytics, Global Project Management, and Web Systems and Media, and Financial Technology (FinTech).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
<tr>
<td>or IS 677</td>
<td>Information System Principles</td>
<td></td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Global Marketing Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 15 credits from one area:

Global Project Management
- ECON 610 Managerial Economics
- EM 636 Project Management
- or MGMT 641 Global Project Management
- EM 637 Project Control
- EM 691 Cost Estimating for Capital Projects
- IE 618 Engineering Cost and Production Economics
- IE 659 Supply Chain Engineering
- IS 663 System Analysis and Design
- IS 684 Business Process Innovation

Web Systems and Media
- IS 601 Web Systems Development
- IS 661 User Experience Design
- IS 688 Web Mining
- MRKT 645 Digital Marketing Strategy
- PTC 601 Advanced Professional and Technical Communication
- PTC 605 Elements of Visual Design
- PTC 606 Advanced Information Design

Business Analytics
- CS 644 Introduction to Big Data
- EM 636 Project Management
- or MGMT 641 Global Project Management
Mini-MBA

Into which MS degree will this Graduate Certificate convert?
MBA

In what industries might a holder of this Graduate Certificate find employment?
Business, Management, Leadership Roles

In what job titles might a holder of this Certificate fit?
Similar to MBA jobs

Is this certificate fully available online (all courses)?
Yes

Description of certificate program

This four-course module uses shared business cases and a shared knowledge base that are accessible throughout the certificate program, allowing students to review material from courses that they have completed and providing an integrated perspective to business solutions. Course delivery and material include online lectures accessible over the Internet, threaded discussions, online chat in real time and case analyses as each course has the same user interface, all courses have the same look and feel allowing students to move seamlessly from course to course.

This 12-credit graduate certificate was created to offer managers and professionals core business knowledge in the areas of finance, marketing, accounting, and management information systems. It is designed to provide the skill and tools needed to analyze business models and to apply core business concepts to tactical and strategic problems. This includes advanced skills and tools to analyze business conditions and tactically solve problems.

Course Listing. Take all 4 courses below:

ACCT 615 Management Accounting - Builds on traditional concepts of managerial accounting (break-even analysis, alternate choice decisions, profit planning, and transfer pricing) and develops the skills that an executive needs in strategic cost analysis. Explores strategic decisions of value chains and activity-based management. Emphasis on using managerial accounting data in executive planning and control.
FIN 600 Corporate Finance I - This course introduces concepts and analytical tools to identify and solve Financial Management problems. After introducing the corporation, the course focuses on how firms invest in real assets (capital budgeting) and how they raise money to pay for assets (financing). Practical problems in valuing bonds, stocks and other investments will be based on the time value of money. The trade-off between risk and return will be introduced with the Capital Asset Pricing Model.

MRKT 620 Global Marketing Management - Designed to help prepare students to become effective managers overseeing global market activities in an increasingly competitive environment. It will examine the impact of global economic, financial, cultural, political, and legal factors on the development of marketing programs and on the marketing/R&D and marketing/manufacturing interfaces.

MIS 645 Information Systems Principles - The management of information processing resources, including: role of information processing, estimates of personnel resources and budgets, integration of corporate and MIS plans, organizational alternatives for MIS departments and support staffs, management of computer operations, equipment and general software acquisitions, intermediate and long-range MIS plans, integration of personal computers, minicomputers, and mainframes, and security and controls.

Mini-MBA

Into which MS degree will this Graduate Certificate convert?

MBA

In what industries might a holder of this Graduate Certificate find employment?

Business, Management, Leadership Roles

In what job titles might a holder of this Certificate fit?

Similar to MBA jobs

Is this certificate fully available online (all courses)?

Yes

Description of certificate program

This four-course module uses shared business cases and a shared knowledge base that are accessible throughout the certificate program, allowing students to review material from courses that they have completed and providing an integrated perspective to business solutions. Course delivery and material include online lectures accessible over the Internet, threaded discussions, online chat in real time and case analyses as each course has the same user interface, all courses have the same look and feel allowing students to move seamlessly from course to course.

This 12-credit graduate certificate was created to offer managers and professionals core business knowledge in the areas of finance, marketing, accounting, and management information systems. It is designed to provide the skill and tools needed to analyze business models and to apply core business concepts to tactical and strategic problems. This includes advanced skills and tools to analyze business conditions and tactically solve problems.

Course Listing. Take all 4 courses below:

ACCT 615 Management Accounting - Builds on traditional concepts of managerial accounting (break-even analysis, alternate choice decisions, profit planning, and transfer pricing) and develops the skills that an executive needs in strategic cost analysis. Explores strategic decisions of value chains and activity-based management. Emphasis on using managerial accounting data in executive planning and control.

FIN 600 Corporate Finance I - This course introduces concepts and analytical tools to identify and solve Financial Management problems. After introducing the corporation, the course focuses on how firms invest in real assets (capital budgeting) and how they raise money to pay for assets (financing). Practical problems in valuing bonds, stocks and other investments will be based on the time value of money. The trade-off between risk and return will be introduced with the Capital Asset Pricing Model.

MRKT 620 Global Marketing Management - Designed to help prepare students to become effective managers overseeing global market activities in an increasingly competitive environment. It will examine the impact of global economic, financial, cultural, political, and legal factors on the development of marketing programs and on the marketing/R&D and marketing/manufacturing interfaces.

MIS 645 Information Systems Principles - The management of information processing resources, including: role of information processing, estimates of personnel resources and budgets, integration of corporate and MIS plans, organizational alternatives for MIS departments and support staffs, management of computer operations, equipment and general software acquisitions, intermediate and long-range MIS plans, integration of personal computers, minicomputers, and mainframes, and security and controls.
Degree Requirements

Ph.D. students in Business Data Science (BDS) are expected to conduct innovative and independent research and have their research findings published in peer-reviewed scholarly journals and academic conference proceedings.

By the beginning of the first semester, upon the approval of the Ph.D. program director, student must have filed a Plan of Study (POS) that lists the courses to be taken and the timeline of study. Any modification to the POS must be approved by the Ph.D. program director and dissertation advisor (if chosen).

Coursework

Bridge Courses

Students who lack fundamental knowledge of certain subjects are required to complete assigned bridge courses by the end of year one, with a grade of at least a B in each assigned course. The assignment of bridge courses is based on recommendation and approval by the Ph.D. program director. Subjects and bridge course examples include:

- Programming and data structure (e.g. CS 280 or CS 505)
- Advanced Calculus (e.g. MATH 211)
- Probability and Statistics (e.g. MGMT 216 or MATH 333)
- Basic business knowledge (e.g. MGMT 492)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 682</td>
<td>Business Research Methods I</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 782</td>
<td>Business Research Methods II</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 635</td>
<td>Data Mining and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or CS 634</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 631</td>
<td>Data Management System Design</td>
<td>3</td>
</tr>
<tr>
<td>or IS 631</td>
<td>Enterprise Database Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 735</td>
<td>Deep Learning in Business</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 766</td>
<td>Seminar in Marketing Analytics</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 740</td>
<td>Innovation & Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>FIN 780</td>
<td>Theory and Practice of Financial Research</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 660</td>
<td>Introduction to statistical Computing with SAS and R</td>
<td>3</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 662</td>
<td>Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 678</td>
<td>Stat Methods in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 680</td>
<td>Advanced Statistical Learning</td>
<td>3</td>
</tr>
<tr>
<td>MATH 691</td>
<td>Stochastic Processes with Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS 725</td>
<td>Independent Study I</td>
<td>3</td>
</tr>
<tr>
<td>BDS 726</td>
<td>Independent Study II</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 615</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 610</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>HRM 601</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>HRM 630</td>
<td>Managing Technological and Organizational Change</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 620</td>
<td>Management of Technology</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MGMT 630</td>
<td>Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 640</td>
<td>New Venture Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 641</td>
<td>Global Project Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 650</td>
<td>Knowledge Management</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 660</td>
<td>Managing Supply and Value Chains</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 670</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 680</td>
<td>Entrepreneurial Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 686</td>
<td>Corporate Governance</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 691</td>
<td>Legal and Ethical Issues in a Digital World</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 692</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>MIS 625</td>
<td>Management Strategies for E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>MIS 645</td>
<td>Information Systems Principles</td>
<td>3</td>
</tr>
<tr>
<td>MIS 648</td>
<td>Decision Support Systems for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MIS 680</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 620</td>
<td>Global Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 631</td>
<td>Marketing Research</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 636</td>
<td>Design and Development of High Technology Products</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 638</td>
<td>Sales Management for Technical Professionals</td>
<td>3</td>
</tr>
<tr>
<td>MRKT 645</td>
<td>Digital Marketing Strategy</td>
<td>3</td>
</tr>
<tr>
<td>FIN 600</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>FIN 610</td>
<td>Global Macro Economics</td>
<td>3</td>
</tr>
<tr>
<td>FIN 611</td>
<td>Intro to Topics in Fin Tech</td>
<td>3</td>
</tr>
<tr>
<td>FIN 616</td>
<td>Data Driven Financial Modeling</td>
<td>3</td>
</tr>
<tr>
<td>FIN 620</td>
<td>Adv Financial Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>FIN 624</td>
<td>Corporate Finance II</td>
<td>3</td>
</tr>
<tr>
<td>FIN 626</td>
<td>Financial Investment Institutions</td>
<td>3</td>
</tr>
<tr>
<td>FIN 627</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>FIN 634</td>
<td>Mergers, Acquisitions, and Restructuring</td>
<td>3</td>
</tr>
<tr>
<td>FIN 641</td>
<td>Derivatives Markets</td>
<td>3</td>
</tr>
<tr>
<td>FIN 650</td>
<td>Investment Analysis and Portfolio Theory</td>
<td>3</td>
</tr>
<tr>
<td>CS 610</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 644</td>
<td>Introduction to Big Data</td>
<td>3</td>
</tr>
<tr>
<td>CS 675</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 677</td>
<td>Deep Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 732</td>
<td>Advanced Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 782</td>
<td>Pattern Recognition and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 786</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 744</td>
<td>Optimization for Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 788</td>
<td>Selected Topics in Electrical and Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IS 650</td>
<td>Data Visualization and Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>IS 657</td>
<td>Spatiotemporal Urban Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 661</td>
<td>User Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>IS 665</td>
<td>Data Analytics for Info System</td>
<td>3</td>
</tr>
<tr>
<td>IS 684</td>
<td>Business Process Innovation</td>
<td>3</td>
</tr>
<tr>
<td>IS 688</td>
<td>Web Mining</td>
<td>3</td>
</tr>
<tr>
<td>IS 698</td>
<td>Special topics in Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>IS 735</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>EM 602</td>
<td>Management Science</td>
<td>3</td>
</tr>
<tr>
<td>EM 640</td>
<td>Distribution Logistics</td>
<td>3</td>
</tr>
<tr>
<td>IE 621</td>
<td>Systems Analysis and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IE 650</td>
<td>Advanced Topics in Operations Research</td>
<td>3</td>
</tr>
</tbody>
</table>
IE 673 Total Quality Management 3
IE 659 Supply Chain Engineering 3

A student entering the program with only a Bachelor’s degree in related areas shall take 36 credits of advanced courses (600-level and 700-level) beyond the Bachelor’s degree with the approval by the Ph.D. program director. The 36 credits shall include core and elective courses, in addition to the credits for dissertation research. Among the 36 credits, at least 12 credits must be 700-level courses.

A student entering the program with a Master’s degree or above in the related areas shall take 21 credits of advanced courses (600-level and 700-level) or equivalent with the approval by the Ph.D. program director. Students with strong credentials in business and/or data science and with a Master’s degree may be approved to take 18 credits of advanced courses, subject to the approval by the Ph.D. committee. At least 12 credits must be 700-level courses.

The required course credits listed above are those in addition to the credits for dissertation research (BDS 792B and BDS 790A).

GPA

Students must maintain a cumulative GPA of 3.0 or higher. As per current NJIT policy, students receiving financial support, as assistantship and fellowship, for the first time must have a cumulative GPA of 3.5 or higher. To continue receiving support, they must maintain a cumulative GPA of at least 3.0.

Qualifying Exams

All Ph.D. students are required to take Core Course Qualifying Exams by the end of year one and must pass the Core Course Qualifying Exams by the end of year two. The Core Course Qualifying Exams covers subject matter drawn from the core courses.

All Ph.D. students are required to take Subject Qualifying Exam by the end of year two. Each Subject Qualifying Exam covers a subject area based on the student’s research interest.

Dissertation Requirements

Registration

In addition to the required course credits listed above, students must meet Ph.D. dissertation requirements. Students must register BDS 792B for dissertation proposal and BDS 790A for dissertation. The requirement of BDS 792B and BDS 790A credits are described at: http://www5.njit.edu/graduatestudies/content/new-phd-credit-requirements/ and https://catalog.njit.edu/graduate/academic-policies-procedures/.

Dissertation Advisor

Students are recommended to choose a dissertation advisor as soon as possible, but no later than 3 months after passing the Core Course Qualifying Exams.

Dissertation Proposal Defense

The dissertation proposal must be defended in a public forum successfully either by the end of the third year in the Ph.D. program or four semesters after registering for the first time in the 792 pre-doctoral research course, whichever occurs earlier.

Dissertation Defense

PhD students must defend the dissertation successfully by the end of the sixth year in the Ph.D. program.

Please refer to the following website for other institution-wide policies and procedures for Ph.D. programs: https://catalog.njit.edu/graduate/academic-policies-procedures/

Other Requirements

Ph.D. students are required to register each semester for a 0-credit course: BDS 791 Doctoral Seminar. Full-time students must attend BDS 791 seminars each semester unless justifiable reasons are approved by the program director in advance. Part-time students are expected to attend at least 50% of the BDS 791 seminars in their first year. They may be asked to perform alternative work assigned by the program director in lieu of attending seminars.

In their first year, Ph.D. students are required to take a 0-credit course: INTD 799 Responsible Conduct of Research and receive a Satisfactory grade.
Index

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the University</td>
<td>7</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>7</td>
</tr>
<tr>
<td>Academic Policies and Procedures (Graduate)</td>
<td>84</td>
</tr>
<tr>
<td>Accreditation</td>
<td>9</td>
</tr>
<tr>
<td>Admissions and Financial Support (Graduate)</td>
<td>124</td>
</tr>
<tr>
<td>Admissions (Graduate)</td>
<td>124</td>
</tr>
<tr>
<td>Advisory Boards</td>
<td>14</td>
</tr>
<tr>
<td>Animation Essentials</td>
<td>159</td>
</tr>
<tr>
<td>Applied Science</td>
<td>346</td>
</tr>
<tr>
<td>Applied Statistical Methods</td>
<td>363</td>
</tr>
<tr>
<td>Architecture (Graduate)</td>
<td>151</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>258</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Data Essentials</td>
<td>258</td>
</tr>
<tr>
<td>Biological Sciences (Graduate)</td>
<td>295</td>
</tr>
<tr>
<td>Biomedical Device Development</td>
<td>449</td>
</tr>
<tr>
<td>Biomedical Engineering (Graduate)</td>
<td>440</td>
</tr>
<tr>
<td>Biostatistics Essentials</td>
<td>364</td>
</tr>
<tr>
<td>Board of Overseers</td>
<td>11</td>
</tr>
<tr>
<td>Board of Trustees</td>
<td>10</td>
</tr>
<tr>
<td>Business Analytics</td>
<td>595</td>
</tr>
<tr>
<td>Business and Information Systems Implementation</td>
<td>249</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus Life and Student Services (Graduate)</td>
<td>136</td>
</tr>
<tr>
<td>Career Services (Graduate)</td>
<td>137</td>
</tr>
<tr>
<td>Cell & Gene Therapy Sciences</td>
<td>318</td>
</tr>
<tr>
<td>Chemical and Materials Engineering</td>
<td>453</td>
</tr>
<tr>
<td>Chemistry and Environmental Science (Graduate)</td>
<td>307</td>
</tr>
<tr>
<td>Civil and Environmental Engineering (Graduate)</td>
<td>476</td>
</tr>
<tr>
<td>CLINICAL TRIALS: DESIGN AND ANALYSIS</td>
<td>365</td>
</tr>
<tr>
<td>Collaborative Doctorate</td>
<td>117</td>
</tr>
<tr>
<td>College of Architecture and Design (Graduate)</td>
<td>142</td>
</tr>
<tr>
<td>College of Science and Liberal Arts (Graduate)</td>
<td>265</td>
</tr>
<tr>
<td>Computer Science</td>
<td>207</td>
</tr>
<tr>
<td>Computer Science (Graduate)</td>
<td>196</td>
</tr>
<tr>
<td>Construction Management</td>
<td>488</td>
</tr>
<tr>
<td>Continuing Professional Education (Graduate)</td>
<td>141</td>
</tr>
<tr>
<td>Course Codes (Graduate)</td>
<td>118</td>
</tr>
</tbody>
</table>
D
Data Mining .. 260
Data Science .. 255
Data Science for Chemical and Materials Engineers .. 464
Data Visualization ... 210
Data Visualization ... 261
Degree Programs ... 102
Digital Arts Essentials ... 160
Digitally Augmented Architecture .. 161
Directory ... 9

E
Electrical and Computer Engineering (Graduate) ... 517
Emeritus Faculty ... 62
ENVIRONMENTAL ENGINEERING ... 489
Environmental Science ... 319
Environmental Science and Engineering .. 321
ENVIRONMENTAL SCIENCE AND ENGINEERING ... 491
Executive Program ... 117

F
Faculty ... 26
Finance for Managers ... 596
Financial Support (Graduate) ... 130
FINANCIAL TECHNOLOGY .. 597
Foundations of Cybersecurity .. 211

G
Game Design and Interactivity Essentials .. 162
Geotechnical Engineering ... 493
Graduate Catalog .. 84
Graduate Certificates .. 107
Graduate Studies ... 141

H
History (Graduate) .. 333
Home Page .. 6
Humanities and Social Sciences .. 341
Hydrology and Water Resources Engineering ... 496

I
Informatics ... 230
Information Security ... 252
Innovation and Enterpreneurship .. 598
Instructional Delivery .. 122
Intelligent Transportation Systems .. 497
Interdisciplinary Program in Engineering Science (Graduate) ... 580
IT Administration .. 250
IT Sales & Analytics ... 599

L
Library Services (Graduate) ... 138

M
M.A. in History .. 340
M.B.A. in Management of Technology .. 600
M.S. in Applied Mathematics .. 366
M.S. in Applied Physics ... 386
M.S. in Applied Science ... 349
M.S. in Applied Statistics ... 368
M.S. in Architecture ... 163
M.S. in Bioinformatics .. 214
M.S. in Biology .. 302
M.S. in Biology of Health ... 303
M.S. in Biomedical Engineering .. 450
M.S. in Biostatistics .. 370
M.S. in Business and Information Systems .. 237
M.S. in Chemical Engineering ... 464
M.S. in Chemistry ... 323
M.S. in Civil Engineering ... 498
M.S. in Computer Engineering .. 528
M.S. in Computer Science ... 215
M.S. in Computing and Business .. 220
M.S. in Critical Infrastructure Systems ... 504
M.S. in Cyber Security and Privacy ... 221
M.S. in Data Science - Computational Track .. 225
M.S. in Data Science - Computational Track .. 263
M.S. in Data Science - Statistics Track ... 371
M.S. in Digital Design .. 163
M.S. in Electrical Engineering ... 530
M.S. in Engineering Management .. 561
M.S. in Engineering Science .. 581
M.S. in Environmental Engineering ... 505
M.S. in Environmental Science .. 324
M.S. in Healthcare Systems Management .. 564
M.S. in Industrial Engineering ... 565
M.S. in Information Systems .. 240
M.S. in Information Technology Administration and Security .. 245
M.S. in Internet Engineering .. 532
M.S. in Manufacturing Systems Engineering ... 568
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. in Materials Science and Engineering</td>
<td>387</td>
</tr>
<tr>
<td>M.S. in Materials Science and Engineering</td>
<td>465</td>
</tr>
<tr>
<td>M.S. in Mechanical Engineering</td>
<td>570</td>
</tr>
<tr>
<td>M.S. in Occupational Safety and Health Engineering</td>
<td>573</td>
</tr>
<tr>
<td>M.S. in Pharmaceutical Chemistry</td>
<td>326</td>
</tr>
<tr>
<td>M.S. in Pharmaceutical Engineering</td>
<td>467</td>
</tr>
<tr>
<td>M.S. in Pharmaceutical Systems Management</td>
<td>574</td>
</tr>
<tr>
<td>M.S. in Power and Energy Systems</td>
<td>534</td>
</tr>
<tr>
<td>M.S. in Software Engineering</td>
<td>227</td>
</tr>
<tr>
<td>M.S. in Telecommunications</td>
<td>535</td>
</tr>
<tr>
<td>M.S. in Transportation</td>
<td>506</td>
</tr>
<tr>
<td>M.S. in Urban Design</td>
<td>165</td>
</tr>
<tr>
<td>M.S. Online in Civil Engineering</td>
<td>509</td>
</tr>
<tr>
<td>Management Essentials</td>
<td>602</td>
</tr>
<tr>
<td>Management (Graduate)</td>
<td>590</td>
</tr>
<tr>
<td>Management Information Systems</td>
<td>603</td>
</tr>
<tr>
<td>Management of Technology</td>
<td>604</td>
</tr>
<tr>
<td>Marketing</td>
<td>605</td>
</tr>
<tr>
<td>Martin Tuchman School of Management (Graduate)</td>
<td>582</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>165</td>
</tr>
<tr>
<td>Master of Architecture and M.S. in Civil Engineering</td>
<td>166</td>
</tr>
<tr>
<td>Master of Architecture and M.S. in Management</td>
<td>170</td>
</tr>
<tr>
<td>Master of Fine Arts in Digital Design</td>
<td>171</td>
</tr>
<tr>
<td>Master of Science in Management (MSM)</td>
<td>606</td>
</tr>
<tr>
<td>Mathematical Sciences (Graduate)</td>
<td>351</td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering (Graduate)</td>
<td>546</td>
</tr>
<tr>
<td>Mini-MBA</td>
<td>608</td>
</tr>
<tr>
<td>Mini-MBA</td>
<td>609</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Network Security and Information Assurance</td>
<td>253</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>304</td>
</tr>
<tr>
<td>Newark College of Engineering (Graduate)</td>
<td>394</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Office of Graduate Studies</td>
<td>137</td>
</tr>
<tr>
<td>Online Learning (Graduate)</td>
<td>117</td>
</tr>
<tr>
<td>Online Learning (Graduate)</td>
<td>117</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Ph.D in Business Data Science</td>
<td>610</td>
</tr>
<tr>
<td>Ph.D. in Applied Physics</td>
<td>390</td>
</tr>
<tr>
<td>Ph.D. in Biology</td>
<td>305</td>
</tr>
<tr>
<td>Ph.D. in Biomedical Engineering</td>
<td>452</td>
</tr>
</tbody>
</table>
Ph.D. in Chemical Engineering ... 467
Ph.D. in Chemistry ... 328
Ph.D. in Civil Engineering ... 510
Ph.D. in Computer Engineering ... 539
Ph.D. in Computer Science ... 228
Ph.D. in Electrical Engineering ... 542
Ph.D. in Environmental Engineering ... 511
Ph.D. in Environmental Science ... 331
Ph.D. in Industrial Engineering ... 576
Ph.D. in Information Systems ... 247
Ph.D. in Materials Science and Engineering ... 391
Ph.D. in Materials Science and Engineering ... 470
Ph.D. in Mathematical Sciences ... 373
Ph.D. in Mechanical Engineering ... 576
Ph.D. in Transportation Engineering ... 513
Ph.D. in Urban Systems ... 173
Pharmaceutical Management ... 471
Pharmaceutical Manufacturing ... 472
Pharmaceutical Technology ... 473
Physics (Graduate) .. 377
POLYMERS AND PLASTICS ... 474
Power Systems Engineering ... 545
Professional/Instructional Staff ... 70
Project Management .. 578
R
Real Estate Design and Development ... 175
Residence Life (Graduate) .. 139
S
Senior Administration .. 25
Software Engineering, Analysis, and Design ... 229
Special Program Options (Graduate) ... 106
Statistics for Data Science .. 376
Structural Engineering .. 514
Student Life .. 140
Student Rights and Responsibilities (Graduate) ... 119
Supply Chain Engineering .. 579
Sustainable Building Design .. 158
Sustainable Cities and Urban Ecologies ... 176
T
The Digital Campus (Graduate) .. 138
Transportation Studies .. 516
Tuition and Fees (Graduate) ... 134

U
UI/UX Digital Design Essentials .. 178

W
Web Systems Development ... 254

Y
Ying Wu College of Computing (Graduate) .. 179